|
| 1 | +# !/usr/bin/env python |
| 2 | +# -*- encoding: utf-8 -*- |
| 3 | +""" |
| 4 | +@File : gcn_trainer.py |
| 5 | +@Time : 2021/11/02 22:05:55 |
| 6 | +@Author : hanhui |
| 7 | +""" |
| 8 | + |
| 9 | +import os |
| 10 | +# os.environ['CUDA_VISIBLE_DEVICES'] = '0' |
| 11 | +# os.environ['TL_BACKEND'] = 'torch' |
| 12 | +os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' |
| 13 | +import numpy as np |
| 14 | +import scipy.sparse as sp |
| 15 | +import argparse |
| 16 | +import tensorlayerx as tlx |
| 17 | +from gammagl.datasets import Planetoid |
| 18 | +from gammagl.models import SFGCNModel |
| 19 | +from gammagl.utils import add_self_loops, mask_to_index |
| 20 | +from tensorlayerx.model import TrainOneStep, WithLoss |
| 21 | +from sklearn.metrics.pairwise import cosine_similarity as cos |
| 22 | + |
| 23 | +def knn(feat, num_node, k): |
| 24 | + adj = np.zeros((num_node, num_node), dtype=np.int64) |
| 25 | + dist = cos(tlx.to_device(feat, "CPU")) |
| 26 | + col = np.argpartition(dist, -(k + 1), axis=1)[:, -(k + 1):].flatten() |
| 27 | + adj[np.arange(num_node).repeat(k + 1), col] = 1 |
| 28 | + adj = sp.coo_matrix(adj) |
| 29 | + return adj |
| 30 | + |
| 31 | +def nll_loss_func(output, target): |
| 32 | + return -tlx.reduce_mean(tlx.gather(output, [range(tlx.get_tensor_shape(target)[0]), target])) |
| 33 | + |
| 34 | +def common_loss(emb1, emb2): |
| 35 | + emb1 = emb1 - tlx.reduce_mean(emb1, axis=0, keepdims=True) |
| 36 | + emb2 = emb2 - tlx.reduce_mean(emb2, axis=0, keepdims=True) |
| 37 | + emb1 = tlx.l2_normalize(emb1, axis=1) |
| 38 | + emb2 = tlx.l2_normalize(emb2, axis=1) |
| 39 | + cov1 = tlx.matmul(emb1, tlx.transpose(emb1)) |
| 40 | + cov2 = tlx.matmul(emb2, tlx.transpose(emb2)) |
| 41 | + cost = tlx.reduce_mean((cov1 - cov2)**2) |
| 42 | + return cost |
| 43 | + |
| 44 | +def loss_dependence(emb1, emb2, dim): |
| 45 | + R = tlx.eye(dim) - (1 / dim) * tlx.ones(shape=(dim, dim)) |
| 46 | + K1 = tlx.matmul(emb1, tlx.transpose(emb1)) |
| 47 | + K2 = tlx.matmul(emb2, tlx.transpose(emb2)) |
| 48 | + RK1 = tlx.matmul(R, K1) |
| 49 | + RK2 = tlx.matmul(R, K2) |
| 50 | + HSIC = tlx.matmul(RK1, RK2) |
| 51 | + HSIC = tlx.reduce_sum(tlx.diag(HSIC)) |
| 52 | + return HSIC |
| 53 | + |
| 54 | +class SemiSpvzLoss(WithLoss): |
| 55 | + def __init__(self, net): |
| 56 | + super(SemiSpvzLoss, self).__init__(backbone=net, loss_fn=None) |
| 57 | + |
| 58 | + def forward(self, data, y): |
| 59 | + logits, att, emb1, com1, com2, emb2, emb = self.backbone_network(data['x'], data['edge_index_s'], data['edge_index_f']) |
| 60 | + loss_class = nll_loss_func(tlx.gather(logits, data['train_idx']), tlx.gather(data['y'], data['train_idx'])) |
| 61 | + loss_dep = (loss_dependence(emb1, com1, data['num_nodes']) + loss_dependence(emb2, com2, data['num_nodes'])) / 2 |
| 62 | + loss_com = common_loss(com1, com2) |
| 63 | + loss = loss_class + data['beta'] * loss_dep + data['theta'] * loss_com |
| 64 | + |
| 65 | + return loss |
| 66 | + |
| 67 | + |
| 68 | +def calculate_acc(logits, y, metrics): |
| 69 | + """ |
| 70 | + Args: |
| 71 | + logits: node logits |
| 72 | + y: node labels |
| 73 | + metrics: tensorlayerx.metrics |
| 74 | +
|
| 75 | + Returns: |
| 76 | + rst |
| 77 | + """ |
| 78 | + |
| 79 | + metrics.update(logits, y) |
| 80 | + rst = metrics.result() |
| 81 | + metrics.reset() |
| 82 | + return rst |
| 83 | + |
| 84 | + |
| 85 | +def main(args): |
| 86 | + # load datasets |
| 87 | + # set_device(5) |
| 88 | + if str.lower(args.dataset) not in ['cora','pubmed','citeseer']: |
| 89 | + raise ValueError('Unknown dataset: {}'.format(args.dataset)) |
| 90 | + dataset = Planetoid(args.dataset_path, args.dataset) |
| 91 | + graph = dataset[0] |
| 92 | + edge_index_f = knn(graph.x, graph.num_nodes, args.k) |
| 93 | + edge_index_f = tlx.convert_to_tensor([edge_index_f.row, edge_index_f.col], dtype=tlx.int64) |
| 94 | + edge_index_s, _ = add_self_loops(graph.edge_index, num_nodes=graph.num_nodes, n_loops=args.self_loops) |
| 95 | + |
| 96 | + # edge_weight = tlx.convert_to_tensor(calc_gcn_norm(edge_index, graph.num_nodes)) |
| 97 | + |
| 98 | + # for mindspore, it should be passed into node indices |
