@@ -102,43 +102,17 @@ class TrainConfig:
102
102
elastic_loss_type : str = 'log_svals'
103
103
# Whether to use background regularization.
104
104
use_background_loss : bool = False
105
- # Whether to use background decompose loss. This loss is only defined for DecomposeNerfModel
106
- use_bg_decompose_loss : bool = False
107
- # The weight for the background loss.
108
105
background_loss_weight : float = 0.0
109
- bg_decompose_loss_weight : float = 0.0
110
106
# Adaptive blendw loss weight setting
111
107
blendw_loss_weight_schedule : Optional [ScheduleDef ] = None
112
- # Adaptive blendw loss weight setting
113
- blendw_pixel_loss_weight_schedule : Optional [ScheduleDef ] = immutabledict .immutabledict ({
114
- 'type' : 'constant' ,
115
- 'value' : 0.0 ,
116
- })
117
108
blendw_loss_skewness : float = 1.0
118
- blendw_pixel_loss_skewness : float = 1.0
119
- force_blendw_loss_weight : float = 1.0
120
- blendw_ray_loss_weight : float = 0.0
121
109
sigma_s_ray_loss_weight : float = 0.0
122
- sigma_d_ray_loss_weight : float = 0.0
123
110
blendw_area_loss_weight : float = 0.0
124
- blendw_ray_loss_threshold : float = 1.0
125
- shadow_loss_threshold : float = 0.2
126
- shadow_loss_weight : float = 0.0
127
- blendw_sample_loss_weight : float = 0.0
128
111
shadow_r_loss_weight : Optional [ScheduleDef ] = immutabledict .immutabledict ({
129
112
'type' : 'constant' ,
130
113
'value' : 0.0 ,
131
114
})
132
- cubic_shadow_r_loss_weight_schedule : Optional [ScheduleDef ] = immutabledict .immutabledict ({
133
- 'type' : 'constant' ,
134
- 'value' : 0.0 ,
135
- })
136
- shadow_r_consistency_loss_weight_schedule : Optional [ScheduleDef ] = immutabledict .immutabledict ({
137
- 'type' : 'constant' ,
138
- 'value' : 0.0 ,
139
- })
140
- shadow_r_l2_loss_weight : float = 0.0
141
- blendw_spatial_loss_weight : float = 0.0
115
+
142
116
# The batch size for background regularization loss.
143
117
background_points_batch_size : int = 16384
144
118
# Whether to use the warp reg loss.
@@ -177,21 +151,9 @@ class TrainConfig:
177
151
# Use decompose NeRF or not
178
152
use_decompose_nerf : bool = False
179
153
180
- # Initialize the static model for several iterations first
181
- # During this, dynamic model would be frozen
182
- freeze_dynamic_steps : int = 0
183
- # Fix blendw to certain values for a fixed number of iters
184
- fix_blendw_steps : int = 0
185
- # Encourage the predicted blendw to be close to a certain value for some iters
186
- # This is different to fixing the value
187
- force_blendw_steps : int = 0
188
- fix_blendw_value : float = 0.25
189
-
190
- # Use provided dynmaic object mask to separately train the dynamic and static component
191
- use_mask_sep_train : bool = False
192
-
193
154
# Regularize the decompose model using rays combined with different time frame
194
155
use_ex_ray_entropy_loss : bool = False
156
+ use_lap_blendw_loss : bool = False
195
157
196
158
@gin .configurable ()
197
159
@dataclasses .dataclass
@@ -234,8 +196,6 @@ class EvalConfig:
234
196
# Evalution setting for fixed time circulating camera experiments
235
197
novel_view_eval : bool = False
236
198
237
- # test_time_id: int = 0
238
-
239
199
# Evalution setting for fixed view varying time experiments
240
200
fix_view_eval : bool = False
241
201
# Number of views rendered for each fixed time frame
0 commit comments