-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassifier_finetuning.py
224 lines (192 loc) · 10 KB
/
classifier_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
import random
import argparse
from tqdm import tqdm
import math
import torch
import torch.nn.functional as F
import torch.nn as nn
from torchvision import transforms
import torch.backends.cudnn as cudnn
import numpy as np
from math import ceil
from torch.utils.data import DataLoader
import clip
from IF_robust_model import IFRobustModel
from diffusion_robust_model import DiffusionRobustModel
from TeCoA.utils import load_train_dataset, get_text_prompts_train, AverageMeter, ProgressMeter, \
convert_models_to_fp32, load_val_datasets, get_text_prompts_val
from TeCoA.models.model import clip_img_preprocessing
from utils import GeneratedDataset, cosine_lr
from classifiers.resnet import resnet50
from utils import return_prompt
def get_arguments():
parser = argparse.ArgumentParser()
# training
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--start_epoch', type=int, default=0)
parser.add_argument('--max_train_steps', type=int, default=None) # 10 at 1shot
parser.add_argument("--num_train_epochs", type=int, default=10)
parser.add_argument('--lr', type=float, default=5e-7) #5e-7 at 1shot
parser.add_argument('--min_lr', type=float, default=0.0) # for cosine scheduler
parser.add_argument('--use_scheduler', action='store_true')
parser.add_argument('--warmup_length', type=int, default=0) # for few shot training
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--wd', type=float, default=0.0)
parser.add_argument('--batch_size', type=int, default=256) # 약 전체 dataset size의 1/4하면 될듯??
parser.add_argument('--print_freq', type=int, default=20, help='print frequency')
parser.add_argument('--tuning_last', action='store_true')
parser.add_argument('--classifier_method', type=str, choices=['clip', 'resnet'])
parser.add_argument('--classifier_ckpt', type=str, default='', help='checkpoint path for CLIP')
parser.add_argument('--use_clip_official', type=bool, default=True, help='use clip official imagenet classname')
# dataset
parser.add_argument('--root', type=str, default='./datasets/DATA', help='dataset')
parser.add_argument('--imagenet_root', type=str, default='/data/datasets/ImageNet', help='dataset')
parser.add_argument('--use_generated_dataset', action='store_true') # generated dataset use
parser.add_argument('--generated_data_root', type=str, default='./datasets/generated_DATA/1shot')
parser.add_argument('--num_shot', type=int, default=1)
parser.add_argument('--testdata', type=str, default='ImageNet',
help='dataset for finetuning', choices=['STL10', 'SUN397','StanfordCars', 'Food101',
'oxfordpet', 'Caltech256', 'flowers102',
'dtd','ImageNet','isic', 'EuroSAT', 'cropdisease']) # 수정
# for classifier fine-tuning, self-personalization ckpt is needed
parser.add_argument('--diffusion_ckpt', type=str, default=None, required=True)
# save
parser.add_argument('--out_dir', type=str, default='') # 수정
parser.add_argument('--save_freq', type=int, default=8,
help='save frequency')
args = parser.parse_args()
return args
def main(args):
print(args.use_generated_dataset)
# fix seed
if args.seed != None:
np.random.seed(args.seed)
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
cudnn.benchmark = True
assert args.max_train_steps != -1
ngpus = torch.cuda.device_count()
print(ngpus)
args.num_workers = ngpus * 2
args.generated_data_root = os.path.join(args.generated_data_root, args.testdata)
# CLIP
if args.classifier_method == 'clip':
classifier, _ = clip.load('ViT-B/32', jit=False) # clip github 참조
convert_models_to_fp32(classifier) # must!!
