-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel_ar.py
163 lines (130 loc) · 5.77 KB
/
model_ar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import GCNConv, GATConv
from torch_geometric.utils import to_dense_adj
class Encoder(torch.nn.Module):
def __init__(self, in_channels: int, out_channels: int, activation,
base_model=GCNConv, k: int = 2):
super(Encoder, self).__init__()
self.base_model = base_model
assert k >= 2
self.k = k
self.conv = [base_model(in_channels, 2 * out_channels)]
for _ in range(1, k-1):
self.conv.append(base_model(2 * out_channels, 2 * out_channels))
self.conv.append(base_model(2 * out_channels, out_channels))
self.conv = nn.ModuleList(self.conv)
self.activation = activation
def forward(self, x: torch.Tensor, edge_index: torch.Tensor):
for i in range(self.k):
x = self.activation(self.conv[i](x, edge_index))
return x
class GCN(torch.nn.Module):
def __init__(self, in_channels: int, out_channels: int, n_class: int, activation,
base_model=GCNConv, dropout: float=0.5):
super(GCN, self).__init__()
self.base_model = base_model
self.conv1 = base_model(in_channels, out_channels)
self.head = base_model(out_channels, n_class)
self.dropout = dropout
self.activation = activation
def forward(self, x: torch.Tensor, edge_index: torch.Tensor):
x = F.dropout(x, self.dropout, training=self.training)
x = self.activation(self.conv1(x, edge_index))
x = F.dropout(x, self.dropout, training=self.training)
return F.log_softmax(self.head(x, edge_index), dim=1)
class GAT(torch.nn.Module):
def __init__(self, in_channels: int, out_channels: int, n_class: int, activation,
base_model=GATConv, input_dropout: float=0.5, coef_dropout: float=0.5):
super(GAT, self).__init__()
self.base_model = base_model
self.conv1 = base_model(in_channels, out_channels, 8, dropout=coef_dropout)
self.head = base_model(out_channels*8, n_class, 1, dropout=coef_dropout)
self.dropout = input_dropout
self.activation = activation
def forward(self, x: torch.Tensor, edge_index: torch.Tensor):
x = F.dropout(x, self.dropout, training=self.training)
x = self.activation(self.conv1(x, edge_index))
x = F.dropout(x, self.dropout, training=self.training)
return F.log_softmax(self.head(x, edge_index), dim=1)
class Model(torch.nn.Module):
def __init__(self, encoder: Encoder, num_hidden: int, num_proj_hidden: int,
tau: float = 0.5):
super(Model, self).__init__()
self.encoder: Encoder = encoder
self.tau: float = tau
self.fc1 = torch.nn.Linear(num_hidden, num_proj_hidden)
self.fc2 = torch.nn.Linear(num_proj_hidden, num_hidden)
self.cos = nn.CosineSimilarity()
def forward(self, x: torch.Tensor,
adj: torch.Tensor) -> torch.Tensor:
return self.encoder(x, adj)
def projection(self, z: torch.Tensor) -> torch.Tensor:
z = F.elu(self.fc1(z))
return self.fc2(z)
def sim(self, z1: torch.Tensor, z2: torch.Tensor):
z1 = F.normalize(z1)
z2 = F.normalize(z2)
return torch.mm(z1, z2.t())
def semi_loss(self, z1: torch.Tensor, z2: torch.Tensor):
f = lambda x: torch.exp(x / self.tau)
refl_sim = f(self.sim(z1, z1))
between_sim = f(self.sim(z1, z2))
return -torch.log(
between_sim.diag()
/ (refl_sim.sum(1) + between_sim.sum(1) - refl_sim.diag()))
def batched_semi_loss(self, z1: torch.Tensor, z2: torch.Tensor,
batch_size: int):
# Space complexity: O(BN) (semi_loss: O(N^2))
device = z1.device
num_nodes = z1.size(0)
num_batches = (num_nodes - 1) // batch_size + 1
f = lambda x: torch.exp(x / self.tau)
indices = torch.arange(0, num_nodes).to(device)
losses = []
for i in range(num_batches):
mask = indices[i * batch_size:(i + 1) * batch_size]
refl_sim = f(self.sim(z1[mask], z1)) # [B, N]
between_sim = f(self.sim(z1[mask], z2)) # [B, N]
losses.append(-torch.log(
between_sim[:, i * batch_size:(i + 1) * batch_size].diag()
/ (refl_sim.sum(1) + between_sim.sum(1)
- refl_sim[:, i * batch_size:(i + 1) * batch_size].diag())))
return torch.cat(losses)
def loss(self, z1: torch.Tensor, z2: torch.Tensor,
mean: bool = True, batch_size: int = 0):
h1 = self.projection(z1)
h2 = self.projection(z2)
simi = torch.exp(self.cos(h1,h2)/self.tau)
if batch_size == 0:
l1 = self.semi_loss(h1, h2)
l2 = self.semi_loss(h2, h1)
else:
l1 = self.batched_semi_loss(h1, h2, batch_size)
l2 = self.batched_semi_loss(h2, h1, batch_size)
ret = (l1 + l2) * 0.5
#ret = ret.mean() if mean else ret.sum()
return ret, simi
def drop_feature(x, drop_prob):
drop_mask = torch.empty(
(x.size(1), ),
dtype=torch.float32,
device=x.device).uniform_(0, 1) < drop_prob
x = x.clone()
x[:, drop_mask] = 0
return x
class LogReg(nn.Module):
def __init__(self, ft_in, nb_classes):
super(LogReg, self).__init__()
self.fc = nn.Linear(ft_in, nb_classes)
for m in self.modules():
self.weights_init(m)
def weights_init(self, m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight.data)
if m.bias is not None:
m.bias.data.fill_(0.0)
def forward(self, seq):
ret = self.fc(seq)
return ret