1
1
# Relational Graph Convolutional Network
2
- Paper: Modeling Relational Data with Graph Convolutional Networks
3
- Author's code for entity classification: [ https://github.com/tkipf/relational-gcn ] ( https://github.com/tkipf/relational-gcn )
4
- Author's code for link prediction: [ https://github.com/MichSchli/RelationPrediction ] ( https://github.com/MichSchli/RelationPrediction )
2
+ - Paper: Modeling Relational Data with Graph Convolutional Networks
3
+
4
+ - Author's code for entity classification: [ https://github.com/tkipf/relational-gcn ] ( https://github.com/tkipf/relational-gcn )
5
+ - Author's code for link prediction: [ https://github.com/MichSchli/RelationPrediction ] ( https://github.com/MichSchli/RelationPrediction )
5
6
6
7
# Dataset Statics
7
8
| Dataset | #Nodes | #Edges | #Relations | #Labeled |
8
- | --------- | ----------- | ------------ | ------------ | ---------- |
9
+ | ------- | --------- | ---------- | ---------- | -------- |
9
10
| AIFB | 8,285 | 58,086 | 90 | 176 |
10
11
| MUTAG | 23,644 | 148,454 | 46 | 340 |
11
12
| BGS | 333,845 | 1,832,398 | 206 | 146 |
@@ -15,14 +16,22 @@ Results
15
16
-------
16
17
17
18
``` bash
19
+ TL_BACKEND=" pytorch" python rgcn_trainer.py --dataset aifb --l2 5e-5
20
+ TL_BACKEND=" pytorch" python rgcn_trainer.py --dataset mutag --l2_coef 5e-2
21
+ TL_BACKEND=" pytorch" python rgcn_trainer.py --dataset bgs --lr 0.0001 --l2_coef 5e-2
22
+
23
+ TL_BACKEND=" tensorflow" python rgcn_trainer.py --dataset aifb
24
+ TL_BACKEND=" tensorflow" python rgcn_trainer.py --dataset mutag --l2_coef 5e-2
25
+ TL_BACKEND=" tensorflow" python rgcn_trainer.py --dataset bgs --l2_coef 5e-2
26
+
18
27
TL_BACKEND=" paddle" python rgcn_trainer.py --dataset aifb
19
- TL_BACKEND=" paddle" python rgcn_trainer.py --dataset mutag --lr 0.001 -- l2_coef 5e-2
20
- TL_BACKEND=" paddle" python rgcn_trainer.py --dataset bgs --lr 0.001 -- l2_coef 1e -2
28
+ TL_BACKEND=" paddle" python rgcn_trainer.py --dataset mutag --l2_coef 5e-2
29
+ TL_BACKEND=" paddle" python rgcn_trainer.py --dataset bgs --l2_coef 5e -2
21
30
```
22
31
23
- | Dataset | Paper | Our(th) | Our(tf) |
24
- | ---------| -------| ------------| -----------|
25
- | AIFB | 95.83 | 93.8(±2.0 ) | 94.44(±0 ) |
26
- | MUTAG | 73.23 | 82.3(±1.8) | |
27
- | BGS | 83.10 | 74.1(±1.7) | |
28
- | AM | 89.29 | | |
32
+ | Dataset | Paper | Our(th) | Our(tf) | Our(pd) |
33
+ | ---------| -------| -------------- | -------------- | -- -----------|
34
+ | AIFB | 95.83 | 96.11(±1.52 ) | 94.17(±2.05) | 95.56(±2.3 ) |
35
+ | MUTAG | 73.23 | 85.0(±0.66) | 85.29(±1.20) | 85.00(±1.9) |
36
+ | BGS | 83.10 | 74.1(±1.7) | 73.79(±1.9) | 73.56(±3.8) |
37
+ | AM | 89.29 | | | |
0 commit comments