-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathmarching_cubes_3d.py
411 lines (386 loc) · 14.7 KB
/
marching_cubes_3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
"""Provides a function for performing 3D Marching Cubes"""
from common import adapt, frange
from settings import XMIN, XMAX, YMIN, YMAX, ZMIN, ZMAX, CELL_SIZE
import math
from utils_3d import V3, Tri, Mesh, make_obj
# My convention for vertices is:
VERTICES = [
(0, 0, 0),
(1, 0, 0),
(1, 1, 0),
(0, 1, 0),
(0, 0, 1),
(1, 0, 1),
(1, 1, 1),
(0, 1, 1),
]
# My convention for the edges
EDGES = [
(0, 1),
(1, 2),
(2, 3),
(3, 0),
(4, 5),
(5, 6),
(6, 7),
(7, 4),
(0, 4),
(1, 5),
(2, 6),
(3, 7),
]
# Table driven approach to the 256 combinations. Pro-tip, don't write this by hand, copy mine!
# See marching_cubes_gen.py for how I generated these.
# Each index is the bitwise representation of what is solid.
# Each value is a list of triples indicating what edges are used for that triangle
# (Recall each edge of the cell may become a vertex in the output boundary)
cases = [[],
[[8, 0, 3]],
[[1, 0, 9]],
[[8, 1, 3], [8, 9, 1]],
[[10, 2, 1]],
[[8, 0, 3], [1, 10, 2]],
[[9, 2, 0], [9, 10, 2]],
[[3, 8, 2], [2, 8, 10], [10, 8, 9]],
[[3, 2, 11]],
[[0, 2, 8], [2, 11, 8]],
[[1, 0, 9], [2, 11, 3]],
[[2, 9, 1], [11, 9, 2], [8, 9, 11]],
[[3, 10, 11], [3, 1, 10]],
[[1, 10, 0], [0, 10, 8], [8, 10, 11]],
[[0, 11, 3], [9, 11, 0], [10, 11, 9]],
[[8, 9, 11], [11, 9, 10]],
[[7, 4, 8]],
[[3, 7, 0], [7, 4, 0]],
[[7, 4, 8], [9, 1, 0]],
[[9, 1, 4], [4, 1, 7], [7, 1, 3]],
[[7, 4, 8], [2, 1, 10]],
[[4, 3, 7], [4, 0, 3], [2, 1, 10]],
[[2, 0, 10], [0, 9, 10], [7, 4, 8]],
[[9, 10, 4], [4, 10, 3], [3, 10, 2], [4, 3, 7]],
[[4, 8, 7], [3, 2, 11]],
[[7, 4, 11], [11, 4, 2], [2, 4, 0]],
[[1, 0, 9], [2, 11, 3], [8, 7, 4]],
[[2, 11, 1], [1, 11, 9], [9, 11, 7], [9, 7, 4]],
[[10, 11, 1], [11, 3, 1], [4, 8, 7]],
[[4, 0, 7], [7, 0, 10], [0, 1, 10], [7, 10, 11]],
[[7, 4, 8], [0, 11, 3], [9, 11, 0], [10, 11, 9]],
[[4, 11, 7], [9, 11, 4], [10, 11, 9]],
[[9, 4, 5]],
[[9, 4, 5], [0, 3, 8]],
[[0, 5, 1], [0, 4, 5]],
[[4, 3, 8], [5, 3, 4], [1, 3, 5]],
[[5, 9, 4], [10, 2, 1]],
[[8, 0, 3], [1, 10, 2], [4, 5, 9]],
[[10, 4, 5], [2, 4, 10], [0, 4, 2]],
[[3, 10, 2], [8, 10, 3], [5, 10, 8], [4, 5, 8]],
[[9, 4, 5], [11, 3, 2]],
[[11, 0, 2], [11, 8, 0], [9, 4, 5]],
[[5, 1, 4], [1, 0, 4], [11, 3, 2]],
[[5, 1, 4], [4, 1, 11], [1, 2, 11], [4, 11, 8]],