| 99 | + train_idx = mask_to_index(graph.train_mask) |
| 100 | + test_idx = mask_to_index(graph.test_mask) |
| 101 | + val_idx = mask_to_index(graph.val_mask) |
| 102 | + |
| 103 | + net = SFGCNModel(num_feat=dataset.num_node_features, |
| 104 | + num_class=dataset.num_classes, |
| 105 | + num_hidden1=args.hidden1, |
| 106 | + num_hidden2=args.hidden2, |
| 107 | + dropout=args.drop_rate) |
| 108 | + |
| 109 | + optimizer = tlx.optimizers.Adam(lr=args.lr, weight_decay=args.l2_coef) |
| 110 | + metrics = tlx.metrics.Accuracy() |
| 111 | + train_weights = net.trainable_weights |
| 112 | + |
| 113 | + loss_func = SemiSpvzLoss(net) |
| 114 | + train_one_step = TrainOneStep(loss_func, optimizer, train_weights) |
| 115 | + |
| 116 | + data = { |
| 117 | + "x": graph.x, |
| 118 | + "y": graph.y, |
| 119 | + "edge_index_s": edge_index_s, |
| 120 | + "edge_index_f": edge_index_f, |
| 121 | + "train_idx": train_idx, |
| 122 | + "test_idx": test_idx, |
| 123 | + "val_idx": val_idx, |
| 124 | + "num_nodes": graph.num_nodes, |
| 125 | + "beta": args.beta, |
| 126 | + "theta": args.theta |
| 127 | + } |
| 128 | + |
| 129 | + best_val_acc = 0 |
| 130 | + for epoch in range(args.n_epoch): |
| 131 | + net.set_train() |
| 132 | + train_loss = train_one_step(data, graph.y) |
| 133 | + net.set_eval() |
| 134 | + logits, att, emb1, com1, com2, emb2, emb = net(data['x'], data['edge_index_s'], data['edge_index_f']) |
| 135 | + val_logits = tlx.gather(logits, data['val_idx']) |
| 136 | + val_y = tlx.gather(data['y'], data['val_idx']) |
| 137 | + val_acc = calculate_acc(val_logits, val_y, metrics) |
| 138 | + |
| 139 | + print("Epoch [{:0>3d}] ".format(epoch+1)\ |
| 140 | + + " train loss: {:.4f}".format(train_loss.item())\ |
| 141 | + + " val acc: {:.4f}".format(val_acc)) |
| 142 | + |
| 143 | + # save best model on evaluation set |
| 144 | + if val_acc > best_val_acc: |
| 145 | + best_val_acc = val_acc |
| 146 | + net.save_weights(args.best_model_path+net.name+".npz", format='npz_dict') |
| 147 | + |
| 148 | + net.load_weights(args.best_model_path+net.name+".npz", format='npz_dict') |
| 149 | + if tlx.BACKEND == 'torch': |
| 150 | + net.to(data['x'].device) |
| 151 | + net.set_eval() |
| 152 | + logits, att, emb1, com1, com2, emb2, emb = net(data['x'], data['edge_index_s'], data['edge_index_f']) |
| 153 | + test_logits = tlx.gather(logits, data['test_idx']) |
| 154 | + test_y = tlx.gather(data['y'], data['test_idx']) |
| 155 | + test_acc = calculate_acc(test_logits, test_y, metrics) |
| 156 | + print("Test acc: {:.4f}".format(test_acc)) |
| 157 | + |
| 158 | + |
| 159 | +if __name__ == '__main__': |
| 160 | + # parameters setting |
| 161 | + parser = argparse.ArgumentParser() |
| 162 | + parser.add_argument("--lr", type=float, default=0.01, help="learnin rate") |
| 163 | + parser.add_argument("--n_epoch", type=int, default=200, help="number of epoch") |
| 164 | + parser.add_argument("--hidden1", type=int, default=32, help="dimention of hidden layers") |
| 165 | + parser.add_argument("--hidden2", type=int, default=16, help="dimention of hidden layers") |
| 166 | + parser.add_argument("--drop_rate", type=float, default=0.5, help="drop_rate") |
| 167 | + parser.add_argument("--beta", type=float, default=0.000005, help="drop_rate") |
| 168 | + parser.add_argument("--theta", type=float, default=0.001, help="drop_rate") |
| 169 | + parser.add_argument("--l2_coef", type=float, default=5e-4, help="l2 loss coeficient") |
| 170 | + parser.add_argument('--dataset', type=str, default='cora', help='dataset') |
| 171 | + parser.add_argument("--dataset_path", type=str, default=r'', help="path to save dataset") |
| 172 | + parser.add_argument("--best_model_path", type=str, default=r'./', help="path to save best model") |
| 173 | + parser.add_argument("--self_loops", type=int, default=1, help="number of graph self-loop") |
| 174 | + parser.add_argument("--k", type=int, default=7, help="dimention of hidden layers") |
| 175 | + # parser.add_argument("--n", type=int, default=10, help="dimention of hidden layers") |
| 176 | + args = parser.parse_args() |
| 177 | + |
| 178 | + main(args) |
0 commit comments