forked from NOAA-EMC/gfs-utils
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalpreciptype.f
1616 lines (1555 loc) · 48.6 KB
/
calpreciptype.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
SUBROUTINE CALPRECIPTYPE(kdt,nrcm,im,ix,lm,lp1,randomno, &
xlat,xlon, &
gt0,gq0,prsl,prsi,PREC, & !input
phii,n3dfercld,TSKIN,SR,phy_f3d, & !input
DOMR,DOMZR,DOMIP,DOMS) !output
! SUBROUTINE CALPRECIPTYPE(nrcm,randomno,im,lm,lp1,T,Q,PMID,PINT,PREC, & !input
! ZINT,n3dfercld,TSKIN,SR,F_RimeF, & !input
! DOMR,DOMZR,DOMIP,DOMS) !output
!$$$ SUBPROGRAM DOCUMENTATION BLOCK
! . . .
! SUBPROGRAM: CALPRECIPTYPE COMPUTE DOMINANT PRECIP TYPE
! PRGRMMR: CHUANG ORG: W/NP2 DATE: 2008-05-28
!
!
! ABSTRACT:
! THIS ROUTINE COMPUTES PRECIPITATION TYPE.
! . It is adopted from post but was made into a column to used by GFS model
!
!
! use vrbls3d
! use vrbls2d
! use soil
! use masks
! use params_mod
! use ctlblk_mod
! use rqstfld_mod
USE FUNCPHYS, ONLY : gfuncphys,fpvs,ftdp,fpkap,ftlcl,stma,fthe
USE PHYSCONS
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
implicit none
!
! INCLUDE "mpif.h"
!
! IN NGM SUBROUTINE OUTPUT WE FIND THE FOLLOWING COMMENT.
! "IF THE FOLLOWING THRESHOLD VALUES ARE CHANGED, CONTACT
! TDL/SYNOPTIC-SCALE TECHNIQUES BRANCH (PAUL DALLAVALLE
! AND JOHN JENSENIUS). THEY MAY BE USING IT IN ONE OF
! THEIR PACKING CODES." THE THRESHOLD VALUE IS 0.01 INCH
! OR 2.54E-4 METER. PRECIPITATION VALUES LESS THAN THIS
! THRESHOLD ARE SET TO MINUS ONE TIMES THIS THRESHOLD.
real,PARAMETER :: PTHRESH = 0.0
!
! SET CELCIUS TO KELVIN AND SECOND TO HOUR CONVERSION.
integer,PARAMETER :: NALG = 5
!
! DECLARE VARIABLES.
!
integer,intent(in) :: kdt,nrcm,im,ix,lm,lp1,n3dfercld
real,intent(in) :: xlat(im),xlon(im)
real,dimension(im),intent(in) :: PREC,SR,TSKIN
real,intent(in) :: randomno(ix,nrcm)
real,dimension(ix,LM),intent(in) :: gt0,gq0,prsl,phy_f3d
real,dimension(ix,lp1),intent(in) :: prsi,phii
real,dimension(im),intent(out) :: DOMR,DOMZR,DOMIP,DOMS
INTEGER :: IWX1,IWX4,IWX5
REAL :: IWX2,IWX3
REAL :: ES,QC
REAL :: SLEET(NALG),RAIN(NALG),FREEZR(NALG),SNOW(NALG)
real,dimension(LM) :: T,Q,PMID,F_RimeF
real,dimension(lp1) :: pint,zint
REAL, ALLOCATABLE :: RH(:)
REAL(kind=kind_phys), ALLOCATABLE :: TD8(:)
integer :: I,IWX,ISNO,IIP,IZR,IRAIN,k,k1
real :: time_vert,time_ncep,time_ramer,time_bourg,time_revised,&
time_dominant,btim,timef
real(kind=kind_phys) :: pv8,pr8,pk8,tr8,tdpd8,tlcl8,thelcl8
real(kind=kind_phys) :: qwet8,t8(lm)
real(kind=kind_phys),allocatable :: twet8(:)
! convert geopotential to height
! do l=1,lp1
! zint(l)=zint(l)/con_g
! end do
! DON'T FORGET TO FLIP 3D ARRAYS AROUND BECAUSE GFS COUNTS FROM BOTTOM UP
ALLOCATE ( RH(LM),TD8(LM),TWET8(LM) )
! Create look up table
! call gfuncphys
time_vert = 0.
time_ncep = 0.
time_ramer = 0.
time_bourg = 0.
time_revised = 0.