[[3, 10, 11], [3, 1, 10], [5, 9, 4]],
[[9, 4, 5], [1, 10, 0], [0, 10, 8], [8, 10, 11]],
[[5, 0, 4], [11, 0, 5], [11, 3, 0], [10, 11, 5]],
[[5, 10, 4], [4, 10, 8], [8, 10, 11]],
[[9, 7, 5], [9, 8, 7]],
[[0, 5, 9], [3, 5, 0], [7, 5, 3]],
[[8, 7, 0], [0, 7, 1], [1, 7, 5]],
[[7, 5, 3], [3, 5, 1]],
[[7, 5, 8], [5, 9, 8], [2, 1, 10]],
[[10, 2, 1], [0, 5, 9], [3, 5, 0], [7, 5, 3]],
[[8, 2, 0], [5, 2, 8], [10, 2, 5], [7, 5, 8]],
[[2, 3, 10], [10, 3, 5], [5, 3, 7]],
[[9, 7, 5], [9, 8, 7], [11, 3, 2]],
[[0, 2, 9], [9, 2, 7], [7, 2, 11], [9, 7, 5]],
[[3, 2, 11], [8, 7, 0], [0, 7, 1], [1, 7, 5]],
[[11, 1, 2], [7, 1, 11], [5, 1, 7]],
[[3, 1, 11], [11, 1, 10], [8, 7, 9], [9, 7, 5]],
[[11, 7, 0], [7, 5, 0], [5, 9, 0], [10, 11, 0], [1, 10, 0]],
[[0, 5, 10], [0, 7, 5], [0, 8, 7], [0, 10, 11], [0, 11, 3]],
[[10, 11, 5], [11, 7, 5]],
[[5, 6, 10]],
[[8, 0, 3], [10, 5, 6]],
[[0, 9, 1], [5, 6, 10]],
[[8, 1, 3], [8, 9, 1], [10, 5, 6]],
[[1, 6, 2], [1, 5, 6]],
[[6, 2, 5], [2, 1, 5], [8, 0, 3]],
[[5, 6, 9], [9, 6, 0], [0, 6, 2]],
[[5, 8, 9], [2, 8, 5], [3, 8, 2], [6, 2, 5]],
[[3, 2, 11], [10, 5, 6]],
[[0, 2, 8], [2, 11, 8], [5, 6, 10]],
[[3, 2, 11], [0, 9, 1], [10, 5, 6]],
[[5, 6, 10], [2, 9, 1], [11, 9, 2], [8, 9, 11]],
[[11, 3, 6], [6, 3, 5], [5, 3, 1]],
[[11, 8, 6], [6, 8, 1], [1, 8, 0], [6, 1, 5]],
[[5, 0, 9], [6, 0, 5], [3, 0, 6], [11, 3, 6]],
[[6, 9, 5], [11, 9, 6], [8, 9, 11]],
[[7, 4, 8], [6, 10, 5]],
[[3, 7, 0], [7, 4, 0], [10, 5, 6]],
[[7, 4, 8], [6, 10, 5], [9, 1, 0]],
[[5, 6, 10], [9, 1, 4], [4, 1, 7], [7, 1, 3]],
[[1, 6, 2], [1, 5, 6], [7, 4, 8]],
[[6, 1, 5], [2, 1, 6], [0, 7, 4], [3, 7, 0]],
[[4, 8, 7], [5, 6, 9], [9, 6, 0], [0, 6, 2]],
[[2, 3, 9], [3, 7, 9], [7, 4, 9], [6, 2, 9], [5, 6, 9]],
[[2, 11, 3], [7, 4, 8], [10, 5, 6]],
[[6, 10, 5], [7, 4, 11], [11, 4, 2], [2, 4, 0]],
[[1, 0, 9], [8, 7, 4], [3, 2, 11], [5, 6, 10]],
[[1, 2, 9], [9, 2, 11], [9, 11, 4], [4, 11, 7], [5, 6, 10]],
[[7, 4, 8], [11, 3, 6], [6, 3, 5], [5, 3, 1]],
[[11, 0, 1], [11, 4, 0], [11, 7, 4], [11, 1, 5], [11, 5, 6]],
[[6, 9, 5], [0, 9, 6], [11, 0, 6], [3, 0, 11], [4, 8, 7]],
[[5, 6, 9], [9, 6, 11], [9, 11, 7], [9, 7, 4]],
[[4, 10, 9], [4, 6, 10]],
[[10, 4, 6], [10, 9, 4], [8, 0, 3]],
[[1, 0, 10], [10, 0, 6], [6, 0, 4]],
[[8, 1, 3], [6, 1, 8], [6, 10, 1], [4, 6, 8]],
[[9, 2, 1], [4, 2, 9], [6, 2, 4]],
[[3, 8, 0], [9, 2, 1], [4, 2, 9], [6, 2, 4]],
