-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_MAGA.py
202 lines (157 loc) · 5.85 KB
/
train_MAGA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import torch
from torch import nn
from SSGCNetwork import Network
from metric import valid, evaluate
from torch.utils.data import Dataset
import torch.nn.functional as F
import numpy as np
import argparse
import random
from loss import Loss
from dataloader import load_data
import os
import warnings
from sklearn.cluster import KMeans
from utils.utils import neraest_labels
import time
st = time.time()
torch.set_num_threads(4)
# MNIST-USPS
# BDGP
# LableMe
# Fashion
Dataname = 'Fashion'
parser = argparse.ArgumentParser(description='train')
parser.add_argument('--dataset', default=Dataname)
parser.add_argument('--batch_size', default=256, type=int)
parser.add_argument("--temperature_f", default=0.5)
parser.add_argument("--learning_rate", default=0.0001)
parser.add_argument("--weight_decay", default=0.)
parser.add_argument('--neighbor_num', default=5, type=int)
parser.add_argument('--feature_dim', default = 512, type=int)
parser.add_argument('--gcn_dim', default = 128, type=int)
parser.add_argument('--tau', default= 0.1 , type=float)
parser.add_argument('--lambda1', default = 1.0 , type=float)
parser.add_argument('--lambda2', default = 1.0 , type=float)
parser.add_argument('--eta', default = 1.0, type=float)
parser.add_argument('--neg_size', default = 128, type=int)
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
warnings.filterwarnings('ignore')
if args.dataset == "Fashion":
args.mse_epochs = 200
args.con_epochs = 200
seed = 10
if args.dataset == 'LabelMe':
args.mse_epochs = 200
args.con_epochs = 200
seed = 10
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
setup_seed(seed)
dataset, dims, view, data_size, class_num = load_data(args.dataset)
data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=True,
drop_last=True,
)
# 添加噪声函数
def add_noise(input, noise_factor=0.1):
noise = torch.randn_like(input) * noise_factor
return input + noise
def pretrain(epoch):
tot_loss = 0.
MSE = nn.MSELoss()
xns=[]
for batch_idx, (xs, labels, _) in enumerate(data_loader):
for v in range(view):
xn = add_noise(xs[v])
xns.append(xn)
xns[v] = xns[v].to(device)
xs[v] = xs[v].to(device)
optimizer.zero_grad()
xrs, hs, f = model(xns)
loss_list = []
for v in range(view):
loss_list.append(F.mse_loss(xs[v], xrs[v]))
loss = sum(loss_list)
loss.backward()
optimizer.step()
tot_loss += loss.item()
print('Epoch {}'.format(epoch), 'Loss:{:.6f}'.format(tot_loss / len(data_loader)))
return hs, labels, hs
def model_train(epoch):
total_loss = 0.
for batch_idx, (xs, labels, _) in enumerate(data_loader):
xns=[]
for v in range(view):
xn = add_noise(xs[v])
xns.append(xn)
xns[v] = xns[v].to(device)
xs[v] = xs[v].to(device)
optimizer.zero_grad()
xrs, hs, zs = model(xns)
hs, f, qs, tars, p, tp = model.forward_fusion(xs)
kmeans = KMeans(n_clusters=class_num, n_init=10)
y_pred_km = kmeans.fit_predict(f.data.cpu().numpy())
y_pred_km = y_pred_km.flatten()
y_pred = y_pred_km
loss_list = []
for v in range(view):
loss_list.append(F.mse_loss(xs[v], xrs[v])) # reconstruction loss
loss_list.append(criterion.forword_debiased_instance(f, hs[v], y_pred))
loss_list.append(criterion.forword_feature(f.T, hs[v].T))
qn = neraest_labels(f, qs[v]).to(device)
loss_list.append(criterion.forward_pui_label(p, qn))
loss = sum(loss_list)
loss.backward()
optimizer.step()
total_loss += loss.item()
print('Epoch {}'.format(epoch), 'Loss:{:.6f}'.format(total_loss/len(data_loader)))
return f, labels
accs = []
nmis = []
purs = []
aris = []
if not os.path.exists('./models'):
os.makedirs('./models')
T=1
for i in range(T):
print("ROUND:{}".format(i+1))
#Network train
model = Network(view, dims, args.feature_dim, args.gcn_dim, class_num, args.neighbor_num, device)
# print(model)
model = model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr = args.learning_rate, weight_decay=args.weight_decay)
criterion = Loss(args.batch_size, class_num, args.temperature_f, args.lambda1, args.lambda2, args.eta, args.neg_size, device).to(device)
epoch = 1
# pretrain
while epoch <= args.mse_epochs:
zs, labels, hs = pretrain(epoch)
epoch += 1
hc = torch.cat(hs, dim=1)
kmeans = KMeans(n_clusters=class_num, n_init=10)
y_pred = kmeans.fit_predict(hc.data.cpu().numpy())
y_pred = y_pred.flatten()
labels = labels.flatten()
labels = labels.data.cpu().numpy()
nmi, ari, acc, pur = evaluate(labels, y_pred)
print('ACC = {:.4f} NMI = {:.4f} ARI = {:.4f} PUR={:.4f}'.format(acc, nmi, ari, pur))
while epoch <= args.mse_epochs + args.con_epochs:
fusion, labels = model_train(epoch)
if epoch % 10 == 0:
acc, nmi, pur, ari, acc_k, nmi_k, ari_k, pur_k= valid(model, device, dataset, view, data_size, class_num, eval_h=False)
print("Clustering results on semantic labels: ")
print('ACC = {:.4f} NMI = {:.4f} ARI = {:.4f} PUR={:.4f}'.format(acc, nmi, ari, pur))
print("Clustering results on kmeans clustering: ")
print('ACC = {:.4f} NMI = {:.4f} ARI = {:.4f} PUR={:.4f}'.format(acc_k, nmi_k, ari_k, pur_k))
epoch += 1
et = time.time()
# get the execution time
elapsed_time = et - st
print('Execution time:', elapsed_time, 'seconds')