-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun_model.py
38 lines (31 loc) · 1.31 KB
/
run_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import os
import sys
import numpy as np
import tensorflow as tf
import exceptions
import auto_encoder_t
from sastbx.zernike_model import pdb2zernike
from scitbx.array_family import flex
def get_encode(voxel_value):
out = sess.run(z_out[0], feed_dict={in_tensor[0]: voxel_value.reshape(1,32,32,32,1)})
return out
def get_decode(interpolation_value):
out = sess.run(out_tensor[0], feed_dict={z_in[0]: interpolation_value.reshape(1, 200)})
return out
if __name__ == '__main__':
saved_model_path = "run_process/model"
output_folder = "results"
in_tensor, z_out = auto_encoder_t.generate_encode_session(1)
z_in, out_tensor = auto_encoder_t.generate_decode_session(1)
saver = tf.train.Saver()
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
model_path = tf.train.latest_checkpoint(saved_model_path)
saver.restore(sess, model_path)
#input voxel -> z
voxel_value = np.ones(shape=(1,32,32,32,1))
z_vector = get_encode(voxel_value)
#input z -> voxel
voxel_out = get_decode(z_vector)
ccp4data_data=flex.double(np.greater(voxel_out[0,:31,:31,:31,0].reshape((31,31,31)),0.1).astype(float))
#save ccp4
pdb2zernike.ccp4_map_type(ccp4data_data, 15, rmax/0.9,file_name='%s/voxel_out.ccp4'%(output_folder))