Where is the Power?
Testing Policy

APP Testing Policy
Verification of Testing Policy
Diverse Testing Types
Post-Implementation Testing Collaboration
Testing Environments and Deployment Protocols
Efficient Bug Reporting and Resolution
Regular Compliance Checks

API Testing Policy
Endpoint Annotations For OpenAPI
Database Operations
Tests

A AP PR OWWDNMNDMNMDDNDND

APP Testing Policy

Verification of Testing Policy

To ensure the effectiveness of our application testing policy, it is imperative that we
rigorously verify whether the feature under development aligns seamlessly with the
defined functional requirements. This verification process serves as the foundational step
to ascertain that the feature is not only being worked upon but is also being implemented
accurately in accordance with the specified functional criteria.

Diverse Testing Types

In our comprehensive testing strategy, usability testing takes precedence even before
the initiation of the pull request submission. This early-stage usability evaluation is
instrumental in identifying potential user experience issues and addressing them
proactively. Additionally, it is essential to enforce a prerequisite of ensuring the
successful completion of previous unit and integration tests before any code is deemed
ready for review.

Post-Implementation Testing Collaboration

Following the implementation of a new feature, a pivotal phase involves reaching out to
our dedicated testers. These testers play a critical role in crafting unit, integration, and
end-to-end (E2E) tests that scrutinize the functionality and integration of the new feature
within our application environment. Their involvement is vital in guaranteeing the
robustness and reliability of the implemented feature.

Testing Environments and Deployment Protocols

Our testing environments are carefully structured to uphold the integrity of our
application. Primary testing activities are primarily conducted on the developer's local
machine, ensuring that the initial testing and debugging stages are carried out efficiently.
Moreover, it is mandatory that all new features are integrated into the development
branch before any release, fostering a systematic approach to feature integration. The
subsequent deployment of a dedicated development site, emulating a production-like
environment, is imperative. This dev site serves as a valuable testbed to verify the
seamless functioning of usability testing. When it comes to deploying changes to the

production environment, it is incumbent upon us to validate that all code has undergone
meticulous testing, with an emphasis on automation to ensure reliability and consistency.

Efficient Bug Reporting and Resolution

In our commitment to maintaining the quality and integrity of our application, we have
established a robust system for handling bugs. Any instances of feature-related bugs or
those reported by users through our email channels necessitate the creation of
corresponding issue reports. These reports are meticulously tagged with 'Frontend' and
'bug' labels to streamline the tracking and resolution process. Importantly, it's crucial to
acknowledge that every resolved bug must undergo retesting to confirm its successful
resolution, thereby maintaining the overall health of our application.

Regular Compliance Checks

At regular intervals of every two weeks, we reinforce our commitment to compliance
with project specifications by conducting system walkthroughs. These walkthroughs
serve as a means to validate that the development efforts are aligned with the
envisioned software and that the project remains on the intended course. This proactive
approach ensures that deviations from the project's objectives can be promptly identified
and addressed, ultimately resulting in a software product that consistently meets our
clients' needs and expectations.

API Testing Policy

Endpoint Annotations For OpenAPI

All Post endpoints are required to be annotated using:

#[utoipa::path(post, tag = “Service tag’, path = "/api/endpointName’, request_body =
structureRequest)]

The requestStructure must be annotated using the:

#[schema(example = json! { structureRequest {egparameter: [-90.0, 90.0],egparameter2: [90.0,
-90.0], time: None }})]

This provides the necessary annotations for your endpoint to be available on SwaggerUl so that
the frontend can test and use your endpoint before implementation.

Database Operations

Database operations are required to be wrapped and mocked. Try to reuse database operations
as much as possible and when you write new database operations try to make them as generic
and applicable as possible in order to avoid redundant mocking.

Database operations must be placed in a trait with the annotations:

#[automock] #[async_trait]

From there you can implement the trait and from there all functions that use database operations
must take in the following:

async fn example(connection: Option<&Database>, db_functions: &dyn DBFunctionsTrait)

The methods for the Database trait must take in atleast the following:
async fn example<'a>(&self, query: Document, connection: Option<&'a Database>, options:
Option<FindOptions>) -> Result<returnStructure, ApiError<'static>>;

Within tests, mocks are passed instead of a normal implementation of the Trait as is done in
endpoints.

Tests

Tests that make use of other endpoints must be avoided, endpoint responses should rather be
mocked and those endpoints should be tested individually.

In many cases an endpoint itself should not be tested and rather the functions the endpoint
makes use of in its business logic should be tested due to mocking limitations of the database.

Any helper functions that are not covered in unit tests should be covered in unit tests. Integration
test times must be fixed and suburbs must be able to be compared to the results produced by a
similar service like ESP on the SwaggerUIl endpoints.

CodeCov reports are deemed acceptable if the main business logic is all tested. The database
functions should be tested manually as it is not possible to automate that testing. Constructors
and structure initialization are not needed to be tested. Deserializers and serializers are not
required to be tested.

The rust compiler will enforce the covering of edge cases as long as .unwrap() is not used. It is
strongly discouraged to use .unwrap() unless you are unwrapping a database connection or
something similar when you know that that state will be available when the rocket server has
launched.

