-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathECalBarrelInclined_geo.cpp
614 lines (576 loc) · 34.7 KB
/
ECalBarrelInclined_geo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
#include "DD4hep/DetFactoryHelper.h"
#include "DD4hep/Handle.h"
#include "XML/Utilities.h"
#include <DDRec/DetectorData.h>
// todo: remove gaudi logging and properly capture output
#define endmsg std::endl
#define lLog std::cout
namespace MSG {
const std::string ERROR = " Error: ";
const std::string DEBUG = " Debug: ";
const std::string INFO = " Info: ";
}
namespace det {
static dd4hep::detail::Ref_t createECalBarrelInclined(dd4hep::Detector& aLcdd,
dd4hep::xml::Handle_t aXmlElement,
dd4hep::SensitiveDetector aSensDet) {
dd4hep::xml::DetElement xmlDetElem = aXmlElement;
std::string nameDet = xmlDetElem.nameStr();
dd4hep::xml::Dimension dim(xmlDetElem.dimensions());
dd4hep::DetElement caloDetElem(nameDet, xmlDetElem.id());
// Create air envelope for the whole barrel
dd4hep::Volume envelopeVol(nameDet + "_vol", dd4hep::Tube(dim.rmin(), dim.rmax(), dim.dz()),
aLcdd.material("Air"));
envelopeVol.setVisAttributes(aLcdd, dim.visStr());
// Retrieve cryostat data
dd4hep::xml::DetElement cryostat = aXmlElement.child(_Unicode(cryostat));
dd4hep::xml::Dimension cryoDim(cryostat.dimensions());
double cryoThicknessFront = cryoDim.rmin2() - cryoDim.rmin1();
dd4hep::xml::DetElement cryoFront = cryostat.child(_Unicode(front));
dd4hep::xml::DetElement cryoBack = cryostat.child(_Unicode(back));
dd4hep::xml::DetElement cryoSide = cryostat.child(_Unicode(side));
bool cryoFrontSensitive = cryoFront.isSensitive();
bool cryoBackSensitive = cryoBack.isSensitive();
bool cryoSideSensitive = cryoSide.isSensitive();
// Retrieve active and passive material data
dd4hep::xml::DetElement calo = aXmlElement.child(_Unicode(calorimeter));
dd4hep::xml::Dimension caloDim(calo.dimensions());
dd4hep::xml::DetElement active = calo.child(_Unicode(active));
std::string activeMaterial = active.materialStr();
double activeThickness = active.thickness();
dd4hep::xml::DetElement overlap = active.child(_Unicode(overlap));
double activePassiveOverlap = overlap.offset();
if (activePassiveOverlap < 0 || activePassiveOverlap > 0.5) {
// todo: ServiceHandle<IIncidentSvc> incidentSvc("IncidentSvc", "ECalConstruction");
lLog << MSG::ERROR << "Overlap between active and passive cannot be more than half of passive plane!" << endmsg;
//todo: incidentSvc->fireIncident(Incident("ECalConstruction", "GeometryFailure"));
}
dd4hep::xml::DetElement layers = calo.child(_Unicode(layers));
uint numLayers = 0;
std::vector<double> layerHeight;
double layersTotalHeight = 0;
for (dd4hep::xml::Collection_t layer_coll(layers, _Unicode(layer)); layer_coll; ++layer_coll) {
dd4hep::xml::Component layer = layer_coll;
numLayers += layer.repeat();
for (int iLay = 0; iLay < layer.repeat(); iLay++) {
layerHeight.push_back(layer.thickness());
}
layersTotalHeight += layer.repeat() * layer.thickness();
}
lLog << MSG::DEBUG << "Number of layers: " << numLayers << " total thickness " << layersTotalHeight << endmsg;
// The following code checks if the xml geometry file contains a constant defining
// the number of layers the barrel. In that case, it makes the program abort
// if the number of planes in the xml is different from the one calculated from
// the geometry. This is because the number of layers is needed
// in other parts of the code (the readout for the FCC-ee ECAL with
// inclined modules).
