|
| 1 | +from PIL import Image |
| 2 | +import torchvision.transforms as transforms |
| 3 | +import gradio as gr |
| 4 | +import torch |
| 5 | +import torch.nn as nn |
| 6 | + |
| 7 | +latent_dim = 100 |
| 8 | +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 9 | + |
| 10 | +class Generator(nn.Module): |
| 11 | + def __init__(self, latent_dim=100, img_channels=3, feature_map_size=32): |
| 12 | + super(Generator, self).__init__() |
| 13 | + self.net = nn.Sequential( |
| 14 | + nn.ConvTranspose2d(latent_dim, feature_map_size * 8, 4, 1, 0, bias=False), |
| 15 | + nn.BatchNorm2d(feature_map_size * 8), |
| 16 | + nn.ReLU(True), |
| 17 | + nn.ConvTranspose2d(feature_map_size * 8, feature_map_size * 4, 4, 2, 1, bias=False), |
| 18 | + nn.BatchNorm2d(feature_map_size * 4), |
| 19 | + nn.ReLU(True), |
| 20 | + nn.ConvTranspose2d(feature_map_size * 4, feature_map_size * 2, 4, 2, 1, bias=False), |
| 21 | + nn.BatchNorm2d(feature_map_size * 2), |
| 22 | + nn.ReLU(True), |
| 23 | + nn.ConvTranspose2d(feature_map_size * 2, feature_map_size, 4, 2, 1, bias=False), |
| 24 | + nn.BatchNorm2d(feature_map_size), |
| 25 | + nn.ReLU(True), |
| 26 | + nn.ConvTranspose2d(feature_map_size, img_channels, 4, 2, 1, bias=False), |
| 27 | + nn.Tanh() |
| 28 | + ) |
| 29 | + |
| 30 | + def forward(self, x): |
| 31 | + return self.net(x) |
| 32 | + |
| 33 | +def generate_artwork(generator, latent_dim=latent_dim, device=device, num_images=1): |
| 34 | + generator.eval() |
| 35 | + with torch.no_grad(): |
| 36 | + noise = torch.randn(num_images, latent_dim, 1, 1, device=device) |
| 37 | + fake_images = generator(noise) |
| 38 | + fake_images = fake_images * 0.5 + 0.5 |
| 39 | + return fake_images.detach().cpu() |
| 40 | + |
| 41 | +def inference_interface(latent_dim=latent_dim, device=device): |
| 42 | + # Create model and load weights |
| 43 | + generator = Generator(latent_dim=latent_dim) |
| 44 | + generator = nn.DataParallel(generator) |
| 45 | + generator.load_state_dict(torch.load("generator_final.pth", map_location=device)) |
| 46 | + |
| 47 | + if isinstance(generator, nn.DataParallel): |
| 48 | + generator = generator.module |
| 49 | + generator.to(device) |
| 50 | + |
| 51 | + def generate(num_images): |
| 52 | + fake_images = generate_artwork(generator, latent_dim=latent_dim, device=device, num_images=num_images) |
| 53 | + images = [transforms.ToPILImage()(img) for img in fake_images] |
| 54 | + upscaled_images = [img.resize((256, 256), resample=Image.LANCZOS) for img in images] |
| 55 | + return upscaled_images |
| 56 | + |
| 57 | + demo = gr.Interface(fn=generate, |
| 58 | + inputs=gr.Slider(minimum=1, maximum=9, step=1, value=1, label="Number of Images"), |
| 59 | + outputs=gr.Gallery(label="Generated Artwork", columns=3, height="auto"), |
| 60 | + title="This Artwork Doesn’t Exist", |
| 61 | + description="Generate artwork using our Wiki_ArtGAN." |
| 62 | + ) |
| 63 | + |
| 64 | + return demo |
| 65 | + |
| 66 | +# The key part: launch the Gradio interface when app.py is run |
| 67 | +if __name__ == "__main__": |
| 68 | + demo = inference_interface() |
| 69 | + demo.launch() |
0 commit comments