@@ -357,66 +357,68 @@ CUDA_VISIBLE_DEVICES="1" TL_BACKEND="paddle" python gcn_trainer.py
357
357
> Set ` CUDA_VISIBLE_DEVICES=" " ` if you want to run it in CPU.
358
358
359
359
## Supported Models
360
+ <details >
361
+ <summary >
362
+ Now, GammaGL supports over 50 models, we welcome everyone to use or contribute models.</summary >
360
363
361
364
| | TensorFlow | PyTorch | Paddle | MindSpore |
362
365
| ------------------------------------------------ | ------------------ | ------------------ | ------------------ | ------------------ |
363
366
| [ GCN [ ICLR 2017]] ( ./examples/gcn ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : |
364
367
| [ GAT [ ICLR 2018]] ( ./examples/gat ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : |
365
368
| [ GraphSAGE [ NeurIPS 2017]] ( ./examples/graphsage ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : |
366
- | [ ChebNet [ NeurIPS 2016]] ( ./examples/chebnet ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
367
- | [ GCNII [ ICLR 2017]] ( ./examples/gcnii ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
369
+ | [ ChebNet [ NeurIPS 2016]] ( ./examples/chebnet ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | : heavy_check_mark : |
370
+ | [ GCNII [ ICLR 2017]] ( ./examples/gcnii ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | : heavy_check_mark : |
368
371
| [ JKNet [ ICML 2018]] ( ./examples/jknet ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
369
- | [ DiffPool [ NeurIPS 2018]] ( ./examples/diffpool ) | | | | |
370
372
| [ SGC [ ICML 2019]] ( ./examples/sgc ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : |
371
373
| [ GIN [ ICLR 2019]] ( ./examples/gin ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
372
374
| [ APPNP [ ICLR 2019]] ( ./examples/appnp ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : |
373
375
| [ AGNN [ arxiv]] ( ./examples/agnn ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : |
374
376
| [ SIGN [ ICML 2020 Workshop]] ( ./examples/sign ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
375
377
| [ DropEdge [ ICLR 2020]] ( ./examples/dropedge ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : |
376
- | [ GPRGNN [ ICLR 2021]] ( ./examples/gprgnn ) | :heavy_check_mark : | | | |
378
+ | [ GPRGNN [ ICLR 2021]] ( ./examples/gprgnn ) | :heavy_check_mark : | : heavy_check_mark : | | : heavy_check_mark : |
377
379
| [ GNN-FiLM [ ICML 2020]] ( ./examples/film ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
378
380
| [ GraphGAN [ AAAI 2018]] ( ./examples/graphgan ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
379
- | [ HardGAT [ KDD 2019]] ( ./examples/hardgat ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
381
+ | [ HardGAT [ KDD 2019]] ( ./examples/hardgat ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | : heavy_check_mark : |
380
382
| [ MixHop [ ICML 2019]] ( ./examples/mixhop ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : |
381
383
| [ PNA [ NeurIPS 2020]] ( ./examples/pna ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
382
384
| [ FAGCN [ AAAI 2021]] ( ./examples/fagcn ) | :heavy_check_mark : | :heavy_check_mark : | | :heavy_check_mark : |
383
- | [ GATv2 [ ICLR 2021]] ( ./examples/gatv2 ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
384
- | [ GEN [ WWW 2021]] ( ./examples/gen ) | :heavy_check_mark : | :heavy_check_mark : | | |
385
- | [ GAE [ NeurIPS 2016]] ( ./examples/vgae ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
386
- | [ VGAE [ NeurIPS 2016]] ( ./examples/vgae ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
385
+ | [ GATv2 [ ICLR 2021]] ( ./examples/gatv2 ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | : heavy_check_mark : |
386
+ | [ GEN [ WWW 2021]] ( ./examples/gen ) | :heavy_check_mark : | :heavy_check_mark : | | : heavy_check_mark : |
387