int nLayers = -1;
try {
nLayers = aLcdd.constant<int>("ECalBarrelNumLayers");
}
catch(...) {
;
}
if (nLayers > 0 && nLayers != numLayers) {
lLog << MSG::ERROR << "Incorrect number of layers (ECalBarrelNumLayers) in xml file!" << endmsg;
// todo: incidentSvc->fireIncident(Incident("ECalConstruction", "GeometryFailure"));
// make the code crash (incidentSvc does not work)
assert(nLayers == numLayers);
}
dd4hep::xml::DetElement readout = calo.child(_Unicode(readout));
std::string readoutMaterial = readout.materialStr();
double readoutThickness = readout.thickness();
dd4hep::xml::DetElement passive = calo.child(_Unicode(passive));
dd4hep::xml::DetElement passiveInner = passive.child(_Unicode(inner));
dd4hep::xml::DetElement passiveInnerMax = passive.child(_Unicode(innerMax));
dd4hep::xml::DetElement passiveOuter = passive.child(_Unicode(outer));
dd4hep::xml::DetElement passiveGlue = passive.child(_Unicode(glue));
std::string passiveInnerMaterial = passiveInner.materialStr();
std::string passiveOuterMaterial = passiveOuter.materialStr();
std::string passiveGlueMaterial = passiveGlue.materialStr();
double passiveInnerThicknessMin = passiveInner.thickness();
double passiveInnerThicknessMax = passiveInnerMax.thickness();
double passiveOuterThickness = passiveOuter.thickness();
double passiveGlueThickness = passiveGlue.thickness();
double passiveThickness = passiveInnerThicknessMin + passiveOuterThickness + passiveGlueThickness;
double angle = passive.rotation().angle();
double bathRmin = caloDim.rmin(); // - margin for inclination
double bathRmax = caloDim.rmax(); // + margin for inclination
dd4hep::Tube bathOuterShape(bathRmin, bathRmax, caloDim.dz()); // make it 4 volumes + 5th for detector envelope
dd4hep::Tube bathAndServicesOuterShape(cryoDim.rmin2(), cryoDim.rmax1(), caloDim.dz()); // make it 4 volumes + 5th for detector envelope
if (cryoThicknessFront > 0) {
// 1. Create cryostat
dd4hep::Tube cryoFrontShape(cryoDim.rmin1(), cryoDim.rmin2(), cryoDim.dz());
dd4hep::Tube cryoBackShape(cryoDim.rmax1(), cryoDim.rmax2(), cryoDim.dz());
dd4hep::Tube cryoSideOuterShape(cryoDim.rmin2(), cryoDim.rmax1(), cryoDim.dz());
dd4hep::SubtractionSolid cryoSideShape(cryoSideOuterShape, bathAndServicesOuterShape);
lLog << MSG::INFO << "ECAL cryostat: front: rmin (cm) = " << cryoDim.rmin1() << " rmax (cm) = " << cryoDim.rmin2() << " dz (cm) = " << cryoDim.dz() << endmsg;
lLog << MSG::INFO << "ECAL cryostat: back: rmin (cm) = " << cryoDim.rmax1() << " rmax (cm) = " << cryoDim.rmax2() << " dz (cm) = " << cryoDim.dz() << endmsg;
lLog << MSG::INFO << "ECAL cryostat: side: rmin (cm) = " << cryoDim.rmin2() << " rmax (cm) = " << cryoDim.rmax1() << " dz (cm) = " << cryoDim.dz() - caloDim.dz() << endmsg;
dd4hep::Volume cryoFrontVol(cryostat.nameStr()+"_front", cryoFrontShape, aLcdd.material(cryostat.materialStr()));
dd4hep::Volume cryoBackVol(cryostat.nameStr()+"_back", cryoBackShape, aLcdd.material(cryostat.materialStr()));
dd4hep::Volume cryoSideVol(cryostat.nameStr()+"_side", cryoSideShape, aLcdd.material(cryostat.materialStr()));
dd4hep::PlacedVolume cryoFrontPhysVol = envelopeVol.placeVolume(cryoFrontVol);
dd4hep::PlacedVolume cryoBackPhysVol = envelopeVol.placeVolume(cryoBackVol);
dd4hep::PlacedVolume cryoSidePhysVol = envelopeVol.placeVolume(cryoSideVol);
if (cryoFrontSensitive) {
cryoFrontVol.setSensitiveDetector(aSensDet);
cryoFrontPhysVol.addPhysVolID("cryo", 1);
cryoFrontPhysVol.addPhysVolID("type", 1);
lLog << MSG::INFO << "Cryostat front volume set as sensitive" << endmsg;
}
if (cryoBackSensitive) {
cryoBackVol.setSensitiveDetector(aSensDet);
cryoBackPhysVol.addPhysVolID("cryo", 1);
cryoBackPhysVol.addPhysVolID("type", 2);
lLog << MSG::INFO << "Cryostat back volume set as sensitive" << endmsg;
}
if (cryoSideSensitive) {
cryoSideVol.setSensitiveDetector(aSensDet);
cryoSidePhysVol.addPhysVolID("cryo", 1);
cryoSidePhysVol.addPhysVolID("type", 3);
lLog << MSG::INFO << "Cryostat front volume set as sensitive" << endmsg;
}
dd4hep::DetElement cryoFrontDetElem(caloDetElem, "cryo_front", 0);
cryoFrontDetElem.setPlacement(cryoFrontPhysVol);
