-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
36 lines (32 loc) · 1.77 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import tensorflow as tf
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
training_set = train_datagen.flow_from_directory('tomato/train',
target_size = (128, 128),
batch_size = 64,
class_mode = 'categorical')
test_datagen = ImageDataGenerator(rescale = 1./255)
test_set = test_datagen.flow_from_directory('tomato/val',
target_size = (128, 128),
batch_size = 64,
class_mode = 'categorical')
cnn = tf.keras.models.Sequential()
cnn.add(tf.keras.layers.Conv2D(filters=32, kernel_size=3, activation='relu', input_shape=[128, 128, 3]))
cnn.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2))
cnn.add(tf.keras.layers.Conv2D(filters=32, kernel_size=3, activation='relu'))
cnn.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2))
cnn.add(tf.keras.layers.Flatten())
cnn.add(tf.keras.layers.Dense(units=128, activation='relu'))
cnn.add(tf.keras.layers.Dense(units=10, activation='sigmoid'))
cnn.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy'])
cnn.fit(x = training_set, validation_data = test_set, epochs = 50,steps_per_epoch = 20)
classifier_json=cnn.to_json()
with open("model1.json", "w") as json_file:
json_file.write(classifier_json)
# serialize weights to HDF5
cnn.save_weights("my_model_weights.h5")
cnn.save("model.h5")
print("Saved model to disk")