do i=1,im
! print *, 'in calprecip xlat/xlon=', xlat(im),xlon(im),'levs=',lm
do k=1,lm
k1 = lm-k+1
t8(k1) = gt0(i,k)
q(k1) = gq0(i,k)
pmid(k1) = prsl(i,k)
f_rimef(k1) = phy_f3d(i,k)
pv8 = pmid(k1)*q(k1)/(con_eps-con_epsm1*q(k1))
td8(k1) = ftdp(pv8)
tdpd8 = t8(k1)-td8(k1)
if(pmid(k1)>=50000.)then ! only compute twet below 500mb to save time
if(tdpd8.gt.0.) then
pr8 = pmid(k1)
tr8 = t8(k1)
pk8 = fpkap(pr8)
tlcl8 = ftlcl(tr8,tdpd8)
thelcl8 = fthe(tlcl8,pk8*tlcl8/tr8)
call stma(thelcl8,pk8,twet8(k1),qwet8)
else
twet8(k1)=t8(k1)
endif
endif
ES = FPVS(T8(k1))
ES = MIN(ES,PMID(k1))
QC = CON_EPS*ES/(PMID(k1)+CON_EPSM1*ES)
RH(k1) = MAX(con_epsq,Q(k1))/QC
k1 = lp1-k+1
pint(k1) = prsi(i,k)
zint(k1) = phii(i,k) !height in meters
enddo
pint(1) = prsi(i,lp1)
zint(1) = phii(i,lp1)
! print*,'debug in calpreciptype: i,im,lm,lp1,xlon,xlat,prec,tskin,sr,nrcm,randomno,n3dfercld ', &
! i,im,lm,lp1,xlon(i)*57.29578,xlat(i)*57.29578,prec(i),tskin(i),sr(i), &
! nrcm,randomno(i,1:nrcm),n3dfercld
! do l=1,lm
! print*,'debug in calpreciptype: l,t,q,p,pint,z,twet', &
! l,t(l),q(l), &
! pmid(l),pint(l),zint(l),twet(l)
! end do
! print*,'debug in calpreciptype: lp1,pint,z ', lp1,pint(lp1),zint(lp1)
! end if
! end debug print statement
CALL CALWXT(lm,lp1,T8(1),Q(1),PMID(1),PINT(1),PREC(i), &
PTHRESH,con_fvirt,con_rog,con_epsq, &
ZINT(1),IWX1,TWET8(1))
IWX = IWX1
ISNO = MOD(IWX,2)
IIP = MOD(IWX,4)/2
IZR = MOD(IWX,8)/4
IRAIN = IWX/8
SNOW(1) = ISNO*1.0
SLEET(1) = IIP*1.0
FREEZR(1) = IZR*1.0
RAIN(1) = IRAIN*1.0
! print *, 'inside calprecip after calwxt iwx =',iwx
! DOMINANT PRECIPITATION TYPE
!GSM IF DOMINANT PRECIP TYPE IS REQUESTED, 4 MORE ALGORITHMS
!GSM WILL BE CALLED. THE TALLIES ARE THEN SUMMED IN
!GSM CALWXT_DOMINANT
! write(0,*)' i=',i,' lm=',lm,' lp1=',lp1,' T=',T(1),q(1),pmid(1) &
! &,' pint=',pint(1),' prec=',prec(i),' pthresh=',pthresh
CALL CALWXT_RAMER(lm,lp1,T8(1),Q(1),PMID(1),RH(1),TD8(1), &
PINT(1),PREC(i),PTHRESH,IWX2)
!
IWX = NINT(IWX2)
ISNO = MOD(IWX,2)
IIP = MOD(IWX,4)/2
IZR = MOD(IWX,8)/4
IRAIN = IWX/8
SNOW(2) = ISNO*1.0
SLEET(2) = IIP*1.0
FREEZR(2) = IZR*1.0
RAIN(2) = IRAIN*1.0
! print *, 'inside calprecip after ramer iwx=',iwx
! BOURGOUIN ALGORITHM
CALL CALWXT_BOURG(LM,LP1,randomno(i,1),con_g,PTHRESH, &
& T8(1),Q(1),PMID(1),PINT(1),PREC(i),ZINT(1),IWX3)
!
IWX = NINT(IWX3)
ISNO = MOD(IWX,2)
IIP = MOD(IWX,4)/2
IZR = MOD(IWX,8)/4
IRAIN = IWX/8
SNOW(3) = ISNO*1.0
SLEET(3) = IIP*1.0
FREEZR(3) = IZR*1.0
RAIN(3) = IRAIN*1.0
! print *, 'inside calprecip after bourg iwx=',iwx
! REVISED NCEP ALGORITHM
CALL CALWXT_REVISED(LM,LP1,T8(1),Q(1),PMID(1),PINT(1),PREC(i),PTHRESH, &
con_fvirt,con_rog,con_epsq,ZINT(1),TWET8(1),IWX4)
!
IWX = IWX4
ISNO = MOD(IWX,2)
IIP = MOD(IWX,4)/2
IZR = MOD(IWX,8)/4
IRAIN = IWX/8
SNOW(4) = ISNO*1.0
SLEET(4) = IIP*1.0
FREEZR(4) = IZR*1.0
RAIN(4) = IRAIN*1.0
! print *, 'inside calprecip after revised iwx=',iwx
! EXPLICIT ALGORITHM (UNDER 18 NOT ADMITTED WITHOUT PARENT
! OR GUARDIAN)
IF(n3dfercld == 3) then ! Ferrier's scheme
CALL CALWXT_EXPLICIT(LM,PTHRESH, &
TSKIN(i),PREC(i),SR(i),F_RimeF(1),IWX5)
else
IWX5 = 0
endif
!