dd4hep::DetElement cryoBackDetElem(caloDetElem, "cryo_back", 0);
cryoBackDetElem.setPlacement(cryoBackPhysVol);
dd4hep::DetElement cryoSideDetElem(caloDetElem, "cryo_side", 0);
cryoSideDetElem.setPlacement(cryoSidePhysVol);
// 1.2. Create place-holder for services
dd4hep::Tube servicesFrontShape(cryoDim.rmin2(), bathRmin, caloDim.dz());
dd4hep::Tube servicesBackShape(bathRmax, cryoDim.rmax1(), caloDim.dz());
lLog << MSG::INFO << "ECAL services: front: rmin (cm) = " << cryoDim.rmin2() << " rmax (cm) = " << bathRmin << " dz (cm) = " << caloDim.dz() << endmsg;
lLog << MSG::INFO << "ECAL services: back: rmin (cm) = " << bathRmax << " rmax (cm) = " << cryoDim.rmax1() << " dz (cm) = " << caloDim.dz() << endmsg;
dd4hep::Volume servicesFrontVol("services_front", servicesFrontShape, aLcdd.material(activeMaterial));
dd4hep::Volume servicesBackVol("services_back", servicesBackShape, aLcdd.material(activeMaterial));
dd4hep::PlacedVolume servicesFrontPhysVol = envelopeVol.placeVolume(servicesFrontVol);
dd4hep::PlacedVolume servicesBackPhysVol = envelopeVol.placeVolume(servicesBackVol);
if (cryoFrontSensitive) {
servicesFrontVol.setSensitiveDetector(aSensDet);
servicesFrontPhysVol.addPhysVolID("cryo", 1);
servicesFrontPhysVol.addPhysVolID("type", 4);
lLog << MSG::INFO << "Services front volume set as sensitive" << endmsg;
}
if (cryoBackSensitive) {
servicesBackVol.setSensitiveDetector(aSensDet);
servicesBackPhysVol.addPhysVolID("cryo", 1);
servicesBackPhysVol.addPhysVolID("type", 5);
lLog << MSG::INFO << "Services back volume set as sensitive" << endmsg;
}
dd4hep::DetElement servicesFrontDetElem(caloDetElem, "services_front", 0);
servicesFrontDetElem.setPlacement(servicesFrontPhysVol);
dd4hep::DetElement servicesBackDetElem(caloDetElem, "services_back", 0);
servicesBackDetElem.setPlacement(servicesBackPhysVol);
}
// 2. Create bath that is inside the cryostat and surrounds the detector
// Bath is filled with active material -> but not sensitive
dd4hep::Volume bathVol(activeMaterial + "_bath", bathOuterShape, aLcdd.material(activeMaterial));
lLog << MSG::INFO << "ECAL bath: material = " << activeMaterial << " rmin (cm) = " << bathRmin
<< " rmax (cm) = " << bathRmax << " thickness in front of ECal (cm) = " << caloDim.rmin() - cryoDim.rmin2()
<< " thickness behind ECal (cm) = " << cryoDim.rmax1() - caloDim.rmax() << endmsg;
// 3. Create the calorimeter by placing the passive material, trapezoid active layers, readout and again trapezoid
// active layers in the bath.
// sensitive detector for the layers
dd4hep::SensitiveDetector sd = aSensDet;
dd4hep::xml::Dimension sdType = xmlDetElem.child(_U(sensitive));
sd.setType(sdType.typeStr());
lLog << MSG::INFO << "ECAL calorimeter volume rmin (cm) = " << caloDim.rmin() << " rmax (cm) = " << caloDim.rmax()
<< endmsg;
// 3.a. Create the passive planes, readout in between of 2 passive planes and the remaining space fill with active
// material
//////////////////////////////
// PASSIVE PLANES
//////////////////////////////
lLog << MSG::INFO << "passive inner material = " << passiveInnerMaterial << "\n"
<< " and outer material = " << passiveOuterMaterial << "\n"
<< " thickness of inner part at inner radius (cm) = " << passiveInnerThicknessMin << "\n"
<< " thickness of inner part at outer radius (cm) = " << passiveInnerThicknessMax << "\n"
<< " thickness of outer part (cm) = " << passiveOuterThickness << "\n"
<< " thickness of total (cm) = " << passiveThickness << "\n"
<< " rotation angle = " << angle << endmsg;
uint numPlanes =
round(M_PI / asin((passiveThickness + activeThickness + readoutThickness) / (2. * caloDim.rmin() * cos(angle))));
double dPhi = 2. * M_PI / numPlanes;
lLog << MSG::INFO << "number of passive plates = " << numPlanes << " azim. angle difference = " << dPhi << endmsg;
lLog << MSG::INFO << " distance at inner radius (cm) = " << 2. * M_PI * caloDim.rmin() / numPlanes << "\n"
<< " distance at outer radius (cm) = " << 2. * M_PI * caloDim.rmax() / numPlanes << endmsg;
// The following code checks if the xml geometry file contains a constant defining
// the number of planes in the barrel. In that case, it makes the program abort
