|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 11, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import sys\n", |
| 10 | + "import os\n", |
| 11 | + "from py2neo import Graph\n", |
| 12 | + "from pathlib import Path\n", |
| 13 | + "from pandas import DataFrame\n", |
| 14 | + "\n", |
| 15 | + "graph = Graph(\"bolt://localhost:8687\")\n", |
| 16 | + "\n", |
| 17 | + "# df = DataFrame(graph.run(\"\"\"\n", |
| 18 | + "# MATCH (id:Id { id:\"chebi:5063\"})<-[:id]-(n:GraphNode)\n", |
| 19 | + "# RETURN n.`grebi:name`[0] as name\n", |
| 20 | + "# \"\"\").data())\n", |
| 21 | + "\n", |
| 22 | + "# print(df)\n", |
| 23 | + "\n", |
| 24 | + "\n", |
| 25 | + "#Returns all HP terms. Each term node definitely corresponds to an HP term, but may ALSO correspond to an MP term due to the mappings.\n", |
| 26 | + "#This also means that the relationships may come from either HP or MP.\n", |
| 27 | + "#\n", |
| 28 | + "df = DataFrame(graph.run(\"\"\"\n", |
| 29 | + "MATCH (id:Id { id:\"hp:0000001\"})<-[:id]-(hpo_root_term:GraphNode)\n", |
| 30 | + " <-[:`biolink:broad_match`]-(term:GraphNode)\n", |
| 31 | + " -[outgoing_edge]->(n:GraphNode)\n", |
| 32 | + "RETURN term.`grebi:name`[0] AS from, type(outgoing_edge) AS edge, n.`grebi:name`[0] AS to\n", |
| 33 | + "\"\"\").data())\n", |
| 34 | + "\n", |
| 35 | + "df.to_csv(\"all_hp_all_out.csv\", index=False)" |
| 36 | + ] |
| 37 | + }, |
| 38 | + { |
| 39 | + "cell_type": "code", |
| 40 | + "execution_count": 12, |
| 41 | + "metadata": {}, |
| 42 | + "outputs": [], |
| 43 | + "source": [ |
| 44 | + "\n", |
| 45 | + "\n", |
| 46 | + "# This version of the above query filters the relationships to those asserted by HP only (not MP)\n", |
| 47 | + "df = DataFrame(graph.run(\"\"\"\n", |
| 48 | + "MATCH (id:Id { id:\"hp:0000001\"})<-[:id]-(hpo_root_term:GraphNode)\n", |
| 49 | + " <-[:`biolink:broad_match`]-(term:GraphNode)\n", |
| 50 | + " -[outgoing_edge]->(n:GraphNode)\n", |
| 51 | + " WHERE \"OLS.hp\" IN outgoing_edge.`grebi:datasources`\n", |
| 52 | + "RETURN term.`grebi:name`[0] AS from, type(outgoing_edge) AS edge, n.`grebi:name`[0] AS to\n", |
| 53 | + "\"\"\").data())\n", |
| 54 | + "\n", |
| 55 | + "df.to_csv(\"all_hp_all_out_hp_only.csv\", index=False)" |
| 56 | + ] |
| 57 | + }, |
| 58 | + { |
| 59 | + "cell_type": "code", |
| 60 | + "execution_count": 14, |
| 61 | + "metadata": {}, |
| 62 | + "outputs": [], |
| 63 | + "source": [ |
| 64 | + "\n", |
| 65 | + "\n", |
| 66 | + "# This version of the above query filters the relationships to those asserted by HP only (not MP)\n", |
| 67 | + "# Also adds identifiers in the results\n", |
| 68 | + "\n", |
| 69 | + "df = DataFrame(graph.run(\"\"\"\n", |
| 70 | + "MATCH (id:Id { id:\"hp:0000001\"})<-[:id]-(hpo_root_term:GraphNode)\n", |
| 71 | + " <-[:`biolink:broad_match`]-(term:GraphNode)\n", |
| 72 | + " -[outgoing_edge]->(n:GraphNode)\n", |
| 73 | + " WHERE \"OLS.hp\" IN outgoing_edge.`grebi:datasources`\n", |
| 74 | + "RETURN\n", |
| 75 | + " [id in term.id WHERE id =~ \"hp:[0-9]*\" | id][0] AS from_id,\n", |
| 76 | + " term.`grebi:name`[0] AS from_label,\n", |
| 77 | + " type(outgoing_edge) AS edge,\n", |
| 78 | + " n.id AS to_ids,\n", |
| 79 | + " n.`grebi:name`[0] AS to_label\n", |
| 80 | + "\"\"\").data())\n", |
| 81 | + "\n", |
| 82 | + "df.to_csv(\"all_hp_all_out_hp_outgoing.csv\", index=False)\n", |
| 83 | + "\n" |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_type": "code", |
| 88 | + "execution_count": 17, |
| 89 | + "metadata": {}, |
| 90 | + "outputs": [], |
| 91 | + "source": [ |
| 92 | + "\n", |
| 93 | + "\n", |
| 94 | + "# This query returns all incoming edges to all HP terms\n", |
| 95 | + "# Note that the incoming edges may target either the HP terms or their equivalent MP terms\n", |
| 96 | + "# and there is currently no way to differentiate!\n", |
| 97 | + "# We will prob have to make two different versions of the Neo4j, one with merged mappings and one without\n", |
| 98 | + "\n", |
| 99 | + "df = DataFrame(graph.run(\"\"\"\n", |
| 100 | + "MATCH (id:Id { id:\"hp:0000001\"})<-[:id]-(hpo_root_term:GraphNode)\n", |
| 101 | + " <-[:`biolink:broad_match`]-(term:GraphNode)\n", |
| 102 | + " <-[incoming_edge]-(n:GraphNode)\n", |
| 103 | + "RETURN\n", |
| 104 | + " [id in term.id WHERE id =~ \"hp:[0-9]*\" | id][0] AS to_id,\n", |
| 105 | + " term.`grebi:name`[0] AS to_label,\n", |
| 106 | + " type(incoming_edge) AS edge,\n", |
| 107 | + " n.id AS from_ids,\n", |
| 108 | + " n.`grebi:name`[0] AS from_label\n", |
| 109 | + "\"\"\").data())\n", |
| 110 | + "\n", |
| 111 | + "df.to_csv(\"all_hp_all_in_hp.csv\", index=False)" |
| 112 | + ] |
| 113 | + } |
| 114 | + ], |
| 115 | + "metadata": { |
| 116 | + "kernelspec": { |
| 117 | + "display_name": ".venv", |
| 118 | + "language": "python", |
| 119 | + "name": "python3" |
| 120 | + }, |
| 121 | + "language_info": { |
| 122 | + "codemirror_mode": { |
| 123 | + "name": "ipython", |
| 124 | + "version": 3 |
| 125 | + }, |
| 126 | + "file_extension": ".py", |
| 127 | + "mimetype": "text/x-python", |
| 128 | + "name": "python", |
| 129 | + "nbconvert_exporter": "python", |
| 130 | + "pygments_lexer": "ipython3", |
| 131 | + "version": "3.10.0" |
| 132 | + } |
| 133 | + }, |
| 134 | + "nbformat": 4, |
| 135 | + "nbformat_minor": 2 |
| 136 | +} |
0 commit comments