IWX = IWX5
ISNO = MOD(IWX,2)
IIP = MOD(IWX,4)/2
IZR = MOD(IWX,8)/4
IRAIN = IWX/8
SNOW(5) = ISNO*1.0
SLEET(5) = IIP*1.0
FREEZR(5) = IZR*1.0
RAIN(5) = IRAIN*1.0
!
CALL CALWXT_DOMINANT(NALG,PREC(i),PTHRESH,RAIN(1),FREEZR(1),SLEET(1), &
SNOW(1),DOMR(i),DOMZR(i),DOMIP(i),DOMS(i))
! if (DOMS(i).eq.1.) then
! print *, 'Found SNOW at xlat/xlon',xlat,xlon
! elseif (DOMR(i).eq.1.) then
! print *, 'Found RAIN at xlat/xlon',xlat,xlon
! elseif(DOMZR(i).eq.1.) then
! print *, 'Found FREEZING RAIN at xlat/xlon',xlat,xlon
! elseif(DOMIP(i).eq.1.) then
! print *, 'Found ICE at xlat/xlon',xlat,xlon
! endif
! print *, 'In calpre DOMS,DOMR,DOMZR,DOMIP =', int(DOMS),int(DOMR),int(DOMZR),int(DOMIP)
enddo ! end loop for i
DEALLOCATE (TWET8,RH,TD8)
RETURN
END
!
!&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
!
SUBROUTINE CALWXT(lm,lp1,T,Q,PMID,PINT,PREC, &
PTHRESH,D608,ROG,EPSQ, &
ZINT,IWX,TWET)
!
! FILE: CALWXT.f
! WRITTEN: 11 NOVEMBER 1993, MICHAEL BALDWIN
! REVISIONS:
! 30 SEPT 1994-SETUP NEW DECISION TREE (M BALDWIN)
! 12 JUNE 1998-CONVERSION TO 2-D (T BLACK)
! 01-10-25 H CHUANG - MODIFIED TO PROCESS HYBRID MODEL OUTPUT
! 02-01-15 MIKE BALDWIN - WRF VERSION
!
!
! ROUTINE TO COMPUTE PRECIPITATION TYPE USING A DECISION TREE
! APPROACH THAT USES VARIABLES SUCH AS INTEGRATED WET BULB TEMP
! BELOW FREEZING AND LOWEST LAYER TEMPERATURE
!
! SEE BALDWIN AND CONTORNO PREPRINT FROM 13TH WEATHER ANALYSIS
! AND FORECASTING CONFERENCE FOR MORE DETAILS
! (OR BALDWIN ET AL, 10TH NWP CONFERENCE PREPRINT)
!
! use params_mod
! use ctlblk_mod
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
implicit none
!
! INPUT:
! T,Q,PMID,HTM,LMH,PREC,ZINT
!
integer,intent(in):: lm,lp1
! real,intent(in):: pthresh
real,dimension(LM),intent(in) :: Q,PMID
real*8,dimension(LM),intent(in) :: T,TWET
real,dimension(LP1),intent(in) :: ZINT,PINT
integer,intent(out) :: IWX
real,intent(in) :: PREC,PTHRESH,D608,ROG,EPSQ
! real,intent(out) :: ZWET
! OUTPUT:
! IWX - INSTANTANEOUS WEATHER TYPE.
! ACTS LIKE A 4 BIT BINARY
! 1111 = RAIN/FREEZING RAIN/ICE PELLETS/SNOW
! WHERE THE ONE'S DIGIT IS FOR SNOW
! THE TWO'S DIGIT IS FOR ICE PELLETS
! THE FOUR'S DIGIT IS FOR FREEZING RAIN
! AND THE EIGHT'S DIGIT IS FOR RAIN
!
! INTERNAL:
!
! REAL, ALLOCATABLE :: TWET(:)
real, parameter :: D00=0.0
integer KARR,LICEE
real TCOLD,TWARM
! SUBROUTINES CALLED:
! WETBULB
!
!
! INITIALIZE WEATHER TYPE ARRAY TO ZERO (IE, OFF).
! WE DO THIS SINCE WE WANT IWX TO REPRESENT THE
! INSTANTANEOUS WEATHER TYPE ON RETURN.
!
!
! ALLOCATE LOCAL STORAGE
!
integer L,LICE,IWRML,IFRZL
real PSFCK,TDCHK,A,TDKL,TDPRE,TLMHK,TWRMK,AREAS8,AREAP4, &
SURFW,SURFC,DZKL,AREA1,PINTK1,PINTK2,PM150,PKL,TKL,QKL
! ALLOCATE ( TWET(LM) )
!
!!$omp parallel do
IWX = 0
! ZWET=SPVAL
!
!!$omp parallel do
!!$omp& private(a,pkl,psfck,qkl,tdchk,tdkl,tdpre,tkl)
!
! SKIP THIS POINT IF NO PRECIP THIS TIME STEP
!
IF (PREC.LE.PTHRESH) GOTO 800
!
! FIND COLDEST AND WARMEST TEMPS IN SATURATED LAYER BETWEEN
! 70 MB ABOVE GROUND AND 500 MB
! ALSO FIND HIGHEST SATURATED LAYER IN THAT RANGE
!
