|
| 1 | +import os |
| 2 | +# os.environ['CUDA_VISIBLE_DEVICES'] = '0' |
| 3 | +# os.environ['TL_BACKEND'] = 'torch' |
| 4 | +os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' |
| 5 | +import sys |
| 6 | +import argparse |
| 7 | +sys.path.insert(0, os.path.abspath('./')) |
| 8 | +import tensorlayerx as tlx |
| 9 | +from gammagl.datasets import Planetoid |
| 10 | +from gammagl.utils import mask_to_index |
| 11 | +from gammagl.models import GNNLFHFModel |
| 12 | +from tensorlayerx.model import TrainOneStep, WithLoss |
| 13 | + |
| 14 | + |
| 15 | +class SemiSpvzLoss(WithLoss): |
| 16 | + def __init__(self, net, loss_fn): |
| 17 | + super(SemiSpvzLoss, self).__init__(backbone=net, loss_fn=loss_fn) |
| 18 | + |
| 19 | + def forward(self, data, y): |
| 20 | + logits = self.backbone_network(data['x']) |
| 21 | + train_logits = tlx.gather(logits, data['train_idx']) |
| 22 | + train_y = tlx.gather(data['y'], data['train_idx']) |
| 23 | + loss = self._loss_fn(train_logits, train_y) |
| 24 | + |
| 25 | + l2_reg = sum((tlx.reduce_sum(param ** 2) for param in self.backbone_network.reg_params)) |
| 26 | + loss = loss + data["reg_lambda"] / 2 * l2_reg |
| 27 | + |
| 28 | + return loss |
| 29 | + |
| 30 | + |
| 31 | +def calculate_acc(logits, y, metrics): |
| 32 | + """ |
| 33 | + Args: |
| 34 | + logits: node logits |
| 35 | + y: node labels |
| 36 | + metrics: tensorlayerx.metrics |
| 37 | + Returns: |
| 38 | + rst |
| 39 | + """ |
| 40 | + |
| 41 | + metrics.update(logits, y) |
| 42 | + rst = metrics.result() |
| 43 | + metrics.reset() |
| 44 | + return rst |
| 45 | + |
| 46 | + |
| 47 | +def main(args): |
| 48 | + # load datasets |
| 49 | + if str.lower(args.dataset) not in ['cora','pubmed','citeseer']: |
| 50 | + raise ValueError('Unknown dataset: {}'.format(args.dataset)) |
| 51 | + dataset = Planetoid(args.dataset_path, args.dataset) |
| 52 | + graph = dataset[0] |
| 53 | + |
| 54 | + # for mindspore, it should be passed into node indices |
| 55 | + train_idx = mask_to_index(graph.train_mask) |
| 56 | + test_idx = mask_to_index(graph.test_mask) |
| 57 | + val_idx = mask_to_index(graph.val_mask) |
| 58 | + |
| 59 | + net = GNNLFHFModel(in_channels = graph.num_features, |
| 60 | + out_channels = dataset.num_classes, |
| 61 | + hidden_dim = args.hidden_dim, |
| 62 | + model_type = args.model_type, |
| 63 | + model_form = args.model_form, |
| 64 | + edge_index = graph.edge_index, |
| 65 | + x = graph.x, |
| 66 | + alpha = args.alpha, |
| 67 | + mu = args.mu, |
| 68 | + beta = args.beta, |
| 69 | + niter = args.niter, |
| 70 | + drop_rate = args.drop_rate, |
| 71 | + num_layers = args.num_layers, |
| 72 | + name = "GNNLFHF") |
| 73 | + |
| 74 | + optimizer = tlx.optimizers.Adam(lr=args.lr) |
| 75 | + metrics = tlx.metrics.Accuracy() |
| 76 | + train_weights = net.trainable_weights |
| 77 | + |
| 78 | + loss_func = SemiSpvzLoss(net, tlx.losses.softmax_cross_entropy_with_logits) |
| 79 | + train_one_step = TrainOneStep(loss_func, optimizer, train_weights) |
| 80 | + |
| 81 | + data = { |
| 82 | + "x": graph.x, |
| 83 | + "y": graph.y, |
| 84 | + "edge_index": graph.edge_index, |
| 85 | + "train_idx": train_idx, |
| 86 | + "test_idx": test_idx, |
