-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathserver_utils.py
164 lines (139 loc) · 6.25 KB
/
server_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from SPARQLWrapper import SPARQLWrapper, JSON
import requests
import psycopg
def query_graph(graph_query, graphdb_endpoint):
try:
sparql = SPARQLWrapper(graphdb_endpoint)
sparql.setQuery(graph_query)
sparql.setReturnFormat(JSON)
sparql.setTimeout(30)
results = sparql.queryAndConvert()
return results['results']['bindings']
except:
return []
def get_graph_content(
graphdb_endpoint, graphdb_repo, graph_query=None, named_graph_uri=None
):
headers = {
"Accept": "application/x-binary-rdf",
}
if named_graph_uri:
download_url = f"{graphdb_endpoint}/repositories/{graphdb_repo}/rdf-graphs/service?graph={named_graph_uri}"
response = requests.get(download_url, headers=headers)
else:
headers["Conetnt-Type"] = "application/x-www-form-urlencoded; charset=UTF-8"
data = {"query": graph_query}
download_url = f"{graphdb_endpoint}/repositories/{graphdb_repo}"
response = requests.get(download_url, headers=headers, params=data)
if response.status_code // 100 != 2:
print("Error downloading graph:", named_graph_uri, ":", response.text)
print('QUERY:', graph_query)
print('NAMED GRAPH URI:', named_graph_uri)
return None
return response.content
def upload_graph(
file_content, graphdb_endpoint, graphdb_repo, named_graph_uri=None
):
headers = {
"Content-Type": "application/x-binary-rdf",
"Accept": "application/json",
}
upload_url = f"{graphdb_endpoint}/repositories/{graphdb_repo}/statements"
if named_graph_uri:
upload_url = f"{graphdb_endpoint}/repositories/{graphdb_repo}/rdf-graphs/service?graph={named_graph_uri}"
response = requests.post(upload_url, headers=headers, data=file_content)
if response.status_code // 100 != 2:
print("Error uploading file:", ". Error:", response.text)
def add_has_eda_ops_column_to_embedding_db(embedding_db_name, graphdb_endpoint):
# 1. check if embedding db has the column
db_query = f"""
SELECT column_name
FROM information_schema.columns
WHERE table_name='{embedding_db_name}' and column_name='has_eda_ops';
"""
conn = psycopg.connect(dbname=embedding_db_name, user='postgres', password='postgres', autocommit=True)
cursor = conn.cursor()
results = cursor.execute(db_query).fetchone()
if results:
# check if it has any true values
db_query = f"""
SELECT * from {embedding_db_name} WHERE has_eda_ops LIMIT 1;
"""
results = cursor.execute(db_query).fetchone()
if results:
# database already has the column and is populated
return
print('Creating and populating has_eda_ops column in', embedding_db_name)
# get list of columns with EDA operations
graph_query = """
PREFIX kglids: <http://kglids.org/ontology/>
PREFIX pipeline: <http://kglids.org/ontology/pipeline/>
SELECT distinct ?col
WHERE {
?col a kglids:Column.
?col pipeline:hasEDAOperation ?eda.
}
"""
results = query_graph(graph_query, graphdb_endpoint)
column_uris = [result['col']['value'] for result in results]
column_ids = [column_uri.split('/resource/')[1] for column_uri in column_uris]
# add has_eda_ops column and populate it
db_query = f"""
ALTER TABLE {embedding_db_name}
ADD COLUMN has_eda_ops BOOLEAN DEFAULT FALSE;
"""
cursor.execute(db_query)
column_ids_literal = '(' + ','.join([f"'{i}'" for i in column_ids]) + ')'
db_query = f"""
UPDATE {embedding_db_name}
SET has_eda_ops = true
WHERE id IN {column_ids_literal};
"""
cursor.execute(db_query)
print('Column has_eda_ops populated in', embedding_db_name)
def copy_embedding_db(source_db_name, target_db_name):
conn = psycopg.connect(dbname='postgres', user='postgres', password='postgres', autocommit=True)
cursor = conn.cursor()
query = f"""
SELECT pg_terminate_backend(pg_stat_activity.pid) FROM pg_stat_activity
WHERE pg_stat_activity.datname = '{source_db_name}' AND pid <> pg_backend_pid();
"""
cursor.execute(query)
query = f"""
SELECT pg_terminate_backend(pg_stat_activity.pid) FROM pg_stat_activity
WHERE pg_stat_activity.datname = '{target_db_name}' AND pid <> pg_backend_pid();
"""
cursor.execute(query)
cursor.execute(f'DROP DATABASE IF EXISTS {target_db_name};')
cursor.execute(f"CREATE DATABASE {target_db_name} WITH TEMPLATE {source_db_name} OWNER postgres;")
conn = psycopg.connect(dbname=target_db_name, user='postgres', password='postgres', autocommit=True)
cursor = conn.cursor()
cursor.execute(f'ALTER TABLE {source_db_name} RENAME TO {target_db_name}')
def upload_dataset_subgraph_to_evaluation_graph(args):
data_source_uri, dataset_id, graphdb_endpoint, graphdb_all_kaggle_repo, graphdb_autoeda_repo = args
dataset_uri = f"<{data_source_uri}/{dataset_id}>"
graph_query = """
PREFIX kglids: <http://kglids.org/ontology/>
construct {?s ?p ?o}
WHERE {
?s kglids:isPartOf+ %s.
?s ?p ?o .
} """ % dataset_uri
graph_content = get_graph_content(
graphdb_endpoint, graphdb_all_kaggle_repo, graph_query=graph_query
)
upload_graph(graph_content, graphdb_endpoint, graphdb_autoeda_repo)
def upload_pipeline_subgraph_to_evaluation_graph(args):
graph, graphdb_endpoint, graphdb_all_kaggle_repo, graphdb_autoeda_repo = args
graph_content = get_graph_content(
graphdb_endpoint, graphdb_all_kaggle_repo, named_graph_uri=graph
)
upload_graph(graph_content, graphdb_endpoint, graphdb_autoeda_repo, graph)
def create_evaluation_embedding_dbs(test_dataset_ids, embedding_db_name, autoeda_embedding_db_name):
copy_embedding_db(embedding_db_name, autoeda_embedding_db_name)
test_dataset_ids_literal = '(' + ','.join([f"'{i}'" for i in test_dataset_ids]) + ')'
conn = psycopg.connect(dbname=autoeda_embedding_db_name, user='postgres', password='postgres', autocommit=True)
cursor = conn.cursor()
cursor.execute(f"DELETE FROM {autoeda_embedding_db_name} WHERE dataset_name IN {test_dataset_ids_literal} ;")
conn.close()
print('Evaluation datasets created:', autoeda_embedding_db_name)