!meb
PSFCK=PINT(LM+1)
!meb
TDCHK=2.0
760 TCOLD=T(LM)
TWARM=T(LM)
LICEE=LM
!
DO 775 L=1,LM
QKL=Q(L)
QKL=MAX(EPSQ,QKL)
TKL=T(L)
PKL=PMID(L)
!
! SKIP PAST THIS IF THE LAYER IS NOT BETWEEN 70 MB ABOVE GROUND
! AND 500 MB
!
IF (PKL.LT.50000.0.OR.PKL.GT.PSFCK-7000.0) GOTO 775
A=LOG(QKL*PKL/(6.1078*(0.378*QKL+0.622)))
TDKL=(237.3*A)/(17.269-A)+273.15
TDPRE=TKL-TDKL
IF (TDPRE.LT.TDCHK.AND.TKL.LT.TCOLD) TCOLD=TKL
IF (TDPRE.LT.TDCHK.AND.TKL.GT.TWARM) TWARM=TKL
IF (TDPRE.LT.TDCHK.AND.L.LT.LICEE) LICEE=L
775 CONTINUE
!
! IF NO SAT LAYER AT DEW POINT DEP=TDCHK, INCREASE TDCHK
! AND START AGAIN (BUT DON'T MAKE TDCHK > 6)
!
IF (TCOLD==T(LM).AND.TDCHK<6.0) THEN
TDCHK=TDCHK+2.0
GOTO 760
ENDIF
800 CONTINUE
!
! LOWEST LAYER T
!
KARR=0
IF (PREC.LE.PTHRESH) GOTO 850
TLMHK=T(LM)
!
! DECISION TREE TIME
!
IF (TCOLD>269.15) THEN
IF (TLMHK.LE.273.15) THEN
! TURN ON THE FLAG FOR
! FREEZING RAIN = 4
! IF ITS NOT ON ALREADY
! IZR=MOD(IWX(I,J),8)/4
! IF (IZR.LT.1) IWX(I,J)=IWX(I,J)+4
IWX=IWX+4
GOTO 850
ELSE
! TURN ON THE FLAG FOR
! RAIN = 8
! IF ITS NOT ON ALREADY
! IRAIN=IWX(I,J)/8
! IF (IRAIN.LT.1) IWX(I,J)=IWX(I,J)+8
IWX=IWX+8
GOTO 850
ENDIF
ENDIF
KARR=1
850 CONTINUE
!
! COMPUTE WET BULB ONLY AT POINTS THAT NEED IT
!
! CALL WETBULB(lm,T,Q,PMID,KARR,TWET)
! CALL WETFRZLVL(TWET,ZWET)
!
!!$omp parallel do
!!$omp& private(area1,areap4,areas8,dzkl,ifrzl,iwrml,lice,
!!$omp& lmhk,pintk1,pintk2,pm150,psfck,surfc,surfw,
!!$omp& tlmhk,twrmk)
IF(KARR.GT.0)THEN
LICE=LICEE
!meb
PSFCK=PINT(LM+1)
!meb
TLMHK=T(LM)
TWRMK=TWARM
!
! TWET AREA VARIABLES
! CALCULATE ONLY WHAT IS NEEDED
! FROM GROUND TO 150 MB ABOVE SURFACE
! FROM GROUND TO TCOLD LAYER
! AND FROM GROUND TO 1ST LAYER WHERE WET BULB T < 0.0
!
! PINTK1 IS THE PRESSURE AT THE BOTTOM OF THE LAYER
! PINTK2 IS THE PRESSURE AT THE TOP OF THE LAYER
!
! AREAP4 IS THE AREA OF TWET ABOVE -4 C BELOW HIGHEST SAT LYR
!
AREAS8=D00
AREAP4=D00
SURFW =D00
SURFC =D00
!
DO 1945 L=LM,LICE,-1
DZKL=ZINT(L)-ZINT(L+1)
AREA1=(TWET(L)-269.15)*DZKL
IF (TWET(L).GE.269.15) AREAP4=AREAP4+AREA1
1945 CONTINUE
!
IF (AREAP4.LT.3000.0) THEN
! TURN ON THE FLAG FOR
! SNOW = 1
! IF ITS NOT ON ALREADY
! ISNO=MOD(IWX(I,J),2)
! IF (ISNO.LT.1) IWX(I,J)=IWX(I,J)+1
IWX=IWX+1
GO TO 1900
ENDIF
!
! AREAS8 IS THE NET AREA OF TWET W.R.T. FREEZING IN LOWEST 150MB
!
PINTK1=PSFCK
PM150=PSFCK-15000.
!
DO 1955 L=LM,1,-1
PINTK2=PINT(L)
IF(PINTK1.LT.PM150)GO TO 1950
DZKL=ZINT(L)-ZINT(L+1)
!
! SUM PARTIAL LAYER IF IN 150 MB AGL LAYER
!
IF(PINTK2.LT.PM150) &
DZKL=T(L)*(Q(L)*D608+1.0)*ROG*LOG(PINTK1/PM150)
AREA1=(TWET(L)-273.15)*DZKL
AREAS8=AREAS8+AREA1
1950 PINTK1=PINTK2
1955 CONTINUE
!
