-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathplanetoid.py
164 lines (143 loc) · 5.98 KB
/
planetoid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import numpy as np
import tensorlayerx as tlx
import os.path as osp
from typing import Callable, List, Optional
from gammagl.data import download_url
from gammagl.data import InMemoryDataset
from gammagl.io.planetiod import read_planetoid_data
try:
import cPickle as pickle
except ImportError:
import pickle
class Planetoid(InMemoryDataset):
r"""
The citation network datasets "Cora", "CiteSeer" and "PubMed" from the
`"Revisiting Semi-Supervised Learning with Graph Embeddings"
<https://arxiv.org/abs/1603.08861>`_ paper.
Nodes represent documents and edges represent citation links.
Training, validation and test splits are given by binary masks.
Parameters
----------
root: str, optional
Root directory where the dataset should be saved.
name: str, optional
The name of the dataset (:obj:`"Cora"`,
:obj:`"CiteSeer"`, :obj:`"PubMed"`).
split: str, optional
The type of dataset split
(:obj:`"public"`, :obj:`"full"`, :obj:`"random"`).
If set to :obj:`"public"`, the split will be the public fixed split
from the
`"Revisiting Semi-Supervised Learning with Graph Embeddings"
<https://arxiv.org/abs/1603.08861>`_ paper.
If set to :obj:`"full"`, all nodes except those in the validation
and test sets will be used for training (as in the
`"FastGCN: Fast Learning with Graph Convolutional Networks via
Importance Sampling" <https://arxiv.org/abs/1801.10247>`_ paper).
If set to :obj:`"random"`, train, validation, and test sets will be
randomly generated, according to :obj:`num_train_per_class`,
:obj:`num_val` and :obj:`num_test`. (default: :obj:`"public"`)
num_train_per_class: int, optional
The number of training samples
per class in case of :obj:`"random"` split. (default: :obj:`20`)
num_val: int, optional
The number of validation samples in case of
:obj:`"random"` split. (default: :obj:`500`)
num_test: int, optional
The number of test samples in case of
:obj:`"random"` split. (default: :obj:`1000`)
transform: callable, optional
A function/transform that takes in an
:obj:`gammagl.data.Graph` object and returns a transformed
version. The data object will be transformed before every access.
(default: :obj:`None`)
pre_transform: callable, optional
A function/transform that takes in
an :obj:`gammagl.data.Graph` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
force_reload (bool, optional): Whether to re-process the dataset.
(default: :obj:`False`)
Tip
---
.. list-table::
:widths: 10 10 10 10 10
:header-rows: 1
* - Name
- #nodes
- #edges
- #features
- #classes
* - Cora
- 2,708
- 10,556
- 1,433
- 7
* - CiteSeer
- 3,327
- 9,104
- 3,703
- 6
* - PubMed
- 19,717
- 88,648
- 500
- 3
"""
url = 'https://github.com/kimiyoung/planetoid/raw/master/data'
def __init__(self, root: str = None, name: str = 'cora', split: str = "public",
num_train_per_class: int = 20, num_val: int = 500,
num_test: int = 1000, transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
force_reload: bool = False):
self.name = name
super().__init__(root, transform, pre_transform, force_reload = force_reload)
self.data, self.slices = self.load_data(self.processed_paths[0])
self.split = split
assert self.split in ['public', 'full', 'random']
if split == 'full':
data = self.get(0)
data.numpy()
data.train_mask.fill(True)
data.train_mask[data.val_mask | data.test_mask] = False
data.tensor()
self.data, self.slices = self.collate([data])
elif split == 'random':
data = self.get(0)
data.numpy()
data.train_mask.fill(False)
for c in range(self.num_classes):
idx = np.array((data.y == c).nonzero()).reshape((-1))
idx = idx[np.random.permutation(idx.shape[0])[:num_train_per_class]]
data.train_mask[idx] = True
remaining = np.array((~data.train_mask).nonzero()).reshape((-1))
# remaining = (~data.train_mask).nonzero(as_tuple=False).view(-1)
remaining = remaining[np.random.permutation(remaining.shape[0])]
data.val_mask.fill(False)
data.val_mask[remaining[:num_val]] = True
data.test_mask.fill(False)
data.test_mask[remaining[num_val:num_val + num_test]] = True
data.tensor()
self.data, self.slices = self.collate([data])
@property
def raw_dir(self) -> str:
return osp.join(self.root, self.name, 'raw')
@property
def processed_dir(self) -> str:
return osp.join(self.root, self.name, 'processed')
@property
def raw_file_names(self) -> List[str]:
names = ['x', 'tx', 'allx', 'y', 'ty', 'ally', 'graph', 'test.index']
return [f'ind.{self.name.lower()}.{name}' for name in names]
@property
def processed_file_names(self) -> str:
return tlx.BACKEND + '_data.pt'
def download(self):
for name in self.raw_file_names:
download_url(f'{self.url}/{name}', self.raw_dir)
def process(self):
data = read_planetoid_data(self.raw_dir, self.name)
data = data if self.pre_transform is None else self.pre_transform(data)
self.save_data(self.collate([data]), self.processed_paths[0])
def __repr__(self) -> str:
return f'{self.name}()'