[[0, 4, 2], [2, 4, 6]],
[[8, 2, 3], [4, 2, 8], [6, 2, 4]],
[[4, 10, 9], [4, 6, 10], [2, 11, 3]],
[[11, 8, 2], [2, 8, 0], [6, 10, 4], [4, 10, 9]],
[[2, 11, 3], [1, 0, 10], [10, 0, 6], [6, 0, 4]],
[[8, 4, 1], [4, 6, 1], [6, 10, 1], [11, 8, 1], [2, 11, 1]],
[[3, 1, 11], [11, 1, 4], [1, 9, 4], [11, 4, 6]],
[[6, 11, 1], [11, 8, 1], [8, 0, 1], [4, 6, 1], [9, 4, 1]],
[[3, 0, 11], [11, 0, 6], [6, 0, 4]],
[[4, 11, 8], [4, 6, 11]],
[[6, 8, 7], [10, 8, 6], [9, 8, 10]],
[[3, 7, 0], [0, 7, 10], [7, 6, 10], [0, 10, 9]],
[[1, 6, 10], [0, 6, 1], [7, 6, 0], [8, 7, 0]],
[[10, 1, 6], [6, 1, 7], [7, 1, 3]],
[[9, 8, 1], [1, 8, 6], [6, 8, 7], [1, 6, 2]],
[[9, 7, 6], [9, 3, 7], [9, 0, 3], [9, 6, 2], [9, 2, 1]],
[[7, 6, 8], [8, 6, 0], [0, 6, 2]],
[[3, 6, 2], [3, 7, 6]],
[[3, 2, 11], [6, 8, 7], [10, 8, 6], [9, 8, 10]],
[[7, 9, 0], [7, 10, 9], [7, 6, 10], [7, 0, 2], [7, 2, 11]],
[[0, 10, 1], [6, 10, 0], [8, 6, 0], [7, 6, 8], [2, 11, 3]],
[[1, 6, 10], [7, 6, 1], [11, 7, 1], [2, 11, 1]],
[[1, 9, 6], [9, 8, 6], [8, 7, 6], [3, 1, 6], [11, 3, 6]],
[[9, 0, 1], [11, 7, 6]],
[[0, 11, 3], [6, 11, 0], [7, 6, 0], [8, 7, 0]],
[[7, 6, 11]],
[[11, 6, 7]],
[[3, 8, 0], [11, 6, 7]],
[[1, 0, 9], [6, 7, 11]],
[[1, 3, 9], [3, 8, 9], [6, 7, 11]],
[[10, 2, 1], [6, 7, 11]],
[[10, 2, 1], [3, 8, 0], [6, 7, 11]],
[[9, 2, 0], [9, 10, 2], [11, 6, 7]],
[[11, 6, 7], [3, 8, 2], [2, 8, 10], [10, 8, 9]],
[[2, 6, 3], [6, 7, 3]],
[[8, 6, 7], [0, 6, 8], [2, 6, 0]],
[[7, 2, 6], [7, 3, 2], [1, 0, 9]],
[[8, 9, 7], [7, 9, 2], [2, 9, 1], [7, 2, 6]],
[[6, 1, 10], [7, 1, 6], [3, 1, 7]],
[[8, 0, 7], [7, 0, 6], [6, 0, 1], [6, 1, 10]],
[[7, 3, 6], [6, 3, 9], [3, 0, 9], [6, 9, 10]],
[[7, 8, 6], [6, 8, 10], [10, 8, 9]],
[[8, 11, 4], [11, 6, 4]],
[[11, 0, 3], [6, 0, 11], [4, 0, 6]],
[[6, 4, 11], [4, 8, 11], [1, 0, 9]],
[[1, 3, 9], [9, 3, 6], [3, 11, 6], [9, 6, 4]],
[[8, 11, 4], [11, 6, 4], [1, 10, 2]],
[[1, 10, 2], [11, 0, 3], [6, 0, 11], [4, 0, 6]],
[[2, 9, 10], [0, 9, 2], [4, 11, 6], [8, 11, 4]],
[[3, 4, 9], [3, 6, 4], [3, 11, 6], [3, 9, 10], [3, 10, 2]],
[[3, 2, 8], [8, 2, 4], [4, 2, 6]],
[[2, 4, 0], [6, 4, 2]],
[[0, 9, 1], [3, 2, 8], [8, 2, 4], [4, 2, 6]],
[[1, 2, 9], [9, 2, 4], [4, 2, 6]],
[[10, 3, 1], [4, 3, 10], [4, 8, 3], [6, 4, 10]],
[[10, 0, 1], [6, 0, 10], [4, 0, 6]],
[[3, 10, 6], [3, 9, 10], [3, 0, 9], [3, 6, 4], [3, 4, 8]],
[[9, 10, 4], [10, 6, 4]],
[[9, 4, 5], [7, 11, 6]],