! SURFW IS THE AREA OF TWET ABOVE FREEZING BETWEEN THE GROUND
! AND THE FIRST LAYER ABOVE GROUND BELOW FREEZING
! SURFC IS THE AREA OF TWET BELOW FREEZING BETWEEN THE GROUND
! AND THE WARMEST SAT LAYER
!
IFRZL=0
IWRML=0
!
DO 2050 L=LM,1,-1
IF (IFRZL.EQ.0.AND.T(L).LT.273.15) IFRZL=1
IF (IWRML.EQ.0.AND.T(L).GE.TWRMK) IWRML=1
!
IF (IWRML.EQ.0.OR.IFRZL.EQ.0) THEN
! if(pmid(l) < 50000.)print*,'need twet above 500mb'
DZKL=ZINT(L)-ZINT(L+1)
AREA1=(TWET(L)-273.15)*DZKL
IF(IFRZL.EQ.0.AND.TWET(L).GE.273.15)SURFW=SURFW+AREA1
IF(IWRML.EQ.0.AND.TWET(L).LE.273.15)SURFC=SURFC+AREA1
ENDIF
2050 CONTINUE
IF(SURFC.LT.-3000.0.OR. &
(AREAS8.LT.-3000.0.AND.SURFW.LT.50.0)) THEN
! TURN ON THE FLAG FOR
! ICE PELLETS = 2
! IF ITS NOT ON ALREADY
! IIP=MOD(IWX(I,J),4)/2
! IF (IIP.LT.1) IWX(I,J)=IWX(I,J)+2
IWX=IWX+2
GOTO 1900
ENDIF
!
IF(TLMHK.LT.273.15) THEN
! TURN ON THE FLAG FOR
! FREEZING RAIN = 4
! IF ITS NOT ON ALREADY
! IZR=MOD(IWX(K),8)/4
! IF (IZR.LT.1) IWX(K)=IWX(K)+4
IWX=IWX+4
ELSE
! TURN ON THE FLAG FOR
! RAIN = 8
! IF ITS NOT ON ALREADY
! IRAIN=IWX(K)/8
! IF (IRAIN.LT.1) IWX(K)=IWX(K)+8
IWX=IWX+8
ENDIF
ENDIF
1900 CONTINUE
!---------------------------------------------------------
! DEALLOCATE (TWET)
RETURN
END
!
!
!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
!
! DoPhase is a subroutine written and provided by Jim Ramer at NOAA/FSL
!
! Ramer, J, 1993: An empirical technique for diagnosing precipitation
! type from model output. Preprints, 5th Conf. on Aviation
! Weather Systems, Vienna, VA, Amer. Meteor. Soc., 227-230.
!
! CODE ADAPTED FOR WRF POST 24 AUGUST 2005 G MANIKIN
!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
!
SUBROUTINE CALWXT_RAMER(lm,lp1, &
T,Q,PMID,RH,TD,PINT,PREC,PTHRESH,PTYP)
! SUBROUTINE dophase(pq, ! input pressure sounding mb
! + t, ! input temperature sounding K
! + pmid, ! input pressure
! + pint, ! input interface pressure
! + q, ! input spec humidityfraction
! + lmh, ! input number of levels in sounding
! + prec, ! input amount of precipitation
! + ptyp) ! output(2) phase 2=Rain, 3=Frzg, 4=Solid,
! 6=IP JC 9/16/99
! use params_mod
! use CTLBLK_mod
!- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
implicit none
!
real,PARAMETER :: twice=266.55,rhprcp=0.80,deltag=1.02, &
& emelt=0.045,rlim=0.04,slim=0.85
real,PARAMETER :: twmelt=273.15,tz=273.15,efac=1.0 ! specify in params now
!
INTEGER*4 i, k1, lll, k2, toodry
!
REAL xxx ,mye, icefrac
integer,intent(in) :: lm,lp1
real,DIMENSION(LM),intent(in) :: Q,PMID,RH
real*8,DIMENSION(LM),intent(in) :: T,TD
real,DIMENSION(LP1),intent(in) :: PINT
real,intent(in) :: PREC,PTHRESH
real,intent(out) :: PTYP
!
real,DIMENSION(LM) :: TQ,PQ,RHQ
real,DIMENSION(LM) :: TWQ
!
integer J,L,LEV,ii
real RHMAX,TWMAX,PTOP,dpdrh,twtop,rhtop,wgt1,wgt2, &
rhavg,dtavg,dpk,ptw,pbot
! real b,qtmp,rate,qc
real,external :: xmytw
!
! Initialize.
icefrac = -9999.
!
PTYP = 0
DO L = 1,LM
LEV = LP1 - L
! P(L)=PMID(L)
! QC=PQ0/P(L) * EXP(A2*(T(L)-A3)/(T(L)-A4))
!GSM forcing Q (QTMP) to be positive to deal with negative Q values
! causing problems later in this subroutine
! QTMP=MAX(H1M12,Q(L))
! RHQTMP(LEV)=QTMP/QC
RHQ(LEV) = RH(L)
PQ(LEV) = PMID(L) * 0.01
TQ(LEV) = T(L)
enddo
!