| 87 | + "val_idx": val_idx, |
| 88 | + "num_nodes": graph.num_nodes, |
| 89 | + "reg_lambda": args.reg_lambda |
| 90 | + } |
| 91 | + |
| 92 | + best_val_acc = 0 |
| 93 | + for epoch in range(args.n_epoch): |
| 94 | + net.set_train() |
| 95 | + train_loss = train_one_step(data, data['y']) |
| 96 | + net.set_eval() |
| 97 | + logits = net(data['x']) |
| 98 | + val_logits = tlx.gather(logits, data['val_idx']) |
| 99 | + val_y = tlx.gather(data['y'], data['val_idx']) |
| 100 | + val_acc = calculate_acc(val_logits, val_y, metrics) |
| 101 | + |
| 102 | + print("Epoch [{:0>3d}] ".format(epoch+1)\ |
| 103 | + + " train loss: {:.4f}".format(train_loss.item())\ |
| 104 | + + " val acc: {:.4f}".format(val_acc)) |
| 105 | + |
| 106 | + # save best model on evaluation set |
| 107 | + if val_acc > best_val_acc: |
| 108 | + best_val_acc = val_acc |
| 109 | + net.save_weights(args.best_model_path+net.name+".npz", format='npz_dict') |
| 110 | + |
| 111 | + net.load_weights(args.best_model_path+net.name+".npz", format='npz_dict') |
| 112 | + net.set_eval() |
| 113 | + logits = net(data['x']) |
| 114 | + test_logits = tlx.gather(logits, data['test_idx']) |
| 115 | + test_y = tlx.gather(data['y'], data['test_idx']) |
| 116 | + test_acc = calculate_acc(test_logits, test_y, metrics) |
| 117 | + print("Test acc: {:.4f}".format(test_acc)) |
| 118 | + |
| 119 | + |
| 120 | +if __name__ == '__main__': |
| 121 | + # parameters setting |
| 122 | + parser = argparse.ArgumentParser() |
| 123 | + parser.add_argument("--lr", type=float, default=0.01, help="learnin rate") |
| 124 | + parser.add_argument("--n_epoch", type=int, default=200, help="number of epoch") |
| 125 | + parser.add_argument("--hidden_dim", type=int, default=64, help="dimention of hidden layers") |
| 126 | + parser.add_argument("--drop_rate", type=float, default=0.8, help="drop_rate") |
| 127 | + parser.add_argument("--num_layers", type=int, default=2, help="number of layers") |
| 128 | + parser.add_argument("--reg_lambda", type=float, default=5e-3, help="reg_lambda") |
| 129 | + parser.add_argument('--dataset', type=str, default='cora', help='dataset') |
| 130 | + parser.add_argument("--model_type", type=str, default=r'GNN-LF', help="GNN-LF or GNN-HF") |
| 131 | + parser.add_argument("--model_form", type=str, default=r'closed', help="closed or iterative") |
| 132 | + parser.add_argument("--dataset_path", type=str, default=r'./', help="path to save dataset") |
| 133 | + parser.add_argument("--best_model_path", type=str, default=r'./', help="path to save best model") |
| 134 | + parser.add_argument("--alpha", type=float, default=0.3, help="the value of alpha") |
| 135 | + parser.add_argument("--mu", type=float, default=0.1, help="the value of mu") |
| 136 | + parser.add_argument("--beta", type=float, default=0.1, help="the value of beta") |
| 137 | + parser.add_argument("--niter", type=int, default=20, help="the value of niter") |
| 138 | + parser.add_argument("--gpu", type=int, default=0) |
| 139 | + |
| 140 | + args = parser.parse_args() |
| 141 | + if args.gpu >= 0: |
| 142 | + tlx.set_device("GPU", args.gpu) |
| 143 | + else: |
| 144 | + tlx.set_device("CPU") |
| 145 | + |
| 146 | + main(args) |
0 commit comments