-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathrun_training_testing_v2.py
171 lines (146 loc) · 5.41 KB
/
run_training_testing_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import torch
import logging
import numpy as np
from datetime import datetime
from data_processing.cifar10 import get_data_loaders
from model.velocity_network import VelocityNetwork
from model.resnet_velocity import ResNetVelocity, ImprovedCNF
from model.network import CNF
from training.trainer import CNFTrainer
from testing.evaluator import FIDScore, evaluate_model
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('experiments/logs/training_v2.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
def train_and_evaluate(model_name, model, train_loader, test_loader, device, config):
"""Train and evaluate a model with given configuration"""
logger.info(f"Starting training for {model_name}")
# Initialize trainer
trainer = CNFTrainer(
model,
train_loader,
test_loader,
device,
lr=config['learning_rate'],
alpha=config.get('alpha', 0.1)
)
# Initialize metrics
fid_calculator = FIDScore(device)
best_fid = float('inf')
metrics_history = {
'train_loss': [],
'eval_loss': [],
'fid_scores': []
}
# Training loop
for epoch in range(config['epochs']):
# Train epoch
train_loss = trainer.train_epoch(epoch)
eval_loss = trainer.evaluate()
metrics_history['train_loss'].append(train_loss)
metrics_history['eval_loss'].append(eval_loss)
logger.info(f"Epoch {epoch+1}/{config['epochs']}")
logger.info(f"Training Loss: {train_loss:.6f}")
logger.info(f"Evaluation Loss: {eval_loss:.6f}")
# Compute FID score every few epochs
if (epoch + 1) % config['eval_interval'] == 0:
metrics = evaluate_model(trainer.ema_model, test_loader, fid_calculator, device)
fid_score = metrics['fid']
metrics_history['fid_scores'].append(fid_score)
logger.info(f"FID Score: {fid_score:.2f}")
if fid_score < best_fid:
best_fid = fid_score
# Save best model
torch.save({
'epoch': epoch,
'model_state_dict': trainer.ema_model.state_dict(),
'optimizer_state_dict': trainer.optimizer.state_dict(),
'fid_score': fid_score,
}, f'experiments/checkpoints/{model_name}_best.pt')
return metrics_history
def main():
# Configuration
data_dir = os.path.join('data', 'cifar-10-batches-py')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Create necessary directories
os.makedirs('experiments/logs', exist_ok=True)
os.makedirs('experiments/checkpoints', exist_ok=True)
os.makedirs('experiments/results', exist_ok=True)
# Training configurations
configs = {
'baseline': {
'model_type': 'simple',
'hidden_dims': [512, 512, 512],
'activation': 'relu',
'learning_rate': 2e-4,
'alpha': 0.1,
'epochs': 100,
'eval_interval': 5,
'batch_size': 512
},
'improved': {
'model_type': 'resnet',
'hidden_dims': [128, 256, 512, 256, 128],
'activation': 'relu',
'learning_rate': 2e-4,
'alpha': 0.1,
'epochs': 100,
'eval_interval': 5,
'batch_size': 512
}
}
# Set up data loaders
logger.info("Setting up data loaders...")
for config_name, config in configs.items():
train_loader, test_loader = get_data_loaders(
data_dir,
batch_size=config['batch_size'],
num_workers=4
)
logger.info(f"\nStarting experiments for {config_name} configuration")
try:
# Initialize model
if config['model_type'] == 'simple':
velocity_net = VelocityNetwork(
hidden_dims=config['hidden_dims'],
activation=config['activation']
)
model = CNF(velocity_net)
else:
velocity_net = ResNetVelocity(
hidden_dims=config['hidden_dims'],
activation=config['activation']
)
model = ImprovedCNF(velocity_net)
model = model.to(device)
# Train and evaluate
metrics_history = train_and_evaluate(
config_name,
model,
train_loader,
test_loader,
device,
config
)
# Save results
results = {
'config': config,
'metrics': metrics_history
}
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
save_path = f'experiments/results/{config_name}_{timestamp}.npz'
np.savez(save_path, **results)
logger.info(f"Completed experiments for {config_name}")
logger.info(f"Results saved to {save_path}")
except Exception as e:
logger.error(f"Error in {config_name} experiments: {str(e)}")
continue
if __name__ == "__main__":
main()