-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathencoder.py
143 lines (114 loc) · 5.32 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
'''Encode object boxes and labels.
Reference :
https://github.com/kuangliu/pytorch-retinanet/blob/master/encoder.py
'''
import math
import torch
from utils import meshgrid, box_iou, box_nms, change_box_order
class DataEncoder:
def __init__(self):
self.anchor_areas = [16*16., 32*32., 48.*48., 64*64., 128*128., 256*256.] # same with num. of feature maps used to predict
self.aspect_ratios = [1/2., 1/1., 2/1.]
self.scale_ratios = [1., pow(2,1/3.), pow(2,2/3.)]
self.anchor_wh = self._get_anchor_wh()
def _get_anchor_wh(self):
'''Compute anchor width and height for each feature map.
Returns:
anchor_wh: (tensor) anchor wh, sized [#fm, #anchors_per_cell, 2].
'''
anchor_wh = []
for s in self.anchor_areas:
for ar in self.aspect_ratios: # w/h = ar
h = math.sqrt(s/ar)
w = ar * h
for sr in self.scale_ratios: # scale
anchor_h = h*sr
anchor_w = w*sr
anchor_wh.append([anchor_w, anchor_h])
num_fms = len(self.anchor_areas)
return torch.Tensor(anchor_wh).view(num_fms, -1, 2)
def _get_anchor_boxes(self, input_size):
'''Compute anchor boxes for each feature map.
Args:
input_size: (tensor) model input size of (w,h).
Returns:
boxes: (list) anchor boxes for each feature map. Each of size [#anchors,4],
where #anchors = fmw * fmh * #anchors_per_cell
'''
num_fms = len(self.anchor_areas)
downsample_cnt = 3
# fm_sizes = [(input_size / pow(2., i + downsample_cnt)).ceil() for i in range(num_fms)] # p3 -> p7 feature map sizes
fm_sizes = []
for i in range(num_fms):
if i >= 4:
fm_sizes.append((input_size / pow(2., 3 + downsample_cnt)) - (2. * (i-3)))
else:
fm_sizes.append(input_size / pow(2., i + downsample_cnt))
boxes = []
for i in range(num_fms):
fm_size = fm_sizes[i]
grid_size = input_size / fm_size
fm_w, fm_h = int(fm_size[0]), int(fm_size[1])
xy = meshgrid(fm_w,fm_h) + 0.5 # [fm_h*fm_w, 2]
xy = (xy*grid_size).view(fm_h,fm_w,1,2).expand(fm_h,fm_w,9,2)
wh = self.anchor_wh[i].view(1,1,9,2).expand(fm_h,fm_w,9,2)
box = torch.cat([xy,wh], 3) # [x,y,w,h]
boxes.append(box.view(-1,4))
return torch.cat(boxes, 0)
def encode(self, boxes, labels, input_size):
'''Encode target bounding boxes and class labels.
We obey the Faster RCNN box coder:
tx = (x - anchor_x) / anchor_w
ty = (y - anchor_y) / anchor_h
tw = log(w / anchor_w)
th = log(h / anchor_h)
Args:
boxes: (tensor) bounding boxes of (xmin,ymin,xmax,ymax), sized [#obj, 4].
labels: (tensor) object class labels, sized [#obj,].
input_size: (int/tuple) model input size of (w,h).
Returns:
loc_targets: (tensor) encoded bounding boxes, sized [#anchors,4].
cls_targets: (tensor) encoded class labels, sized [#anchors,].
'''
input_size = torch.Tensor([input_size,input_size]) if isinstance(input_size, int) \
else torch.Tensor(input_size)
anchor_boxes = self._get_anchor_boxes(input_size)
boxes = change_box_order(boxes, 'xyxy2xywh')
ious = box_iou(anchor_boxes, boxes, order='xywh')
max_ious, max_ids = ious.max(1)
boxes = boxes[max_ids]
loc_xy = (boxes[:,:2]-anchor_boxes[:,:2]) / anchor_boxes[:,2:]
loc_wh = torch.log(boxes[:,2:]/anchor_boxes[:,2:])
loc_targets = torch.cat([loc_xy,loc_wh], 1)
cls_targets = labels[max_ids]
cls_targets[max_ious<0.5] = 0
ignore = (max_ious>0.4) & (max_ious<0.5) # ignore ious between [0.4,0.5]
cls_targets[ignore] = -1 # for now just mark ignored to -1
return loc_targets, cls_targets
def decode(self, loc_preds, cls_preds, input_size):
'''Decode outputs back to bouding box locations and class labels.
Args:
loc_preds: (tensor) predicted locations, sized [#anchors, 4].
cls_preds: (tensor) predicted class labels, sized [#anchors, #classes].
input_size: (int/tuple) model input size of (w,h).
Returns:
boxes: (tensor) decode box locations, sized [#obj,4].
labels: (tensor) class labels for each box, sized [#obj,].
'''
CLS_THRESH = 0.5
NMS_THRESH = 0.5
input_size = torch.Tensor([input_size,input_size]) if isinstance(input_size, int) \
else torch.Tensor(input_size)
anchor_boxes = self._get_anchor_boxes(input_size)
loc_xy = loc_preds[:,:2]
loc_wh = loc_preds[:,2:]
xy = loc_xy * anchor_boxes[:,2:] + anchor_boxes[:,:2]
wh = loc_wh.exp() * anchor_boxes[:,2:]
boxes = torch.cat([xy-wh/2, xy+wh/2], 1) # [#anchors,4]
score, labels = cls_preds.sigmoid().max(1) # [#anchors,]
ids = score > CLS_THRESH
ids = ids.nonzero().squeeze() # [#obj,]
if ids.dim() == 0:
return [], []
keep = box_nms(boxes[ids], score[ids], threshold=NMS_THRESH)
return boxes[ids][keep], labels[ids][keep]