-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathrun_visualization_experiments.py
164 lines (138 loc) · 5.04 KB
/
run_visualization_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import torch
import torch.nn as nn
import json
import os
import numpy as np
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
from model.vqvae import VectorQuantizedVAE
from data_processing.cifar10 import get_data_loaders
from torch.utils.tensorboard import SummaryWriter
class GradientFlowTracker(nn.Module):
def __init__(self, model, log_dir):
super().__init__()
self.model = model
self.writer = SummaryWriter(log_dir)
self.gradient_history = []
self.hooks = []
self._register_hooks()
def _register_hooks(self):
def hook_fn(name):
def fn(grad):
if grad is not None:
self.gradient_history.append({
'name': name,
'grad_norm': grad.norm().item(),
'grad_mean': grad.mean().item(),
'grad_std': grad.std().item()
})
return fn
for name, param in self.model.named_parameters():
if param.requires_grad:
self.hooks.append(param.register_hook(hook_fn(name)))
def save_gradient_flow(self, epoch):
if not self.gradient_history:
return
for grad_info in self.gradient_history:
self.writer.add_scalar(
f'Gradient_Flow/{grad_info["name"]}/norm',
grad_info['grad_norm'],
epoch
)
self.writer.add_scalar(
f'Gradient_Flow/{grad_info["name"]}/mean',
grad_info['grad_mean'],
epoch
)
self.writer.add_scalar(
f'Gradient_Flow/{grad_info["name"]}/std',
grad_info['grad_std'],
epoch
)
self.gradient_history = []
def visualize_codebook_evolution(model, epoch, save_dir):
# Extract codebook vectors
codebook_vectors = model.codebook.weight.detach().cpu().numpy()
# Perform t-SNE dimensionality reduction
tsne = TSNE(n_components=2, random_state=42)
codebook_2d = tsne.fit_transform(codebook_vectors)
# Create visualization
plt.figure(figsize=(10, 10))
plt.scatter(codebook_2d[:, 0], codebook_2d[:, 1], alpha=0.5)
plt.title(f'Codebook Vector Distribution (Epoch {epoch})')
plt.xlabel('t-SNE Dimension 1')
plt.ylabel('t-SNE Dimension 2')
# Save plot
os.makedirs(save_dir, exist_ok=True)
plt.savefig(os.path.join(save_dir, f'codebook_distribution_epoch_{epoch}.png'))
plt.close()
def run_visualization_experiments():
# Configuration
config = {
'data_dir': 'data',
'batch_size': 128,
'num_workers': 4,
'k_dim': 1024,
'z_dim': 256,
'beta': 0.25,
'learning_rate': 2e-4,
'num_epochs': 50,
'device': 'cuda' if torch.cuda.is_available() else 'cpu',
}
# Setup directories
vis_dir = 'results/visualization'
os.makedirs(vis_dir, exist_ok=True)
config['log_dir'] = os.path.join(vis_dir, 'logs')
config['checkpoint_path'] = os.path.join(vis_dir, 'model_final.pth')
# Data loading
train_loader, test_loader = get_data_loaders(
config['data_dir'],
batch_size=config['batch_size'],
num_workers=config['num_workers']
)
# Model initialization
model = VectorQuantizedVAE(
k_dim=config['k_dim'],
z_dim=config['z_dim'],
beta=config['beta']
).to(config['device'])
# Initialize gradient tracker
gradient_tracker = GradientFlowTracker(model, config['log_dir'])
# Training setup
optimizer = torch.optim.Adam(model.parameters(), lr=config['learning_rate'])
# Training loop with visualization
training_results = []
for epoch in range(config['num_epochs']):
model.train()
epoch_loss = 0
for batch_idx, (data, _) in enumerate(train_loader):
data = data.to(config['device'])
optimizer.zero_grad()
# Forward pass
output = model(data)
loss = output['loss']
# Backward pass
loss.backward()
optimizer.step()
epoch_loss += loss.item()
# Save gradient flow information
gradient_tracker.save_gradient_flow(epoch * len(train_loader) + batch_idx)
if batch_idx % 100 == 0:
print(f'Epoch: {epoch}, Batch: {batch_idx}, Loss: {loss.item():.4f}')
# Visualize codebook distribution
visualize_codebook_evolution(model, epoch, os.path.join(vis_dir, 'codebook_evolution'))
# Save epoch results
epoch_results = {
'epoch': epoch + 1,
'average_loss': epoch_loss / len(train_loader)
}
training_results.append(epoch_results)
# Save visualization experiment results
results = {
'config': config,
'training_results': training_results
}
with open(os.path.join(vis_dir, 'visualization_results.json'), 'w') as f:
json.dump(results, f, indent=4)
if __name__ == '__main__':
run_visualization_experiments()