! SKIP THIS POINT IF NO PRECIP THIS TIME STEP
!
IF (PREC <= PTHRESH) return
!
!CC RATE RESTRICTION REMOVED BY JOHN CORTINAS 3/16/99
!
! Construct wet-bulb sounding, locate generating level.
twmax = -999.0
rhmax = 0.0
k1 = 0 ! top of precip generating layer
k2 = 0 ! layer of maximum rh
!
IF (rhq(1) < rhprcp) THEN
toodry = 1
ELSE
toodry = 0
END IF
!
pbot = pq(1)
! NQ=LM
DO L = 1, lm
! xxx = tdofesat(esat(tq(L))*rhq(L))
xxx = td(l) !HC: use TD consistent with GFS ice physics
if (xxx < -500.) return
twq(L) = xmytw(tq(L),xxx,pq(L))
twmax = max(twq(L),twmax)
IF (pq(L) >= 400.0) THEN
IF (rhq(L) > rhmax) THEN
rhmax = rhq(L)
k2 = L
END IF
!
IF (L /= 1) THEN
IF (rhq(L) >= rhprcp .or. toodry == 0) THEN
IF (toodry /= 0) THEN
dpdrh = log(pq(L)/pq(L-1)) / (rhq(L)-RHQ(L-1))
pbot = exp(log(pq(L))+(rhprcp-rhq(L))*dpdrh)
!
ptw = pq(L)
toodry = 0
ELSE IF (rhq(L)>= rhprcp) THEN
ptw = pq(L)
ELSE
toodry = 1
dpdrh = log(pq(L)/pq(L-1)) / (rhq(L)-rhq(L-1))
ptw = exp(log(pq(L))+(rhprcp-rhq(L))*dpdrh)
!lin dpdrh = (Pq(i)-Pq(i-1))/(Rhq(i)-Rhq(i-1))
!lin ptw = Pq(i)+(rhprcp-Rhq(i))*dpdrh
!
END IF
!
IF (pbot/ptw >= deltag) THEN
!lin If (pbot-ptw.lt.deltag) Goto 2003
k1 = L
ptop = ptw
END IF
END IF
END IF
END IF
enddo
!
! Gross checks for liquid and solid precip which dont require generating level.
!
IF (twq(1) >= 273.15+2.0) THEN
ptyp = 8 ! liquid
icefrac = 0.0
return
END IF
!
IF (twmax <= twice) THEN
icefrac = 1.0
ptyp = 1 ! solid
return
END IF
!
! Check to see if we had no success with locating a generating level.
!
IF (k1 == 0) return
!
IF (ptop == pq(k1)) THEN
twtop = twq(k1)
rhtop = rhq(k1)
k2 = k1
k1 = k1 - 1
ELSE
k2 = k1
k1 = k1 - 1
wgt1 = log(ptop/pq(k2)) / log(pq(k1)/pq(k2))
wgt2 = 1.0 - wgt1
twtop = twq(k1) * wgt1 + twq(k2) * wgt2
rhtop = rhq(k1) * wgt1 + rhq(k2) * wgt2
END IF
!
! Calculate temp and wet-bulb ranges below precip generating level.
DO L = 1, k1
twmax = max(twq(l),twmax)
enddo
!
! Gross check for solid precip, initialize ice fraction.
! IF (i.eq.1.and.j.eq.1) WRITE (*,*) 'twmax=',twmax,twice,'twtop=',twtop
IF (twtop <= twice) THEN
icefrac = 1.0
IF (twmax <= twmelt) THEN ! gross check for solid precip.
ptyp = 1 ! solid precip
return
END IF
lll = 0
ELSE
icefrac = 0.0
lll = 1
END IF
!
! Loop downward through sounding from highest precip generating level.
30 CONTINUE
!