// if the number of planes in the xml is different from the one calculated from
// the geometry. This is because the number of plane information (retrieved from the
// xml) is used in other parts of the code (the readout for the FCC-ee ECAL with
// inclined modules). In principle the code above should be refactored so that the number
// of planes is one of the inputs of the calculation and other geometrical parameters
// are adjusted accordingly. This is left for the future, and we use the workaround
// below to enforce for the time being that the number of planes is "correct"
int nModules = -1;
try {
nModules = aLcdd.constant<int>("ECalBarrelNumPlanes");
}
catch(...) {
;
}
if (nModules > 0 && nModules != numPlanes) {
lLog << MSG::ERROR << "Incorrect number of planes (ECalBarrelNumPlanes) in xml file!" << endmsg;
// todo: incidentSvc->fireIncident(Incident("ECalConstruction", "GeometryFailure"));
// make the code crash (incidentSvc does not work)
assert(nModules == numPlanes);
}
// Readout is in the middle between two passive planes
double offsetPassivePhi = caloDim.offset() + dPhi / 2.;
double offsetReadoutPhi = caloDim.offset() + 0;
lLog << MSG::INFO << "readout material = " << readoutMaterial << "\n"
<< " thickness of readout planes (cm) = " << readoutThickness << "\n number of readout layers = " << numLayers
<< endmsg;
double Rmin = caloDim.rmin();
double Rmax = caloDim.rmax();
double dR = Rmax - Rmin;
double planeLength = -Rmin * cos(angle) + sqrt(pow(Rmax, 2) - pow(Rmin * sin(angle), 2));
lLog << MSG::INFO << "thickness of calorimeter (cm) = " << dR << "\n"
<< " length of passive or readout planes (cm) = " << planeLength << endmsg;
// fill the thickness in the boundary of each layer
std::vector<double> passiveInnerThicknessLayer(numLayers+1);
double runningHeight = 0;
for (uint iLay = 0; iLay < numLayers; iLay++) {
passiveInnerThicknessLayer[iLay] = passiveInnerThicknessMin + (passiveInnerThicknessMax - passiveInnerThicknessMin) *
(runningHeight) / (Rmax - Rmin);
runningHeight += layerHeight[iLay];
}
passiveInnerThicknessLayer[numLayers] = passiveInnerThicknessMin + (passiveInnerThicknessMax - passiveInnerThicknessMin) *
(runningHeight) / (Rmax - Rmin);
double passiveAngle = atan2((passiveInnerThicknessMax - passiveInnerThicknessMin) / 2., planeLength);
double cosPassiveAngle = cos(passiveAngle);
double rotatedOuterThickness = passiveOuterThickness / cosPassiveAngle;
double rotatedGlueThickness = passiveGlueThickness / cosPassiveAngle;
// rescale layer thicknesses
double scaleLayerThickness = planeLength / layersTotalHeight;
layersTotalHeight = 0;
for (uint iLay = 0; iLay < numLayers; iLay++) {
layerHeight[iLay] *= scaleLayerThickness;
layersTotalHeight += layerHeight[iLay];
lLog << MSG::DEBUG << "Thickness of layer " << iLay << " : " << layerHeight[iLay] << endmsg;
}
double layerFirstOffset = -planeLength / 2. + layerHeight[0] / 2.;
//dd4hep::Box passiveShape(passiveThickness / 2., caloDim.dz(), planeLength / 2.);
dd4hep::Trd1 passiveShape(passiveInnerThicknessMin / 2. + rotatedOuterThickness / 2. + rotatedGlueThickness / 2.,
passiveInnerThicknessMax / 2. + rotatedOuterThickness / 2. + rotatedGlueThickness / 2.,
caloDim.dz(), planeLength / 2.);
// inner layer is not in the first calo layer (to sample more uniformly in the layer where upstream correction is
// applied)
//dd4hep::Box passiveInnerShape(passiveInnerThickness / 2., caloDim.dz(), planeLength / 2. - layerHeight[0] / 2.);
dd4hep::Trd1 passiveInnerShape(passiveInnerThicknessLayer[1] / 2., passiveInnerThicknessMax / 2., caloDim.dz(), planeLength / 2. - layerHeight[0] / 2.);
//dd4hep::Box passiveInnerShapeFirstLayer(passiveInnerThickness / 2., caloDim.dz(), layerHeight[0] / 2.);
dd4hep::Trd1 passiveInnerShapeFirstLayer(passiveInnerThicknessMin / 2., passiveInnerThicknessLayer[1] / 2., caloDim.dz(), layerHeight[0] / 2.);
dd4hep::Box passiveOuterShape(passiveOuterThickness / 4., caloDim.dz(), planeLength / 2. / cosPassiveAngle);
dd4hep::Box passiveGlueShape(passiveGlueThickness / 4., caloDim.dz(), planeLength / 2. / cosPassiveAngle);
// passive volume consists of inner part and two outer, joind by glue
