-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindic_MT_inference_script.py
96 lines (70 loc) · 3.29 KB
/
indic_MT_inference_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
from dotenv import load_dotenv
import os
from groq import Groq
import logging
logging.basicConfig(filename="inference.log",format='%(asctime)s %(message)s',filemode='w')
# Creating an object
logger = logging.getLogger()
load_dotenv()
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
base_model ="/app/models/gemma-2-2b" #"Hemanth-thunder/gemma-2-2b-bnb-4bit"
HUGGING_FACE_TOKEN = os.getenv('HUGGING_FACE_TOKEN') ####replace_this_to_huggingface_token
client = Groq(api_key=os.environ.get("AGENT_GROQ"))
#bnb_config = BitsAndBytesConfig(load_in_4bit=True,bnb_4bit_quant_type="nf4",bnb_4bit_compute_dtype=torch.bfloat16,bnb_4bit_use_double_quant=True)
logger.info("Loading Base Model")
model = AutoModelForCausalLM.from_pretrained(base_model,low_cpu_mem_usage=True).to("cuda")#, ,token=HUGGING_FACE_TOKEN ,quantization_config=bnb_config
logger.info("Loading Tokenizer")
tokenizer = AutoTokenizer.from_pretrained(base_model, use_fast=True) #,token=HUGGING_FACE_TOKEN
# PEFT models paths
peft_models_path = {
'hindi': "Hemanth-thunder/model_gemma2b_mt-hi_1k_steps",
'tamil': "Hemanth-thunder/model_gemma2b_mt-ta_2k_steps",
'kannada': "Hemanth-thunder/model_gemma2b_mt-kh_10k_steps",
'malayalam': "Hemanth-thunder/model_gemma2b_mt-ml_10k_steps",
'telugu': "Hemanth-thunder/model_gemma2b_mt-te_10k_steps",
'bengali': "Hemanth-thunder/model_gemma2b_mt-bn_10k_steps",
'marathi': "Hemanth-thunder/model_gemma2b_mt-mr_10k_steps",
'gujarati': "Hemanth-thunder/model_gemma2b_mt-gujarati_gu_10k_steps",
'odia': "Hemanth-thunder/model_gemma2b_mt-odia_or_10k_steps"
}
# Adapter names
adapter_names = list(peft_models_path.keys())
pipeline_type = "text-generation"
peft_model = PeftModel.from_pretrained(model, peft_models_path['tamil'], adapter_name="tamil")
for lang, path in peft_models_path.items():
if lang != "tamil":
try:
_ = peft_model.load_adapter(path, adapter_name=lang)
print(f"load {lang}")
except Exception as e:
print(f"Error loading adapter for {lang}: {e}")
# Set the model to evaluation mode
peft_model.eval()
alpaca_prompt = """
### Instruction:
Your are an AI translator to translate the following English input sentence to {} sentence.
### Input:
{}
### Response:
{}"""
## function for generatining text
def generate(lang, english_text, response_text, merged_model, to_set_lang):
# Prepare the prompt using the language and texts
prompt = alpaca_prompt.format(lang.capitalize(), english_text, response_text)
# Set the adapter for the merged model if specified
if to_set_lang:
merged_model.set_adapter(lang)
print(f"adaptor switched to {lang}")
# Tokenize the input prompt
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
# Generate output using the model
try:
outputs = merged_model.generate(**inputs, max_new_tokens=256,do_sample=True,top_p=0.95,temperature=0.2,repetition_penalty=1.2,eos_token_id=tokenizer.eos_token_id,)
# Decode and return the response
response = tokenizer.decode(outputs[0])
return response.split("### Response:")[-1].strip()
except Exception as e:
print(f"Error during generation: {e}")
return None