IF (icefrac >= 1.0) THEN ! starting as all ice
IF (twq(k1) < twmelt) GO TO 40 ! cannot commence melting
IF (twq(k1) == twtop) GO TO 40 ! both equal twmelt, nothing h
wgt1 = (twmelt-twq(k1)) / (twtop-twq(k1))
rhavg = rhq(k1) + wgt1 * (rhtop-rhq(k1)) * 0.5
dtavg = (twmelt-twq(k1)) * 0.5
dpk = wgt1 * log(pq(k1)/ptop) !lin dpk=wgt1*(Pq(k1)-Ptop)
! mye=emelt*(1.0-(1.0-Rhavg)*efac)
mye = emelt * rhavg ** efac
icefrac = icefrac + dpk * dtavg / mye
ELSE IF (icefrac <= 0.0) THEN ! starting as all liquid
lll = 1
! Goto 1020
IF (twq(k1) > twice) GO TO 40 ! cannot commence freezing
IF (twq(k1) == twtop) THEN
wgt1 = 0.5
ELSE
wgt1 = (twice-twq(k1)) / (twtop-twq(k1))
END IF
rhavg = rhq(k1) + wgt1 * (rhtop-rhq(k1)) * 0.5
dtavg = twmelt - (twq(k1)+twice) * 0.5
dpk = wgt1 * log(pq(k1)/ptop) !lin dpk=wgt1*(Pq(k1)-Ptop)
! mye = emelt*(1.0-(1.0-Rhavg)*efac)
mye = emelt * rhavg ** efac
icefrac = icefrac + dpk * dtavg / mye
ELSE IF ((twq(k1) <= twmelt).and.(twq(k1) < twmelt)) THEN ! mix
rhavg = (rhq(k1)+rhtop) * 0.5
dtavg = twmelt - (twq(k1)+twtop) * 0.5
dpk = log(pq(k1)/ptop) !lin dpk=Pq(k1)-Ptop
! mye = emelt*(1.0-(1.0-Rhavg)*efac)
mye = emelt * rhavg ** efac
icefrac = icefrac + dpk * dtavg / mye
ELSE ! mix where Tw curve crosses twmelt in layer
IF (twq(k1) == twtop) GO TO 40 ! both equal twmelt, nothing h
wgt1 = (twmelt-twq(k1)) / (twtop-twq(k1))
wgt2 = 1.0 - wgt1
rhavg = rhtop + wgt2 * (rhq(k1)-rhtop) * 0.5
dtavg = (twmelt-twtop) * 0.5
dpk = wgt2 * log(pq(k1)/ptop) !lin dpk=wgt2*(Pq(k1)-Ptop)
! mye = emelt*(1.0-(1.0-Rhavg)*efac)
mye = emelt * rhavg ** efac
icefrac = icefrac + dpk * dtavg / mye
icefrac = min(1.0,max(icefrac,0.0))
IF (icefrac <= 0.0) THEN
! Goto 1020
IF (twq(k1) > twice) GO TO 40 ! cannot commence freezin
wgt1 = (twice-twq(k1)) / (twtop-twq(k1))
dtavg = twmelt - (twq(k1)+twice) * 0.5
ELSE
dtavg = (twmelt-twq(k1)) * 0.5
END IF
rhavg = rhq(k1) + wgt1 * (rhtop-rhq(k1)) * 0.5
dpk = wgt1 * log(pq(k1)/ptop) !lin dpk=wgt1*(Pq(k1)-Ptop)
! mye = emelt*(1.0-(1.0-Rhavg)*efac)
mye = emelt * rhavg ** efac
icefrac = icefrac + dpk * dtavg / mye
END IF
!
icefrac = min(1.0,max(icefrac,0.0))
! IF (i.eq.1.and.j.eq.1) WRITE (*,*) 'NEW ICEFRAC:', icefrac, icefrac
!
! Get next level down if there is one, loop back.
40 continue
IF (k1 > 1) THEN
twtop = twq(k1)
ptop = pq(k1)
rhtop = rhq(k1)
k1 = k1 - 1
GO TO 30
END IF
!
! Determine precip type based on snow fraction and surface wet-bulb.
!
IF (icefrac >= slim) THEN
IF (lll /= 0) THEN
ptyp = 2 ! Ice Pellets JC 9/16/99
ELSE
ptyp = 1 ! Snow
END IF
ELSE IF (icefrac <= rlim) THEN
IF (twq(1).lt.tz) THEN
ptyp = 4 ! Freezing Precip
ELSE
ptyp = 8 ! Rain
END IF
ELSE
IF (twq(1) < tz) THEN
!GSM not sure what to do when 'mix' is predicted; In previous
!GSM versions of this code for which I had to have an answer,
!GSM I chose sleet. Here, though, since we have 4 other
!GSM algorithms to provide an answer, I will not declare a
!GSM type from the Ramer in this situation and allow the
!GSM other algorithms to make the call.
ptyp = 0 ! don't know
! ptyp = 5 ! Mix
ELSE
! ptyp = 5 ! Mix
ptyp = 0 ! don't know
END IF
END IF
RETURN
!
END
!
!
!--------------------------------------------------------------------------
! REAL*4 FUNCTION mytw(t,td,p)
FUNCTION xmytw(t,td,p)
!
IMPLICIT NONE
!
INTEGER*4 cflag, l
! REAL*4 f, c0, c1, c2, k, kd, kw, ew, t, td, p, ed, fp, s, &
REAL f, c0, c1, c2, k, kd, kw, ew, t, td, p, ed, fp, s, &
& de, xmytw
DATA f, c0, c1, c2 /0.0006355, 26.66082, 0.0091379024, 6106.3960/
!
!
xmytw = (t+td) / 2
IF (td.ge.t) RETURN
!
IF (t.lt.100.0) THEN
k = t + 273.15
kd = td + 273.15
IF (kd.ge.k) RETURN
cflag = 1
ELSE
k = t
kd = td
cflag = 0
END IF
!
ed = c0 - c1 * kd - c2 / kd
IF (ed.lt.-14.0.or.ed.gt.7.0) RETURN
ed = exp(ed)
ew = c0 - c1 * k - c2 / k
IF (ew.lt.-14.0.or.ew.gt.7.0) RETURN
ew = exp(ew)
fp = p * f
s = (ew-ed) / (k-kd)
kw = (k*fp+kd*s) / (fp+s)
!