dd4hep::Volume passiveVol("passive", passiveShape, aLcdd.material("Air"));
dd4hep::Volume passiveInnerVol(passiveInnerMaterial + "_passive", passiveInnerShape,
aLcdd.material(passiveInnerMaterial));
dd4hep::Volume passiveInnerVolFirstLayer(activeMaterial + "_passive", passiveInnerShapeFirstLayer,
aLcdd.material(activeMaterial));
dd4hep::Volume passiveOuterVol(passiveOuterMaterial + "_passive", passiveOuterShape,
aLcdd.material(passiveOuterMaterial));
dd4hep::Volume passiveGlueVol(passiveGlueMaterial + "_passive", passiveGlueShape,
aLcdd.material(passiveGlueMaterial));
if (passiveInner.isSensitive()) {
lLog << MSG::DEBUG << "Passive inner volume set as sensitive" << endmsg;
// inner part starts at second layer
double layerOffset = layerFirstOffset + layerHeight[1] / 2.;
for (uint iLayer = 1; iLayer < numLayers; iLayer++) {
//dd4hep::Box layerPassiveInnerShape(passiveInnerThickness / 2., caloDim.dz(), layerHeight[iLayer] / 2.);
dd4hep::Trd1 layerPassiveInnerShape(passiveInnerThicknessLayer[iLayer] / 2., passiveInnerThicknessLayer[iLayer+1] / 2., caloDim.dz(), layerHeight[iLayer] / 2.);
dd4hep::Volume layerPassiveInnerVol(passiveInnerMaterial, layerPassiveInnerShape,
aLcdd.material(passiveInnerMaterial));
layerPassiveInnerVol.setSensitiveDetector(aSensDet);
dd4hep::PlacedVolume layerPassiveInnerPhysVol =
passiveInnerVol.placeVolume(layerPassiveInnerVol, dd4hep::Position(0, 0, layerOffset));
layerPassiveInnerPhysVol.addPhysVolID("layer", iLayer);
dd4hep::DetElement layerPassiveInnerDetElem("layer", iLayer);
layerPassiveInnerDetElem.setPlacement(layerPassiveInnerPhysVol);
if (iLayer != numLayers - 1) {
layerOffset += layerHeight[iLayer] / 2. + layerHeight[iLayer + 1] / 2.;
}
}
}
if (passiveOuter.isSensitive()) {
lLog << MSG::DEBUG << "Passive outer volume set as sensitive" << endmsg;
double layerOffset = layerFirstOffset / cosPassiveAngle;
for (uint iLayer = 0; iLayer < numLayers; iLayer++) {
dd4hep::Box layerPassiveOuterShape(passiveOuterThickness / 4., caloDim.dz(), layerHeight[iLayer] / 2. / cosPassiveAngle);
dd4hep::Volume layerPassiveOuterVol(passiveOuterMaterial, layerPassiveOuterShape,
aLcdd.material(passiveOuterMaterial));
layerPassiveOuterVol.setSensitiveDetector(aSensDet);
dd4hep::PlacedVolume layerPassiveOuterPhysVol =
passiveOuterVol.placeVolume(layerPassiveOuterVol, dd4hep::Position(0, 0, layerOffset));
layerPassiveOuterPhysVol.addPhysVolID("layer", iLayer);
dd4hep::DetElement layerPassiveOuterDetElem("layer", iLayer);
layerPassiveOuterDetElem.setPlacement(layerPassiveOuterPhysVol);
if (iLayer != numLayers - 1) {
layerOffset += (layerHeight[iLayer] / 2. + layerHeight[iLayer + 1] / 2.) / cosPassiveAngle;
}
}
}
if (passiveGlue.isSensitive()) {
lLog << MSG::DEBUG << "Passive glue volume set as sensitive" << endmsg;
double layerOffset = layerFirstOffset / cosPassiveAngle;
for (uint iLayer = 0; iLayer < numLayers; iLayer++) {
dd4hep::Box layerPassiveGlueShape(passiveGlueThickness / 4., caloDim.dz(), layerHeight[iLayer] / 2. / cosPassiveAngle);
dd4hep::Volume layerPassiveGlueVol(passiveGlueMaterial, layerPassiveGlueShape,
aLcdd.material(passiveGlueMaterial));
layerPassiveGlueVol.setSensitiveDetector(aSensDet);
dd4hep::PlacedVolume layerPassiveGluePhysVol =
passiveGlueVol.placeVolume(layerPassiveGlueVol, dd4hep::Position(0, 0, layerOffset));
layerPassiveGluePhysVol.addPhysVolID("layer", iLayer);
dd4hep::DetElement layerPassiveGlueDetElem("layer", iLayer);
layerPassiveGlueDetElem.setPlacement(layerPassiveGluePhysVol);
if (iLayer != numLayers - 1) {
layerOffset += (layerHeight[iLayer] / 2. + layerHeight[iLayer + 1] / 2.) / cosPassiveAngle;
}
}
}
dd4hep::PlacedVolume passiveInnerPhysVol =
passiveVol.placeVolume(passiveInnerVol, dd4hep::Position(0, 0, layerHeight[0] / 2.));
dd4hep::PlacedVolume passiveInnerPhysVolFirstLayer =
passiveVol.placeVolume(passiveInnerVolFirstLayer, dd4hep::Position(0, 0, layerFirstOffset));
dd4hep::PlacedVolume passiveOuterPhysVolBelow = passiveVol.placeVolume(
passiveOuterVol,
dd4hep::Transform3D(dd4hep::RotationY(-passiveAngle),
dd4hep::Position(-(passiveInnerThicknessMin + passiveInnerThicknessMax) / 4. -