[[9, 4, 5], [7, 11, 6], [0, 3, 8]],
[[0, 5, 1], [0, 4, 5], [6, 7, 11]],
[[11, 6, 7], [4, 3, 8], [5, 3, 4], [1, 3, 5]],
[[1, 10, 2], [9, 4, 5], [6, 7, 11]],
[[8, 0, 3], [4, 5, 9], [10, 2, 1], [11, 6, 7]],
[[7, 11, 6], [10, 4, 5], [2, 4, 10], [0, 4, 2]],
[[8, 2, 3], [10, 2, 8], [4, 10, 8], [5, 10, 4], [11, 6, 7]],
[[2, 6, 3], [6, 7, 3], [9, 4, 5]],
[[5, 9, 4], [8, 6, 7], [0, 6, 8], [2, 6, 0]],
[[7, 3, 6], [6, 3, 2], [4, 5, 0], [0, 5, 1]],
[[8, 1, 2], [8, 5, 1], [8, 4, 5], [8, 2, 6], [8, 6, 7]],
[[9, 4, 5], [6, 1, 10], [7, 1, 6], [3, 1, 7]],
[[7, 8, 6], [6, 8, 0], [6, 0, 10], [10, 0, 1], [5, 9, 4]],
[[3, 0, 10], [0, 4, 10], [4, 5, 10], [7, 3, 10], [6, 7, 10]],
[[8, 6, 7], [10, 6, 8], [5, 10, 8], [4, 5, 8]],
[[5, 9, 6], [6, 9, 11], [11, 9, 8]],
[[11, 6, 3], [3, 6, 0], [0, 6, 5], [0, 5, 9]],
[[8, 11, 0], [0, 11, 5], [5, 11, 6], [0, 5, 1]],
[[6, 3, 11], [5, 3, 6], [1, 3, 5]],
[[10, 2, 1], [5, 9, 6], [6, 9, 11], [11, 9, 8]],
[[3, 11, 0], [0, 11, 6], [0, 6, 9], [9, 6, 5], [1, 10, 2]],
[[0, 8, 5], [8, 11, 5], [11, 6, 5], [2, 0, 5], [10, 2, 5]],
[[11, 6, 3], [3, 6, 5], [3, 5, 10], [3, 10, 2]],
[[3, 9, 8], [6, 9, 3], [5, 9, 6], [2, 6, 3]],
[[9, 6, 5], [0, 6, 9], [2, 6, 0]],
[[6, 5, 8], [5, 1, 8], [1, 0, 8], [2, 6, 8], [3, 2, 8]],
[[2, 6, 1], [6, 5, 1]],
[[6, 8, 3], [6, 9, 8], [6, 5, 9], [6, 3, 1], [6, 1, 10]],
[[1, 10, 0], [0, 10, 6], [0, 6, 5], [0, 5, 9]],
[[3, 0, 8], [6, 5, 10]],
[[10, 6, 5]],
[[5, 11, 10], [5, 7, 11]],
[[5, 11, 10], [5, 7, 11], [3, 8, 0]],
[[11, 10, 7], [10, 5, 7], [0, 9, 1]],
[[5, 7, 10], [10, 7, 11], [9, 1, 8], [8, 1, 3]],
[[2, 1, 11], [11, 1, 7], [7, 1, 5]],
[[3, 8, 0], [2, 1, 11], [11, 1, 7], [7, 1, 5]],
[[2, 0, 11], [11, 0, 5], [5, 0, 9], [11, 5, 7]],
[[2, 9, 5], [2, 8, 9], [2, 3, 8], [2, 5, 7], [2, 7, 11]],
[[10, 3, 2], [5, 3, 10], [7, 3, 5]],
[[10, 0, 2], [7, 0, 10], [8, 0, 7], [5, 7, 10]],
[[0, 9, 1], [10, 3, 2], [5, 3, 10], [7, 3, 5]],
[[7, 8, 2], [8, 9, 2], [9, 1, 2], [5, 7, 2], [10, 5, 2]],
[[3, 1, 7], [7, 1, 5]],
[[0, 7, 8], [1, 7, 0], [5, 7, 1]],
[[9, 5, 0], [0, 5, 3], [3, 5, 7]],
[[5, 7, 9], [7, 8, 9]],
[[4, 10, 5], [8, 10, 4], [11, 10, 8]],
[[3, 4, 0], [10, 4, 3], [10, 5, 4], [11, 10, 3]],
[[1, 0, 9], [4, 10, 5], [8, 10, 4], [11, 10, 8]],
[[4, 3, 11], [4, 1, 3], [4, 9, 1], [4, 11, 10], [4, 10, 5]],
[[1, 5, 2], [2, 5, 8], [5, 4, 8], [2, 8, 11]],
[[5, 4, 11], [4, 0, 11], [0, 3, 11], [1, 5, 11], [2, 1, 11]],
