forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
148 lines (124 loc) · 5.49 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
import os
import paddle
from paddle.static import InputSpec
from paddle.metric import Accuracy
from paddlenlp.utils.log import logger
from paddlenlp.transformers import AutoTokenizer, AutoModelForMaskedLM
from paddlenlp.trainer import PdArgumentParser, EarlyStoppingCallback
from paddlenlp.prompt import (
AutoTemplate,
SoftVerbalizer,
PromptTuningArguments,
PromptTrainer,
PromptModelForSequenceClassification,
)
from utils import load_local_dataset
# yapf: disable
@dataclass
class DataArguments:
data_dir: str = field(default="./data/", metadata={"help": "Path to a dataset which includes train.txt, dev.txt, test.txt, label.txt and data.txt (optional)."})
prompt: str = field(default=None, metadata={"help": "The input prompt for tuning."})
soft_encoder: str = field(default="lstm", metadata={"help": "The encoder type of soft template, `lstm`, `mlp` or None."})
encoder_hidden_size: int = field(default=200, metadata={"help": "The dimension of soft embeddings."})
@dataclass
class ModelArguments:
model_name_or_path: str = field(default="ernie-3.0-base-zh", metadata={"help": "Build-in pretrained model name or the path to local model."})
export_type: str = field(default='paddle', metadata={"help": "The type to export. Support `paddle` and `onnx`."})
# yapf: enable
def main():
# Parse the arguments.
parser = PdArgumentParser(
(ModelArguments, DataArguments, PromptTuningArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
training_args.print_config(model_args, "Model")
training_args.print_config(data_args, "Data")
paddle.set_device(training_args.device)
# Load the pretrained language model.
model = AutoModelForMaskedLM.from_pretrained(model_args.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path)
# Define the template for preprocess and the verbalizer for postprocess.
template = AutoTemplate.create_from(
data_args.prompt,
tokenizer,
training_args.max_seq_length,
model=model,
prompt_encoder=data_args.soft_encoder,
encoder_hidden_size=data_args.encoder_hidden_size)
logger.info("Using template: {}".format(template.template))
label_file = os.path.join(data_args.data_dir, "label.txt")
verbalizer = SoftVerbalizer.from_file(tokenizer, model, label_file)
# Load the few-shot datasets.
train_ds, dev_ds, test_ds = load_local_dataset(
data_path=data_args.data_dir,
splits=["train", "dev", "test"],
label_list=verbalizer.labels_to_ids)
# Define the criterion.
criterion = paddle.nn.CrossEntropyLoss()
# Initialize the prompt model with the above variables.
prompt_model = PromptModelForSequenceClassification(
model,
template,
verbalizer,
freeze_plm=training_args.freeze_plm,
freeze_dropout=training_args.freeze_dropout)
# Define the metric function.
def compute_metrics(eval_preds):
metric = Accuracy()
correct = metric.compute(paddle.to_tensor(eval_preds.predictions),
paddle.to_tensor(eval_preds.label_ids))
metric.update(correct)
acc = metric.accumulate()
return {'accuracy': acc}
# Deine the early-stopping callback.
callbacks = [
EarlyStoppingCallback(early_stopping_patience=4,
early_stopping_threshold=0.)
]
# Initialize the trainer.
trainer = PromptTrainer(model=prompt_model,
tokenizer=tokenizer,
args=training_args,
criterion=criterion,
train_dataset=train_ds,
eval_dataset=dev_ds,
callbacks=callbacks,
compute_metrics=compute_metrics)
# Traininig.
if training_args.do_train:
train_result = trainer.train(resume_from_checkpoint=None)
metrics = train_result.metrics
trainer.save_model()
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Prediction.
if training_args.do_predict:
test_ret = trainer.predict(test_ds)
trainer.log_metrics("test", test_ret.metrics)
# Export static model.
if training_args.do_export:
input_spec = [
InputSpec(shape=[None, None], dtype="int64"), # input_ids
InputSpec(shape=[None, None], dtype="int64"), # mask_ids
InputSpec(shape=[None, None], dtype="int64"), # soft_token_ids
]
export_path = os.path.join(training_args.output_dir, 'export')
trainer.export_model(export_path,
input_spec=input_spec,
export_type=model_args.export_type)
if __name__ == '__main__':
main()