rotatedGlueThickness / 2. - rotatedOuterThickness / 4., 0, 0)));
dd4hep::PlacedVolume passiveOuterPhysVolAbove = passiveVol.placeVolume(
passiveOuterVol,
dd4hep::Transform3D(dd4hep::RotationY(passiveAngle),
dd4hep::Position((passiveInnerThicknessMin + passiveInnerThicknessMax) / 4. +
rotatedGlueThickness / 2. + rotatedOuterThickness / 4., 0, 0)));
dd4hep::PlacedVolume passiveGluePhysVolBelow = passiveVol.placeVolume(
passiveGlueVol,
dd4hep::Transform3D(dd4hep::RotationY(-passiveAngle),
dd4hep::Position(-(passiveInnerThicknessMin + passiveInnerThicknessMax) / 4. -
rotatedGlueThickness / 4., 0, 0)));
dd4hep::PlacedVolume passiveGluePhysVolAbove = passiveVol.placeVolume(
passiveGlueVol,
dd4hep::Transform3D(dd4hep::RotationY(passiveAngle),
dd4hep::Position((passiveInnerThicknessMin + passiveInnerThicknessMax) / 4. +
rotatedGlueThickness / 4., 0, 0)));
passiveInnerPhysVol.addPhysVolID("subtype", 0);
passiveInnerPhysVolFirstLayer.addPhysVolID("subtype", 0);
passiveOuterPhysVolBelow.addPhysVolID("subtype", 1);
passiveOuterPhysVolAbove.addPhysVolID("subtype", 2);
passiveGluePhysVolBelow.addPhysVolID("subtype", 3);
passiveGluePhysVolAbove.addPhysVolID("subtype", 4);
if (passiveInner.isSensitive()) {
passiveInnerVolFirstLayer.setSensitiveDetector(aSensDet);
passiveInnerPhysVolFirstLayer.addPhysVolID("layer", 0);
dd4hep::DetElement passiveInnerDetElemFirstLayer("layer", 0);
passiveInnerDetElemFirstLayer.setPlacement(passiveInnerPhysVolFirstLayer);
}
//////////////////////////////
// READOUT PLANES
//////////////////////////////
dd4hep::Box readoutShape(readoutThickness / 2., caloDim.dz(), planeLength / 2.);
dd4hep::Volume readoutVol(readoutMaterial, readoutShape, aLcdd.material(readoutMaterial));
if (readout.isSensitive()) {
lLog << MSG::INFO << "Readout volume set as sensitive" << endmsg;
double layerOffset = layerFirstOffset;
for (uint iLayer = 0; iLayer < numLayers; iLayer++) {
dd4hep::Box layerReadoutShape(readoutThickness / 2., caloDim.dz(), layerHeight[iLayer] / 2.);
dd4hep::Volume layerReadoutVol(readoutMaterial, layerReadoutShape, aLcdd.material(readoutMaterial));
layerReadoutVol.setSensitiveDetector(aSensDet);
dd4hep::PlacedVolume layerReadoutPhysVol =
readoutVol.placeVolume(layerReadoutVol, dd4hep::Position(0, 0, layerOffset));
layerReadoutPhysVol.addPhysVolID("layer", iLayer);
dd4hep::DetElement layerReadoutDetElem("layer", iLayer);
layerReadoutDetElem.setPlacement(layerReadoutPhysVol);
if (iLayer != numLayers - 1) {
layerOffset += layerHeight[iLayer] / 2. + layerHeight[iLayer + 1] / 2.;
}
}
}
//////////////////////////////
// ACTIVE
//////////////////////////////
// thickness of active layers at inner radius and outer ( = distance between passive plane and readout plane)
// at inner radius: distance projected at plane perpendicular to readout plane
double activeInThickness = Rmin * sin(dPhi / 2.) * cos(angle);
activeInThickness -= passiveThickness * (0.5 - activePassiveOverlap);
// at outer radius: distance projected at plane perpendicular to readout plane
double activeOutThickness = (Rmin + planeLength) * sin(dPhi / 2.) * cos(angle);
// make correction for outer readius caused by inclination angle
// first calculate intersection of readout plane and plane parallel to shifted passive plane
double xIntersect = (Rmin * (tan(angle) - cos(dPhi / 2.) * tan(angle + dPhi / 2.)) - planeLength * sin(dPhi / 2.)) /
(tan(angle) - tan(angle + dPhi / 2.));
double yIntersect = tan(angle) * xIntersect + Rmin * (sin(dPhi / 2.) - tan(angle)) + planeLength * sin(dPhi / 2.);
// distance from inner radius to intersection
double correction =
planeLength - sqrt(pow(xIntersect - Rmin * cos(dPhi / 2), 2) + pow(yIntersect - Rmin * sin(dPhi / 2), 2));
// correction to the active thickness
activeOutThickness += 2. * correction * sin(dPhi / 4.);
activeOutThickness -= passiveThickness * (0.5 - activePassiveOverlap);
// print the active layer dimensions
double activeInThicknessAfterSubtraction =
2. * activeInThickness - readoutThickness - 2. * activePassiveOverlap * passiveThickness;
double activeOutThicknessAfterSubtraction =
2. * activeOutThickness - readoutThickness - 2. * activePassiveOverlap *