[[5, 11, 2], [5, 8, 11], [5, 4, 8], [5, 2, 0], [5, 0, 9]],
[[5, 4, 9], [2, 3, 11]],
[[3, 4, 8], [2, 4, 3], [5, 4, 2], [10, 5, 2]],
[[5, 4, 10], [10, 4, 2], [2, 4, 0]],
[[2, 8, 3], [4, 8, 2], [10, 4, 2], [5, 4, 10], [0, 9, 1]],
[[4, 10, 5], [2, 10, 4], [1, 2, 4], [9, 1, 4]],
[[8, 3, 4], [4, 3, 5], [5, 3, 1]],
[[1, 5, 0], [5, 4, 0]],
[[5, 0, 9], [3, 0, 5], [8, 3, 5], [4, 8, 5]],
[[5, 4, 9]],
[[7, 11, 4], [4, 11, 9], [9, 11, 10]],
[[8, 0, 3], [7, 11, 4], [4, 11, 9], [9, 11, 10]],
[[0, 4, 1], [1, 4, 11], [4, 7, 11], [1, 11, 10]],
[[10, 1, 4], [1, 3, 4], [3, 8, 4], [11, 10, 4], [7, 11, 4]],
[[9, 4, 1], [1, 4, 2], [2, 4, 7], [2, 7, 11]],
[[1, 9, 2], [2, 9, 4], [2, 4, 11], [11, 4, 7], [3, 8, 0]],
[[11, 4, 7], [2, 4, 11], [0, 4, 2]],
[[7, 11, 4], [4, 11, 2], [4, 2, 3], [4, 3, 8]],
[[10, 9, 2], [2, 9, 7], [7, 9, 4], [2, 7, 3]],
[[2, 10, 7], [10, 9, 7], [9, 4, 7], [0, 2, 7], [8, 0, 7]],
[[10, 4, 7], [10, 0, 4], [10, 1, 0], [10, 7, 3], [10, 3, 2]],
[[8, 4, 7], [10, 1, 2]],
[[4, 1, 9], [7, 1, 4], [3, 1, 7]],
[[8, 0, 7], [7, 0, 1], [7, 1, 9], [7, 9, 4]],
[[0, 7, 3], [0, 4, 7]],
[[8, 4, 7]],
[[9, 8, 10], [10, 8, 11]],
[[3, 11, 0], [0, 11, 9], [9, 11, 10]],
[[0, 10, 1], [8, 10, 0], [11, 10, 8]],
[[11, 10, 3], [10, 1, 3]],
[[1, 9, 2], [2, 9, 11], [11, 9, 8]],
[[9, 2, 1], [11, 2, 9], [3, 11, 9], [0, 3, 9]],
[[8, 2, 0], [8, 11, 2]],
[[11, 2, 3]],
[[2, 8, 3], [10, 8, 2], [9, 8, 10]],
[[0, 2, 9], [2, 10, 9]],
[[3, 2, 8], [8, 2, 10], [8, 10, 1], [8, 1, 0]],
[[1, 2, 10]],
[[3, 1, 8], [1, 9, 8]],
[[9, 0, 1]],
[[3, 0, 8]],
[]]
def marching_cubes_3d_single_cell(f, x, y, z):
# Evaluate f on each vertex of the cube
f_eval = [None] * 8
for v in range(8):
v_pos = VERTICES[v]
f_eval[v] = f(x + v_pos[0] * CELL_SIZE,
y + v_pos[1] * CELL_SIZE,
z + v_pos[2] * CELL_SIZE)
# Determine which case we are
case = sum(2**v for v in range(8) if f_eval[v] > 0)
# Ok, what faces do we need (in terms of edges)
faces = cases[case]
def edge_to_boundary_vertex(edge):
"""Returns the vertex in the middle of the specified edge"""
# Find the two vertices specified by this edge, and interpolate between
# them according to adapt, as in the 2d case
v0, v1 = EDGES[edge]
f0 = f_eval[v0]
f1 = f_eval[v1]
t0 = CELL_SIZE - adapt(f0, f1)
t1 = CELL_SIZE - t0
vert_pos0 = VERTICES[v0]
vert_pos1 = VERTICES[v1]
return V3(x + vert_pos0[0] * t0 + vert_pos1[0] * t1,
y + vert_pos0[1] * t0 + vert_pos1[1] * t1,
