-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfile_util.py
134 lines (123 loc) · 4.47 KB
/
file_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/env python
# coding=utf-8
'''
* @File : file_util.py
* @Time : 2020/04/03 22:03:47
* @Author : Hanielxx
* @Version : 1.0
* @Desc : 文件相关构件库
'''
import pandas as pd
import numpy as np
import sys
import os
def get_data_from_file(fpath,
xname=None,
yname=None,
upper=False,
dropna=True,
encode='utf-8'):
'''
Desc:
使用于大部分情况的Excel文件数据提取,从csv/excel(xls,xlsx,xlsm..)/txt格式的文件中提取训练数据和可能存在的label
Args:
fpath: str -- 文件路径
xname: list or str -- 数据列名,如果为None,则为全部
yname: list or str -- 标签列名,如果为None,则视为无,如果xname为None,yname不为None,yname依然生效
upper: bool -- 是否对所有的数据进行大写转换
dropna: bool -- 是否丢弃缺失值所在行
encode: str -- 读取后的编码方式,默认utf-8
Returns:
x, y: ndarray(-1,1) -- 训练数据和对应标签
'''
path = sys.path[0]
fpath = os.path.join(path, fpath)
print("read fpath:", fpath)
file_type = fpath.split('.')[-1]
raw_data = pd.DataFrame()
# 判断文件类型
try:
if file_type == 'csv':
raw_data = pd.read_csv(fpath, encoding=encode)
elif file_type == 'txt':
raw_data = pd.read_csv(fpath, sep=' ', encoding=encode)
elif file_type in ['xls', 'xlsx', 'xlsm', 'xlsb', 'odf']:
raw_data = pd.read_excel(fpath)
except Exception as e:
raise e
# 对要读取的数据内容进行分析
data = pd.DataFrame()
if xname is None:
xname = raw_data.columns.values.tolist()
else:
xname = [xname] if type(xname) != list else xname
if yname is None:
yname = []
else:
yname = [yname] if type(yname) != list else yname
# 获取要读取的数据
data = raw_data[xname + yname] # DataFrame
data = data.dropna(axis=0) if dropna else data
# 区分X和Y并返回
# x, y = data[xname].values.squeeze(), data[yname].values.squeeze() # DataFrame
x, y = data[xname], data[yname] # DataFrame
if upper:
for i in x.columns:
if type(x.loc[0, i]) is str:
x.loc[:, i] = x.loc[:, i].str.upper()
# x[i] = x[i].str.upper()
x, y = x.values.squeeze(), y.values.squeeze()
return x, y
def write_csv_excel(data,
fpath,
columns=None,
header=False,
sheet_name=None,
nan_rep='NULL',
encoding=None):
'''
Desc:
将序列数据写入csv文件,默认不写入DataFrame的index和header
Args:
data:DataFrame/ndarray/list -- ndarray格式数据
fpath -- 写入文件路径或文件流,文件类型可以是csv,xlsx,txt
columns -- 可选的列
header -- 是否要写入列名
sheet_name -- 在写入excel时可选,指定sheet名
nan_rep -- 是否要将Nan替换成其他字符串
Returns:
None -- None
'''
path = sys.path[0]
fpath = os.path.join(path, fpath)
print("write fpath:", fpath)
if type(data) not in [pd.DataFrame, np.ndarray, pd.Series, list]:
raise ValueError("data数据类型只支持DataFrame, Series, ndarray和list")
data = pd.DataFrame(data)
file_type = fpath.split('.')[-1]
if file_type == 'csv':
data.to_csv(fpath,
columns=columns,
index=False,
header=header,
na_rep=nan_rep,
encoding=encoding)
elif file_type in ['xls', 'xlsx', 'xlsm', 'xlsb', 'odf']:
writer = pd.ExcelWriter(fpath)
data.to_excel(writer,
sheet_name=sheet_name,
na_rep=nan_rep,
columns=columns,
header=header,
index=False,
encoding=encoding)
elif file_type == 'txt':
data.to_csv(fpath,
sep=' ',
columns=columns,
index=False,
header=header,
na_rep=nan_rep,
encoding=encoding)
else:
raise ValueError("写入文件只支持csv, txt, xls, xlsx, xlsm, xlsb, odf")