(passiveThickness + passiveInnerThicknessMax - passiveInnerThicknessMin); // correct thickness for trapezoid
lLog << MSG::INFO << "active material = " << activeMaterial
<< " active layers thickness at inner radius (cm) = " << activeInThicknessAfterSubtraction
<< " thickness at outer radious (cm) = " << activeOutThicknessAfterSubtraction << " making "
<< (activeOutThicknessAfterSubtraction - activeInThicknessAfterSubtraction) * 100 /
activeInThicknessAfterSubtraction
<< " % increase." << endmsg;
lLog << MSG::INFO
<< "active passive initial overlap (before subtraction) (cm) = " << passiveThickness * activePassiveOverlap
<< " = " << activePassiveOverlap * 100 << " %" << endmsg;
// creating shape for rows of layers (active material between two passive planes, with readout in the middle)
// first define area between two passive planes, area can reach up to the symmetry axis of passive plane
dd4hep::Trd1 activeOuterShape(activeInThickness, activeOutThickness, caloDim.dz(), planeLength / 2.);
// subtract readout shape from the middle
dd4hep::SubtractionSolid activeShapeNoReadout(activeOuterShape, readoutShape);
// make calculation for active plane that is inclined with 0 deg (= offset + angle)
double Cx = Rmin * cos(-angle) + planeLength / 2.;
double Cy = Rmin * sin(-angle);
double Ax = Rmin * cos(-angle + dPhi / 2.) + planeLength / 2. * cos(dPhi / 2.);
double Ay = Rmin * sin(-angle + dPhi / 2.) + planeLength / 2. * sin(dPhi / 2.);
double CAx = fabs(Ax - Cx);
double CAy = fabs(Ay - Cy);
double zprim, xprim;
zprim = CAx;
xprim = CAy;
double Bx = Rmin * cos(-angle - dPhi / 2.) + planeLength / 2. * cos(-dPhi / 2.);
double By = Rmin * sin(-angle - dPhi / 2.) + planeLength / 2. * sin(-dPhi / 2.);
double CBx = fabs(Bx - Cx);
double CBy = fabs(By - Cy);
double zprimB, xprimB;
zprimB = CBx;
xprimB = CBy;
// subtract passive volume above
dd4hep::SubtractionSolid activeShapeNoPassiveAbove(
activeShapeNoReadout, passiveShape,
dd4hep::Transform3D(dd4hep::RotationY(-dPhi / 2.),
dd4hep::Position(-fabs(xprim), 0, fabs(zprim))));
// subtract passive volume below
dd4hep::SubtractionSolid activeShape(
activeShapeNoPassiveAbove, passiveShape,
dd4hep::Transform3D(dd4hep::RotationY(dPhi / 2.),
dd4hep::Position(fabs(xprimB), 0, -fabs(zprimB))));
dd4hep::Volume activeVol("active", activeShape, aLcdd.material("Air"));
std::vector<dd4hep::PlacedVolume> layerPhysVols;
// place layers within active volume
std::vector<double> layerInThickness;
std::vector<double> layerOutThickness;
double layerIncreasePerUnitThickness = (activeOutThickness - activeInThickness) / layersTotalHeight;
for (uint iLay = 0; iLay < numLayers; iLay++) {
if (iLay == 0) {
layerInThickness.push_back(activeInThickness);
} else {
layerInThickness.push_back(layerOutThickness[iLay - 1]);
}
layerOutThickness.push_back(layerInThickness[iLay] + layerIncreasePerUnitThickness * layerHeight[iLay]);
}
double layerOffset = layerFirstOffset;
for (uint iLayer = 0; iLayer < numLayers; iLayer++) {
dd4hep::Trd1 layerOuterShape(layerInThickness[iLayer], layerOutThickness[iLayer], caloDim.dz(), layerHeight[iLayer] / 2.);
dd4hep::SubtractionSolid layerShapeNoReadout(layerOuterShape, readoutShape);
dd4hep::SubtractionSolid layerShapeNoPassiveAbove(
layerShapeNoReadout, passiveShape,
dd4hep::Transform3D(dd4hep::RotationY(-dPhi / 2.),
dd4hep::Position(-fabs(xprim), 0, fabs(zprim) - layerOffset)));
// subtract passive volume below
dd4hep::SubtractionSolid layerShape(
layerShapeNoPassiveAbove, passiveShape,
dd4hep::Transform3D(dd4hep::RotationY(dPhi / 2.),
dd4hep::Position(fabs(xprimB), 0, -fabs(zprimB) - layerOffset)));
dd4hep::Volume layerVol("layer", layerShape, aLcdd.material(activeMaterial));
layerVol.setSensitiveDetector(aSensDet);
layerPhysVols.push_back(activeVol.placeVolume(layerVol, dd4hep::Position(0, 0, layerOffset)));
layerPhysVols.back().addPhysVolID("layer", iLayer);
if (iLayer != numLayers - 1) {
layerOffset += layerHeight[iLayer] / 2. + layerHeight[iLayer + 1] / 2.;
}
}
dd4hep::DetElement bathDetElem(caloDetElem, "bath", 1);
std::vector<dd4hep::PlacedVolume> activePhysVols;
