-
-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathBiharmonicHHJ.py
33 lines (25 loc) · 1.03 KB
/
BiharmonicHHJ.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# Copyright (C) 2016 Lizao Li
"""Biharmonis HHJ demo.
The bilinear form a(u, v) and linear form L(v) for Biharmonic equation
in Hellan-Herrmann-Johnson (HHJ) formulation.
"""
import basix.ufl
from ufl import (Coefficient, FacetNormal, FunctionSpace, Mesh, TestFunctions,
TrialFunctions, dot, dS, ds, dx, grad, inner, jump)
HHJ = basix.ufl.element('HHJ', "triangle", 2)
P = basix.ufl.element('P', "triangle", 3)
mixed_element = basix.ufl.mixed_element([HHJ, P])
domain = Mesh(basix.ufl.element("P", "triangle", 1, shape=(2, )))
mixed_space = FunctionSpace(domain, mixed_element)
p_space = FunctionSpace(domain, P)
(sigma, u) = TrialFunctions(mixed_space)
(tau, v) = TestFunctions(mixed_space)
f = Coefficient(p_space)
def b(sigma, v):
"""The form b."""
n = FacetNormal(domain)
return inner(sigma, grad(grad(v))) * dx \
- dot(dot(sigma('+'), n('+')), n('+')) * jump(grad(v), n) * dS \
- dot(dot(sigma, n), n) * dot(grad(v), n) * ds
a = inner(sigma, tau) * dx - b(tau, u) + b(sigma, v)
L = f * v * dx