elif args.classifier_method == 'resnet':
classifier = resnet50()
template = 'This is a photo of a {}'
imagenet_root = '/data/datasets/ImageNet'
args.imagenet_root = imagenet_root
train_sampler = None
train_dataset = GeneratedDataset(args)
dataset_for_texts = load_val_datasets(args, [args.testdata])[0]
texts_train = get_text_prompts_val([dataset_for_texts], [args.testdata], template=template,
use_clip_official=args.use_clip_official)[0]
class_names = train_dataset.class_names
num_classes = len(class_names)
if args.batch_size > num_classes:
args.batch_size = num_classes
print(texts_train)
print(f'batchsize is {args.batch_size}')
train_loader = DataLoader(train_dataset,
batch_size=args.batch_size, pin_memory=True,
num_workers=args.num_workers, shuffle=True, sampler=train_sampler)
devices = list(range(ngpus))
classifier = torch.nn.DataParallel(classifier, device_ids=devices).cuda() # for data parallel
if (args.tuning_last) and (args.classifier_method=='resnet'):
for param in classifier.module[1].parameters():
param.requires_grad = False
for param in classifier.module[1].linear.parameters():
param.requires_grad = True
optimizer = torch.optim.AdamW(classifier.module[1].linear.parameters(), lr=args.lr, weight_decay=args.wd)
else:
optimizer = torch.optim.AdamW(classifier.module.parameters(), lr=args.lr, weight_decay=args.wd)
denoiser = IFRobustModel(lora_ckpt=args.diffusion_ckpt, prompt=args.prompt)
denoiser = denoiser.cuda()
if args.max_train_steps != None:
args.num_train_epochs = math.ceil(args.max_train_steps / len(train_loader))
else:
args.max_train_steps = args.num_train_epochs * len(train_loader)
# set scheduler
if args.use_scheduler:
scheduler = cosine_lr(optimizer, args.lr, args.warmup_length,
args.max_train_steps, args.min_lr)
global_step = 0
progress_bar = tqdm(range(global_step, args.max_train_steps))
progress_bar.set_description("Steps")
# train
for epoch in range(args.start_epoch, args.num_train_epochs):
epoch_stats = {}
epoch_stats['step'] = global_step
classifier.module.train()
losses = AverageMeter('Loss', ':.4e')
for i, (images, target) in enumerate(train_loader):
if args.use_scheduler:
if epoch != -1:
scheduler(global_step)
optimizer.zero_grad()
batch_size = images.size(0)
images = images.to('cuda')
text_tokens = clip.tokenize(texts_train).to('cuda') # clean_mao, mao not need to target preprocessing
# compute denoising
outer_batch_sz = images.shape[0]
inner_batch_sz = 60 * ngpus
denoised_images = torch.zeros_like(images).to('cuda')
start_idx = 0
for i in range(ceil(outer_batch_sz / inner_batch_sz)):
cur_batch_size = min(outer_batch_sz, inner_batch_sz)
cur_batch_image = images[start_idx:start_idx+cur_batch_size, :, :]
cur_batch_image = 2 * cur_batch_image - 1 #[-1, 1]
# random noise sampling
timesteps = torch.randint(
0, denoiser.scheduler.config.num_train_timesteps, (cur_batch_size,), device=images.device
)
timesteps = timesteps.long()
noise = torch.randn_like(cur_batch_image)
noisy_model_input = denoiser.scheduler.add_noise(cur_batch_image, noise, timesteps)
denoised_list = []
for idx, timestep in enumerate(timesteps):
timestep = int(timestep.item())
temp_denoised = denoiser.denoise(noisy_model_input[idx].unsqueeze(0), [timestep]) # [0, 1], scheduler.step only timestep as integer
temp_denoised = (temp_denoised / 2 + 0.5).clamp(0, 1) # convert [0~1]
denoised_list.append(temp_denoised)
inner_denoised_images = torch.cat(denoised_list, dim=0)
denoised_images[start_idx:start_idx+cur_batch_size, :, :] = inner_denoised_images
outer_batch_sz -= cur_batch_size
start_idx += cur_batch_size
denoised_images = clip_img_preprocessing(denoised_images) # [-1~1]
image_features, text_features = classifier(denoised_images, text_tokens, return_features=True) #clip 코드 수정 필요
if args.classifier_method == 'clip':
logits_per_image = image_features @ text_features.T
target = target.to('cuda')
contrastive_loss = F.cross_entropy(logits_per_image, target)
total_loss = contrastive_loss
elif args.classifier_method == 'resnet':
logits_per_image = classifier(denoised_images)
target = target.to('cuda')
total_loss = F.cross_entropy(logits_per_image, target)
total_loss.backward()
losses.update(total_loss.item(), batch_size)
optimizer.step()
progress_bar.update(1)
global_step += 1
train_loss = losses.avg
print(f'Epoch {epoch} training loss: {train_loss}')
if (epoch+1)==args.num_train_epochs:
if args.out_dir is not None:
os.makedirs(args.out_dir, exist_ok=True)
save_path = os.path.join(args.out_dir, f'checkpoint-last.pt')
torch.save({
'epoch':epoch,
'model_state_dict':classifier.module.state_dict(),
'optimizer':optimizer.state_dict(),
'loss': train_loss
}, save_path)
print(f'saving is completed at {save_path}')
if __name__ == '__main__':
args = get_arguments()
args.prompt = return_prompt(args.testdata, personalized=True)
main(args)