DO 10 l = 1, 5
ew = c0 - c1 * kw - c2 / kw
IF (ew.lt.-14.0.or.ew.gt.7.0) RETURN
ew = exp(ew)
de = fp * (k-kw) + ed - ew
IF (abs(de/ew).lt.1E-5) GO TO 20
s = ew * (c1-c2/(kw*kw)) - fp
kw = kw - de / s
10 CONTINUE
20 CONTINUE
!
! print *, 'kw ', kw
IF (cflag.ne.0) THEN
xmytw = kw - 273.15
ELSE
xmytw = kw
END IF
!
RETURN
END
!
!
!$$$ Subprogram documentation block
!
! Subprogram: calwxt_bourg Calculate precipitation type (Bourgouin)
! Prgmmr: Baldwin Org: np22 Date: 1999-07-06
!
! Abstract: This routine computes precipitation type
! using a decision tree approach that uses the so-called
! "energy method" of Bourgouin of AES (Canada) 1992
!
! Program history log:
! 1999-07-06 M Baldwin
! 1999-09-20 M Baldwin make more consistent with bourgouin (1992)
! 2005-08-24 G Manikin added to wrf post
! 2007-06-19 M Iredell mersenne twister, best practices
! 2008-03-03 G Manikin added checks to prevent stratospheric warming
! episodes from being seen as "warm" layers
! impacting precip type
!
! Usage: call calwxt_bourg(im,jm,jsta_2l,jend_2u,jsta,jend,lm,lp1, &
! & iseed,g,pthresh, &
! & t,q,pmid,pint,lmh,prec,zint,ptype)
! Input argument list:
! im integer i dimension
! jm integer j dimension
! jsta_2l integer j dimension start point (including haloes)
! jend_2u integer j dimension end point (including haloes)
! jsta integer j dimension start point (excluding haloes)
! jend integer j dimension end point (excluding haloes)
! lm integer k dimension
! lp1 integer k dimension plus 1
! iseed integer random number seed
! g real gravity (m/s**2)
! pthresh real precipitation threshold (m)
! t real(im,jsta_2l:jend_2u,lm) mid layer temp (K)
! q real(im,jsta_2l:jend_2u,lm) specific humidity (kg/kg)
! pmid real(im,jsta_2l:jend_2u,lm) mid layer pressure (Pa)
! pint real(im,jsta_2l:jend_2u,lp1) interface pressure (Pa)
! lmh real(im,jsta_2l:jend_2u) max number of layers
! prec real(im,jsta_2l:jend_2u) precipitation (m)
! zint real(im,jsta_2l:jend_2u,lp1) interface height (m)
! Output argument list:
! ptype real(im,jm) instantaneous weather type ()
! acts like a 4 bit binary
! 1111 = rain/freezing rain/ice pellets/snow
! where the one's digit is for snow
! the two's digit is for ice pellets
! the four's digit is for freezing rain
! and the eight's digit is for rain
! in other words...
! ptype=1 snow
! ptype=2 ice pellets/mix with ice pellets
! ptype=4 freezing rain/mix with freezing rain
! ptype=8 rain
!
! Modules used:
! mersenne_twister pseudo-random number generator
!
! Subprograms called:
! random_number pseudo-random number generator
!
! Attributes:
! Language: Fortran 90
!
! Remarks: vertical order of arrays must be layer 1 = top
! and layer lmh = bottom
!
!$$$
subroutine calwxt_bourg(lm,lp1,rn,g,pthresh, &
& t,q,pmid,pint,prec,zint,ptype)
! use mersenne_twister
implicit none
!
! input:
integer,intent(in):: lm,lp1
! integer,intent(in):: iseed
real,intent(in):: g,pthresh,rn
real*8,intent(in):: t(lm)
real,intent(in):: q(lm)
real,intent(in):: pmid(lm)
real,intent(in):: pint(lp1)
real,intent(in):: prec
real,intent(in):: zint(lp1)
!
! output:
real,intent(out):: ptype
!
integer ifrzl,iwrml,l,lhiwrm
real pintk1,areane,tlmhk,areape,pintk2,surfw,area1,dzkl,psfck
!
! initialize weather type array to zero (ie, off).
! we do this since we want ptype to represent the
! instantaneous weather type on return.
!
!!$omp parallel do
ptype = 0
!
! call random_number(rn,iseed)
!
!!$omp parallel do
!!$omp& private(a,tlmhk,iwrml,psfck,lhiwrm,pintk1,pintk2,area1,
!!$omp& areape,dzkl,surfw,r1,r2)
psfck=pint(lm+1)
!
! skip this point if no precip this time step
!
if (prec.le.pthresh) return
! find the depth of the warm layer based at the surface
! this will be the cut off point between computing
! the surface based warm air and the warm air aloft
!
!
! lowest layer t
!
tlmhk = t(lm)
iwrml = lm + 1
if (tlmhk.ge.273.15) then
do l = lm, 2, -1
if (t(l).ge.273.15.and.t(l-1).lt.273.15.and. &
& iwrml.eq.lm+1) iwrml = l
end do
end if
!