z + vert_pos0[2] * t0 + vert_pos1[2] * t1)
output_verts = []
output_tris = []
for face in faces:
# For each face, find the vertices of that face, and output it.
# We make no effort to re-use vertices between multiple faces,
# A fancier implementation might do so.
edges = face
verts = list(map(edge_to_boundary_vertex, edges))
next_vert_index = len(output_verts) + 1
tri = Tri(
next_vert_index,
next_vert_index+1,
next_vert_index+2,
)
output_verts.extend(verts)
output_tris.append(tri)
return Mesh(output_verts, output_tris)
def marching_cubes_3d(f, xmin=XMIN, xmax=XMAX, ymin=YMIN, ymax=YMAX, zmin=ZMIN, zmax=ZMAX):
"""Iterates over a cells of size one between the specified range, and evaluates f to produce
a boundary by Marching Cubes. Returns a Mesh object."""
# For each cube, evaluate independently.
# If this wasn't demonstration code, you might actually evaluate them together for efficiency
mesh = Mesh()
for x in frange(xmin, xmax, CELL_SIZE):
for y in frange(ymin, ymax, CELL_SIZE):
for z in frange(zmin, zmax, CELL_SIZE):
cell_mesh = marching_cubes_3d_single_cell(f, x, y, z)
mesh.extend(cell_mesh)
return mesh
def circle_function(x, y, z):
return 2.5 - math.sqrt(x*x + y*y + z*z)
def make_circle_obj(filename):
"""Writes an obj file containing a sphere meshed via marching cubes"""
mesh = marching_cubes_3d(circle_function)
with open(filename, "w") as f:
make_obj(f, mesh)
def make_cases_obj():
"""Writes obj files demonstrating the main cases of marching cubes"""
import marching_cubes_gen as gen
assert CELL_SIZE == 1
mesh = Mesh()
highlights = Mesh()
offset = V3(0, 0, 0)
for bits, faces in sorted(gen.BASE_CASES.items()):
verts = set(gen.bits_to_verts(bits))
# Run marching cubes for a just this case
def f(x, y, z):
vert = gen.VERTICES.index((x, y, z))
return 1 if vert in verts else -1
case_mesh = marching_cubes_3d_single_cell(f, 0, 0, 0, cell_size=1)
case_mesh = case_mesh.translate(offset)
mesh.extend(case_mesh)
# Output the solid verts
highlight = Mesh([V3(*gen.VERTICES[v]) for v in verts], [])
highlight = highlight.translate(offset)
highlights.extend(highlight)
offset.x += 1.5
if offset.x > 6:
offset.x = 0
offset.y += 1.5
with open("cases.obj", "w") as f:
make_obj(f, mesh)
with open("case_highlights.obj", "w") as f:
make_obj(f, highlights)
__all__ = ["marching_cubes_3d"]
if __name__ == "__main__":
make_circle_obj("output.obj")
#make_cases_obj()