// Next place elements: passive planes, readout planes and rows of layers
for (uint iPlane = 0; iPlane < numPlanes; iPlane++) {
// first calculate positions of passive and readout planes
// PASSIVE
// calculate centre position of the plane without plane rotation
double phi = offsetPassivePhi + iPlane * dPhi;
double xRadial = (Rmin + planeLength / 2.) * cos(phi);
double yRadial = (Rmin + planeLength / 2.) * sin(phi);
// calculate position of the beginning of plane
double xRmin = Rmin * cos(phi);
double yRmin = Rmin * sin(phi);
// rotate centre by angle wrt beginning of plane
double xRotated = xRmin + (xRadial - xRmin) * cos(angle) - (yRadial - yRmin) * sin(angle);
double yRotated = yRmin + (xRadial - xRmin) * sin(angle) + (yRadial - yRmin) * cos(angle);
dd4hep::Transform3D transform(dd4hep::RotationX(-M_PI / 2.) // to get in XY plane
*
dd4hep::RotationY(M_PI / 2. // to get pointed towards centre
-
phi - angle),
dd4hep::Position(xRotated, yRotated, 0));
dd4hep::PlacedVolume passivePhysVol = bathVol.placeVolume(passiveVol, transform);
passivePhysVol.addPhysVolID("module", iPlane);
passivePhysVol.addPhysVolID("type", 1); // 0 = active, 1 = passive, 2 = readout
dd4hep::DetElement passiveDetElem(bathDetElem, "passive" + std::to_string(iPlane), iPlane);
passiveDetElem.setPlacement(passivePhysVol);
// READOUT
// calculate centre position of the plane without plane rotation
double phiRead = offsetReadoutPhi + iPlane * dPhi;
double xRadialRead = (Rmin + planeLength / 2.) * cos(phiRead);
double yRadialRead = (Rmin + planeLength / 2.) * sin(phiRead);
// calculate position of the beginning of plane
double xRminRead = Rmin * cos(phiRead);
double yRminRead = Rmin * sin(phiRead);
// rotate centre by angle wrt beginning of plane
double xRotatedRead = xRminRead + (xRadialRead - xRminRead) * cos(angle) - (yRadialRead - yRminRead) * sin(angle);
double yRotatedRead = yRminRead + (xRadialRead - xRminRead) * sin(angle) + (yRadialRead - yRminRead) * cos(angle);
dd4hep::Transform3D transformRead(
dd4hep::RotationX(-M_PI / 2.) // to get in XY plane
*
dd4hep::RotationY(M_PI / 2. // to get pointed towards centre
-
phiRead - angle),
dd4hep::Position(xRotatedRead, yRotatedRead, 0));
dd4hep::PlacedVolume readoutPhysVol = bathVol.placeVolume(readoutVol, transformRead);
readoutPhysVol.addPhysVolID("module", iPlane);
readoutPhysVol.addPhysVolID("type", 2); // 0 = active, 1 = passive, 2 = readout
dd4hep::DetElement readoutDetElem(bathDetElem, "readout" + std::to_string(iPlane), iPlane);
readoutDetElem.setPlacement(readoutPhysVol);
// ACTIVE
dd4hep::Rotation3D rotationActive(dd4hep::RotationX(-M_PI / 2) *
dd4hep::RotationY(M_PI / 2 - phiRead - angle));
activePhysVols.push_back(bathVol.placeVolume(
activeVol,
dd4hep::Transform3D(rotationActive, dd4hep::Position(xRotatedRead, yRotatedRead, 0))));
activePhysVols.back().addPhysVolID("module", iPlane);
activePhysVols.back().addPhysVolID("type", 0); // 0 = active, 1 = passive, 2 = readout
}
dd4hep::PlacedVolume bathPhysVol = envelopeVol.placeVolume(bathVol);
bathDetElem.setPlacement(bathPhysVol);
for (uint iPlane = 0; iPlane < numPlanes; iPlane++) {
dd4hep::DetElement activeDetElem(bathDetElem, "active" + std::to_string(iPlane), iPlane);
activeDetElem.setPlacement(activePhysVols[iPlane]);
for (uint iLayer = 0; iLayer < numLayers; iLayer++) {
dd4hep::DetElement layerDetElem(activeDetElem, "layer" + std::to_string(iLayer), iLayer);
layerDetElem.setPlacement(layerPhysVols[iLayer]);
}
}
// Place the envelope
dd4hep::Volume motherVol = aLcdd.pickMotherVolume(caloDetElem);
dd4hep::PlacedVolume envelopePhysVol = motherVol.placeVolume(envelopeVol);
envelopePhysVol.addPhysVolID("system", xmlDetElem.id());
caloDetElem.setPlacement(envelopePhysVol);
// Create caloData object
auto caloData = new dd4hep::rec::LayeredCalorimeterData;
caloData->layoutType = dd4hep::rec::LayeredCalorimeterData::BarrelLayout;
caloDetElem.addExtension<dd4hep::rec::LayeredCalorimeterData>(caloData);
// Set type flags
dd4hep::xml::setDetectorTypeFlag(xmlDetElem, caloDetElem);
return caloDetElem;
}
} // namespace det
DECLARE_DETELEMENT(EmCaloBarrelInclined, det::createECalBarrelInclined)