+ | [ GAE [ NeurIPS 2016]] ( ./examples/vgae ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | : heavy_check_mark : |
388
+ | [ VGAE [ NeurIPS 2016]] ( ./examples/vgae ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | : heavy_check_mark : |
387
389
| [ HCHA [ PR 2021]] ( ./examples/hcha ) | | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : |
388
390
| [ Node2Vec [ KDD 2016]] ( ./examples/node2vec ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
389
391
| [ DeepWalk [ KDD 2014]] ( ./examples/deepwalk ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
390
392
| [ DGCNN [ ACM T GRAPHIC 2019]] ( ./examples/dgcnn ) | :heavy_check_mark : | :heavy_check_mark : | | |
391
- | [ GaAN [ UAI 2018]] ( ./examples/gaan ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
392
- | [ GRADE [ NeurIPS 2022]] ( ./examples/grade ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
393
+ | [ GaAN [ UAI 2018]] ( ./examples/gaan ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : |
393
394
| [ GMM [ CVPR 2017]] ( ./examples/gmm ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : |
394
395
| [ TADW [ IJCAI 2015]] ( ./examples/tadw ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : |
395
- | [ MGNNI [ NeurIPS 2022]] ( ./examples/mgnni ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
396
- | [ MAGCL [ AAAI 2023]] ( ./examples/magcl ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
397
- | [ CAGCN [ NeurIPS 2021]] ( ./examples/cagcn ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
396
+ | [ MGNNI [ NeurIPS 2022]] ( ./examples/mgnni ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : |
397
+ | [ CAGCN [ NeurIPS 2021]] ( ./examples/cagcn ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : |
398
398
| [ DR-GST [ WWW 2022]] ( ./examples/drgst ) | :heavy_check_mark : | :heavy_check_mark : | | |
399
399
| [ Specformer [ ICLR 2023]] ( ./examples/specformer ) | | :heavy_check_mark : | :heavy_check_mark : | |
400
400
| [ AM-GCN [ KDD 2020]] ( ./examples/amgcn ) | | :heavy_check_mark : | | |
401
401
402
- | Contrastive Learning | TensorFlow | PyTorch | Paddle | MindSpore |
403
- | ---------------------------------------------- | ------------------ | ------------------ | ------------------ | --------- |
404
- | [ DGI [ ICLR 2019]] ( ./examples/dgi ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
405
- | [ GRACE [ ICML 2020 Workshop]] ( ./examples/grace ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
406
- | [ MVGRL [ ICML 2020]] ( ./examples/mvgrl ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
407
- | [ InfoGraph [ ICLR 2020]] ( ./examples/infograph ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
408
- | [ MERIT [ IJCAI 2021]] ( ./examples/merit ) | :heavy_check_mark : | | :heavy_check_mark : | |
409
- | [ GNN-POT [ NeurIPS 2023]] ( ./examples/grace_pot ) | | :heavy_check_mark : | | |
410
-
411
- | Heterogeneous Graph Learning | TensorFlow | PyTorch | Paddle | MindSpore |
412
- | -------------------------------------------- | ------------------ | ------------------ | ------------------ | --------- |
413
- | [ RGCN [ ESWC 2018]] ( ./examples/rgcn ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
402
+ | Contrastive Learning | TensorFlow | PyTorch | Paddle | MindSpore |
403
+ | ------------------------------------------------ | ------------------ | ------------------ | ------------------ | ------------------ |
404
+ | [ DGI [ ICLR 2019]] ( ./examples/dgi ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
405
+ | [ GRACE [ ICML 2020 Workshop]] ( ./examples/grace ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : |
406
+ | [ GRADE [ NeurIPS 2022]] ( ./examples/grade ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
407
+ | [ MVGRL [ ICML 2020]] ( ./examples/mvgrl ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : |
408
+ | [ InfoGraph [ ICLR 2020]] ( ./examples/infograph ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
409
+ | [ MERIT [ IJCAI 2021]] ( ./examples/merit ) | :heavy_check_mark : | | :heavy_check_mark : | |
410
+ | [ GNN-POT [ NeurIPS 2023]] ( ./examples/grace_pot ) | | :heavy_check_mark : | | |
411
+ | [ MAGCL [ AAAI 2023]] ( ./examples/magcl ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : |
412
+
413
+ | Heterogeneous Graph Learning | TensorFlow | PyTorch | Paddle | MindSpore |
414
+ | -------------------------------------------- | ------------------ | ------------------ | ------------------ | ------------------ |
415
+ | [ RGCN [ ESWC 2018]] ( ./examples/rgcn ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
414
416
| [ HAN [ WWW 2019]] ( ./examples/han ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : |
415
- | [ HGT [ WWW 2020]] ( ./examples/hgt/ ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
416
- | [ SimpleHGN [ KDD 2021]] ( ./examples/simplehgn ) | :heavy_check_mark : | | | |
417
- | [ CompGCN [ ICLR 2020]] ( ./examples/compgcn ) | | :heavy_check_mark : | :heavy_check_mark : | |
417
+ | [ HGT [ WWW 2020]] ( ./examples/hgt/ ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | : heavy_check_mark : |
418
+ | [ SimpleHGN [ KDD 2021]] ( ./examples/simplehgn ) | :heavy_check_mark : | | | |
419
+ | [ CompGCN [ ICLR 2020]] ( ./examples/compgcn ) | | :heavy_check_mark : | :heavy_check_mark : | : heavy_check_mark : |
418
420
| [ HPN [ TKDE 2021]] ( ./examples/hpn ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : |
419
- | [ ieHGCN [ TKDE 2021]] ( ./examples/iehgcn ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
421
+ | [ ieHGCN [ TKDE 2021]] ( ./examples/iehgcn ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
420
422
| [ MetaPath2Vec [ KDD 2017]] ( ./examples/metapath2vec ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
421
423
| [ HERec [ TKDE 2018]] ( ./examples/herec ) | :heavy_check_mark : | :heavy_check_mark : | :heavy_check_mark : | |
422
424
| [ CoGSL [ WWW 2022]] ( ./examples/cogsl ) | | :heavy_check_mark : | :heavy_check_mark : | |
@@ -425,6 +427,7 @@ CUDA_VISIBLE_DEVICES="1" TL_BACKEND="paddle" python gcn_trainer.py
425
427
>
426
428
> The models can be run in mindspore backend. Howerver, the results of experiments are not satisfying due to training component issue,
427
429
> which will be fixed in future.
430
+ </details>
428
431
429
432
## Contributors
430
433
@@ -438,10 +441,21 @@ Contribution is always welcomed. Please feel free to open an issue or email to y
438
441
If you use GammaGL in a scientific publication, we would appreciate citations to the following paper:
439
442
440
443
```
441
- @inproceedings{Liu2023gammagl,
442
- title={GammaGL: A Multi-Backend Library for Graph Neural Networks},
443
- author={Yaoqi Liu, Cheng Yang, Tianyu Zhao, Hui Han, Siyuan Zhang, Jing Wu, Guangyu Zhou, Hai Huang, Hui Wang, Chuan Shi},
444
- booktitle={SIGIR},
445
- year={2023}
444
+ @inproceedings{10.1145/3539618.3591891,
445
+ author = {Liu, Yaoqi and Yang, Cheng and Zhao, Tianyu and Han, Hui and Zhang, Siyuan and Wu, Jing and Zhou, Guangyu and Huang, Hai and Wang, Hui and Shi, Chuan},
446
+ title = {GammaGL: A Multi-Backend Library for Graph Neural Networks},
447
+ year = {2023},
448
+ isbn = {9781450394086},
449
+ publisher = {Association for Computing Machinery},
450
+ address = {New York, NY, USA},
451
+ url = {https://doi.org/10.1145/3539618.3591891},
452
+ doi = {10.1145/3539618.3591891},
453
+ booktitle = {Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval},
454
+ pages = {2861–2870},
455
+ numpages = {10},
456
+ keywords = {graph neural networks, frameworks, deep learning},
457
+ location = {, Taipei, Taiwan, },
458
+ series = {SIGIR '23}
446
459
}
460
+
447
461
```
0 commit comments