forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMetaIndexes.cpp
242 lines (212 loc) · 7.25 KB
/
MetaIndexes.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/MetaIndexes.h>
#include <cinttypes>
#include <cstdint>
#include <cstdio>
#include <limits>
#include <faiss/impl/AuxIndexStructures.h>
#include <faiss/impl/FaissAssert.h>
#include <faiss/utils/Heap.h>
#include <faiss/utils/WorkerThread.h>
#include <faiss/utils/random.h>
#include <faiss/utils/utils.h>
namespace faiss {
/*****************************************************
* IndexSplitVectors implementation
*******************************************************/
IndexSplitVectors::IndexSplitVectors(idx_t d, bool threaded)
: Index(d), own_fields(false), threaded(threaded), sum_d(0) {}
void IndexSplitVectors::add_sub_index(Index* index) {
sub_indexes.push_back(index);
sync_with_sub_indexes();
}
void IndexSplitVectors::sync_with_sub_indexes() {
if (sub_indexes.empty())
return;
Index* index0 = sub_indexes[0];
sum_d = index0->d;
metric_type = index0->metric_type;
is_trained = index0->is_trained;
ntotal = index0->ntotal;
for (int i = 1; i < sub_indexes.size(); i++) {
Index* index = sub_indexes[i];
FAISS_THROW_IF_NOT(metric_type == index->metric_type);
FAISS_THROW_IF_NOT(ntotal == index->ntotal);
sum_d += index->d;
}
}
void IndexSplitVectors::add(idx_t /*n*/, const float* /*x*/) {
FAISS_THROW_MSG("not implemented");
}
void IndexSplitVectors::search(
idx_t n,
const float* x,
idx_t k,
float* distances,
idx_t* labels,
const SearchParameters* params) const {
FAISS_THROW_IF_NOT_MSG(
!params, "search params not supported for this index");
FAISS_THROW_IF_NOT_MSG(k == 1, "search implemented only for k=1");
FAISS_THROW_IF_NOT_MSG(
sum_d == d, "not enough indexes compared to # dimensions");
int64_t nshard = sub_indexes.size();
std::unique_ptr<float[]> all_distances(new float[nshard * k * n]);
std::unique_ptr<idx_t[]> all_labels(new idx_t[nshard * k * n]);
auto query_func =
[n, x, k, distances, labels, &all_distances, &all_labels, this](
int no) {
const IndexSplitVectors* index = this;
float* distances1 =
no == 0 ? distances : all_distances.get() + no * k * n;
idx_t* labels1 =
no == 0 ? labels : all_labels.get() + no * k * n;
if (index->verbose)
printf("begin query shard %d on %" PRId64 " points\n",
no,
n);
const Index* sub_index = index->sub_indexes[no];
int64_t sub_d = sub_index->d, d = index->d;
idx_t ofs = 0;
for (int i = 0; i < no; i++)
ofs += index->sub_indexes[i]->d;
std::unique_ptr<float[]> sub_x(new float[sub_d * n]);
for (idx_t i = 0; i < n; i++)
memcpy(sub_x.get() + i * sub_d,
x + ofs + i * d,
sub_d * sizeof(float));
sub_index->search(n, sub_x.get(), k, distances1, labels1);
if (index->verbose)
printf("end query shard %d\n", no);
};
if (!threaded) {
for (int i = 0; i < nshard; i++) {
query_func(i);
}
} else {
std::vector<std::unique_ptr<WorkerThread>> threads;
std::vector<std::future<bool>> v;
for (int i = 0; i < nshard; i++) {
threads.emplace_back(new WorkerThread());
WorkerThread* wt = threads.back().get();
v.emplace_back(wt->add([i, query_func]() { query_func(i); }));
}
// Blocking wait for completion
for (auto& func : v) {
func.get();
}
}
int64_t factor = 1;
for (int i = 0; i < nshard; i++) {
if (i > 0) { // results of 0 are already in the table
const float* distances_i = all_distances.get() + i * k * n;
const idx_t* labels_i = all_labels.get() + i * k * n;
for (int64_t j = 0; j < n; j++) {
if (labels[j] >= 0 && labels_i[j] >= 0) {
labels[j] += labels_i[j] * factor;
distances[j] += distances_i[j];
} else {
labels[j] = -1;
distances[j] = std::numeric_limits<float>::quiet_NaN();
}
}
}
factor *= sub_indexes[i]->ntotal;
}
}
void IndexSplitVectors::train(idx_t /*n*/, const float* /*x*/) {
FAISS_THROW_MSG("not implemented");
}
void IndexSplitVectors::reset() {
FAISS_THROW_MSG("not implemented");
}
IndexSplitVectors::~IndexSplitVectors() {
if (own_fields) {
for (int s = 0; s < sub_indexes.size(); s++)
delete sub_indexes[s];
}
}
/********************************************************
* IndexRandom implementation
*/
IndexRandom::IndexRandom(
idx_t d,
idx_t ntotal,
int64_t seed,
MetricType metric_type)
: Index(d, metric_type), seed(seed) {
this->ntotal = ntotal;
is_trained = true;
}
void IndexRandom::add(idx_t n, const float*) {
ntotal += n;
}
void IndexRandom::search(
idx_t n,
const float* x,
idx_t k,
float* distances,
idx_t* labels,
const SearchParameters* params) const {
FAISS_THROW_IF_NOT_MSG(
!params, "search params not supported for this index");
FAISS_THROW_IF_NOT(k <= ntotal);
#pragma omp parallel for if (n > 1000)
for (idx_t i = 0; i < n; i++) {
RandomGenerator rng(
seed + ivec_checksum(d, (const int32_t*)(x + i * d)));
idx_t* I = labels + i * k;
float* D = distances + i * k;
// assumes k << ntotal
if (k < 100 * ntotal) {
std::unordered_set<idx_t> map;
for (int j = 0; j < k; j++) {
idx_t ii;
for (;;) {
// yes I know it's not strictly uniform...
ii = rng.rand_int64() % ntotal;
if (map.count(ii) == 0) {
break;
}
}
I[j] = ii;
map.insert(ii);
}
} else {
std::vector<idx_t> perm(ntotal);
for (idx_t j = 0; j < ntotal; j++) {
perm[j] = j;
}
for (int j = 0; j < k; j++) {
std::swap(perm[j], perm[rng.rand_int(ntotal)]);
I[j] = perm[j];
}
}
float dprev = 0;
for (int j = 0; j < k; j++) {
float step = rng.rand_float();
if (is_similarity_metric(metric_type)) {
step = -step;
}
dprev += step;
D[j] = dprev;
}
}
}
void IndexRandom::reconstruct(idx_t key, float* recons) const {
RandomGenerator rng(seed + 123332 + key);
for (size_t i = 0; i < d; i++) {
recons[i] = rng.rand_float();
}
}
void IndexRandom::reset() {
ntotal = 0;
}
IndexRandom::~IndexRandom() = default;
} // namespace faiss