{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Read data" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "df= pd.read_csv('car data.csv')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Car_Name</th>\n", " <th>Year</th>\n", " <th>Selling_Price</th>\n", " <th>Present_Price</th>\n", " <th>Kms_Driven</th>\n", " <th>Fuel_Type</th>\n", " <th>Seller_Type</th>\n", " <th>Transmission</th>\n", " <th>Owner</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>ritz</td>\n", " <td>2014</td>\n", " <td>3.35</td>\n", " <td>5.59</td>\n", " <td>27000</td>\n", " <td>Petrol</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>sx4</td>\n", " <td>2013</td>\n", " <td>4.75</td>\n", " <td>9.54</td>\n", " <td>43000</td>\n", " <td>Diesel</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>ciaz</td>\n", " <td>2017</td>\n", " <td>7.25</td>\n", " <td>9.85</td>\n", " <td>6900</td>\n", " <td>Petrol</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>wagon r</td>\n", " <td>2011</td>\n", " <td>2.85</td>\n", " <td>4.15</td>\n", " <td>5200</td>\n", " <td>Petrol</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>swift</td>\n", " <td>2014</td>\n", " <td>4.60</td>\n", " <td>6.87</td>\n", " <td>42450</td>\n", " <td>Diesel</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Car_Name Year Selling_Price Present_Price Kms_Driven Fuel_Type \\\n", "0 ritz 2014 3.35 5.59 27000 Petrol \n", "1 sx4 2013 4.75 9.54 43000 Diesel \n", "2 ciaz 2017 7.25 9.85 6900 Petrol \n", "3 wagon r 2011 2.85 4.15 5200 Petrol \n", "4 swift 2014 4.60 6.87 42450 Diesel \n", "\n", " Seller_Type Transmission Owner \n", "0 Dealer Manual 0 \n", "1 Dealer Manual 0 \n", "2 Dealer Manual 0 \n", "3 Dealer Manual 0 \n", "4 Dealer Manual 0 " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(301, 9)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ " df.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data Preprocessing" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['Dealer' 'Individual']\n", "['Manual' 'Automatic']\n", "[0 1 3]\n", "['Petrol' 'Diesel' 'CNG']\n" ] } ], "source": [ "print(df.Seller_Type.unique())\n", "print(df.Transmission.unique())\n", "print(df.Owner.unique())\n", "print(df.Fuel_Type.unique())" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Car_Name 0\n", "Year 0\n", "Selling_Price 0\n", "Present_Price 0\n", "Kms_Driven 0\n", "Fuel_Type 0\n", "Seller_Type 0\n", "Transmission 0\n", "Owner 0\n", "dtype: int64" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "##check null values\n", "df.isnull().sum()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Year</th>\n", " <th>Selling_Price</th>\n", " <th>Present_Price</th>\n", " <th>Kms_Driven</th>\n", " <th>Owner</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>count</th>\n", " <td>301.000000</td>\n", " <td>301.000000</td>\n", " <td>301.000000</td>\n", " <td>301.000000</td>\n", " <td>301.000000</td>\n", " </tr>\n", " <tr>\n", " <th>mean</th>\n", " <td>2013.627907</td>\n", " <td>4.661296</td>\n", " <td>7.628472</td>\n", " <td>36947.205980</td>\n", " <td>0.043189</td>\n", " </tr>\n", " <tr>\n", " <th>std</th>\n", " <td>2.891554</td>\n", " <td>5.082812</td>\n", " <td>8.644115</td>\n", " <td>38886.883882</td>\n", " <td>0.247915</td>\n", " </tr>\n", " <tr>\n", " <th>min</th>\n", " <td>2003.000000</td>\n", " <td>0.100000</td>\n", " <td>0.320000</td>\n", " <td>500.000000</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>25%</th>\n", " <td>2012.000000</td>\n", " <td>0.900000</td>\n", " <td>1.200000</td>\n", " <td>15000.000000</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>50%</th>\n", " <td>2014.000000</td>\n", " <td>3.600000</td>\n", " <td>6.400000</td>\n", " <td>32000.000000</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>75%</th>\n", " <td>2016.000000</td>\n", " <td>6.000000</td>\n", " <td>9.900000</td>\n", " <td>48767.000000</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>max</th>\n", " <td>2018.000000</td>\n", " <td>35.000000</td>\n", " <td>92.600000</td>\n", " <td>500000.000000</td>\n", " <td>3.000000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Year Selling_Price Present_Price Kms_Driven Owner\n", "count 301.000000 301.000000 301.000000 301.000000 301.000000\n", "mean 2013.627907 4.661296 7.628472 36947.205980 0.043189\n", "std 2.891554 5.082812 8.644115 38886.883882 0.247915\n", "min 2003.000000 0.100000 0.320000 500.000000 0.000000\n", "25% 2012.000000 0.900000 1.200000 15000.000000 0.000000\n", "50% 2014.000000 3.600000 6.400000 32000.000000 0.000000\n", "75% 2016.000000 6.000000 9.900000 48767.000000 0.000000\n", "max 2018.000000 35.000000 92.600000 500000.000000 3.000000" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.describe()" ] }, { "cell_type": "raw", "metadata": {}, "source": [ "In 'Year'-- year the car was made-- as no of years increase the price decrease\n", "thus change 'year' and make a derived col-- no of year by calculating-->2021-'year' and add col no of years-> 6 yrs old.." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['Car_Name', 'Year', 'Selling_Price', 'Present_Price', 'Kms_Driven',\n", " 'Fuel_Type', 'Seller_Type', 'Transmission', 'Owner'],\n", " dtype='object')" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.columns" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "final_df=df[['Year', 'Selling_Price', 'Present_Price', 'Kms_Driven',\n", " 'Fuel_Type', 'Seller_Type', 'Transmission', 'Owner']]" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Year</th>\n", " <th>Selling_Price</th>\n", " <th>Present_Price</th>\n", " <th>Kms_Driven</th>\n", " <th>Fuel_Type</th>\n", " <th>Seller_Type</th>\n", " <th>Transmission</th>\n", " <th>Owner</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>2014</td>\n", " <td>3.35</td>\n", " <td>5.59</td>\n", " <td>27000</td>\n", " <td>Petrol</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2013</td>\n", " <td>4.75</td>\n", " <td>9.54</td>\n", " <td>43000</td>\n", " <td>Diesel</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2017</td>\n", " <td>7.25</td>\n", " <td>9.85</td>\n", " <td>6900</td>\n", " <td>Petrol</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>2011</td>\n", " <td>2.85</td>\n", " <td>4.15</td>\n", " <td>5200</td>\n", " <td>Petrol</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2014</td>\n", " <td>4.60</td>\n", " <td>6.87</td>\n", " <td>42450</td>\n", " <td>Diesel</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Year Selling_Price Present_Price Kms_Driven Fuel_Type Seller_Type \\\n", "0 2014 3.35 5.59 27000 Petrol Dealer \n", "1 2013 4.75 9.54 43000 Diesel Dealer \n", "2 2017 7.25 9.85 6900 Petrol Dealer \n", "3 2011 2.85 4.15 5200 Petrol Dealer \n", "4 2014 4.60 6.87 42450 Diesel Dealer \n", "\n", " Transmission Owner \n", "0 Manual 0 \n", "1 Manual 0 \n", "2 Manual 0 \n", "3 Manual 0 \n", "4 Manual 0 " ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "final_df.head()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "final_df['Current_Year']=2021" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Year</th>\n", " <th>Selling_Price</th>\n", " <th>Present_Price</th>\n", " <th>Kms_Driven</th>\n", " <th>Fuel_Type</th>\n", " <th>Seller_Type</th>\n", " <th>Transmission</th>\n", " <th>Owner</th>\n", " <th>Current_Year</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>2014</td>\n", " <td>3.35</td>\n", " <td>5.59</td>\n", " <td>27000</td>\n", " <td>Petrol</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " <td>2021</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2013</td>\n", " <td>4.75</td>\n", " <td>9.54</td>\n", " <td>43000</td>\n", " <td>Diesel</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " <td>2021</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2017</td>\n", " <td>7.25</td>\n", " <td>9.85</td>\n", " <td>6900</td>\n", " <td>Petrol</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " <td>2021</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>2011</td>\n", " <td>2.85</td>\n", " <td>4.15</td>\n", " <td>5200</td>\n", " <td>Petrol</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " <td>2021</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2014</td>\n", " <td>4.60</td>\n", " <td>6.87</td>\n", " <td>42450</td>\n", " <td>Diesel</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " <td>2021</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Year Selling_Price Present_Price Kms_Driven Fuel_Type Seller_Type \\\n", "0 2014 3.35 5.59 27000 Petrol Dealer \n", "1 2013 4.75 9.54 43000 Diesel Dealer \n", "2 2017 7.25 9.85 6900 Petrol Dealer \n", "3 2011 2.85 4.15 5200 Petrol Dealer \n", "4 2014 4.60 6.87 42450 Diesel Dealer \n", "\n", " Transmission Owner Current_Year \n", "0 Manual 0 2021 \n", "1 Manual 0 2021 \n", "2 Manual 0 2021 \n", "3 Manual 0 2021 \n", "4 Manual 0 2021 " ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "final_df.head()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Year</th>\n", " <th>Selling_Price</th>\n", " <th>Present_Price</th>\n", " <th>Kms_Driven</th>\n", " <th>Fuel_Type</th>\n", " <th>Seller_Type</th>\n", " <th>Transmission</th>\n", " <th>Owner</th>\n", " <th>Current_Year</th>\n", " <th>No_year</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>2014</td>\n", " <td>3.35</td>\n", " <td>5.59</td>\n", " <td>27000</td>\n", " <td>Petrol</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " <td>2021</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2013</td>\n", " <td>4.75</td>\n", " <td>9.54</td>\n", " <td>43000</td>\n", " <td>Diesel</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " <td>2021</td>\n", " <td>8</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2017</td>\n", " <td>7.25</td>\n", " <td>9.85</td>\n", " <td>6900</td>\n", " <td>Petrol</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " <td>2021</td>\n", " <td>4</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>2011</td>\n", " <td>2.85</td>\n", " <td>4.15</td>\n", " <td>5200</td>\n", " <td>Petrol</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " <td>2021</td>\n", " <td>10</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2014</td>\n", " <td>4.60</td>\n", " <td>6.87</td>\n", " <td>42450</td>\n", " <td>Diesel</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " <td>2021</td>\n", " <td>7</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Year Selling_Price Present_Price Kms_Driven Fuel_Type Seller_Type \\\n", "0 2014 3.35 5.59 27000 Petrol Dealer \n", "1 2013 4.75 9.54 43000 Diesel Dealer \n", "2 2017 7.25 9.85 6900 Petrol Dealer \n", "3 2011 2.85 4.15 5200 Petrol Dealer \n", "4 2014 4.60 6.87 42450 Diesel Dealer \n", "\n", " Transmission Owner Current_Year No_year \n", "0 Manual 0 2021 7 \n", "1 Manual 0 2021 8 \n", "2 Manual 0 2021 4 \n", "3 Manual 0 2021 10 \n", "4 Manual 0 2021 7 " ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "final_df['No_year']= final_df['Current_Year']-final_df['Year']\n", "final_df.head()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Selling_Price</th>\n", " <th>Present_Price</th>\n", " <th>Kms_Driven</th>\n", " <th>Fuel_Type</th>\n", " <th>Seller_Type</th>\n", " <th>Transmission</th>\n", " <th>Owner</th>\n", " <th>No_year</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>3.35</td>\n", " <td>5.59</td>\n", " <td>27000</td>\n", " <td>Petrol</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>4.75</td>\n", " <td>9.54</td>\n", " <td>43000</td>\n", " <td>Diesel</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " <td>8</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>7.25</td>\n", " <td>9.85</td>\n", " <td>6900</td>\n", " <td>Petrol</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " <td>4</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>2.85</td>\n", " <td>4.15</td>\n", " <td>5200</td>\n", " <td>Petrol</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " <td>10</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>4.60</td>\n", " <td>6.87</td>\n", " <td>42450</td>\n", " <td>Diesel</td>\n", " <td>Dealer</td>\n", " <td>Manual</td>\n", " <td>0</td>\n", " <td>7</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Selling_Price Present_Price Kms_Driven Fuel_Type Seller_Type \\\n", "0 3.35 5.59 27000 Petrol Dealer \n", "1 4.75 9.54 43000 Diesel Dealer \n", "2 7.25 9.85 6900 Petrol Dealer \n", "3 2.85 4.15 5200 Petrol Dealer \n", "4 4.60 6.87 42450 Diesel Dealer \n", "\n", " Transmission Owner No_year \n", "0 Manual 0 7 \n", "1 Manual 0 8 \n", "2 Manual 0 4 \n", "3 Manual 0 10 \n", "4 Manual 0 7 " ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#drop irrelevent data\n", "final_df.drop(columns=['Year', 'Current_Year'], inplace=True, axis=1)\n", "final_df.head()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<class 'pandas.core.frame.DataFrame'>\n", "RangeIndex: 301 entries, 0 to 300\n", "Data columns (total 8 columns):\n", "Selling_Price 301 non-null float64\n", "Present_Price 301 non-null float64\n", "Kms_Driven 301 non-null int64\n", "Fuel_Type 301 non-null object\n", "Seller_Type 301 non-null object\n", "Transmission 301 non-null object\n", "Owner 301 non-null int64\n", "No_year 301 non-null int64\n", "dtypes: float64(2), int64(3), object(3)\n", "memory usage: 18.9+ KB\n" ] } ], "source": [ "final_df.info()" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "from sklearn.preprocessing import OneHotEncoder" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "#Since the no of categories very less --> use one hot encoding\n", "#encoder= OneHotEncoder(handle_unknown='ignore')\n", "#encoder.fit_transform(final_df)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Selling_Price</th>\n", " <th>Present_Price</th>\n", " <th>Kms_Driven</th>\n", " <th>Owner</th>\n", " <th>No_year</th>\n", " <th>Fuel_Type_Diesel</th>\n", " <th>Fuel_Type_Petrol</th>\n", " <th>Seller_Type_Individual</th>\n", " <th>Transmission_Manual</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>3.35</td>\n", " <td>5.59</td>\n", " <td>27000</td>\n", " <td>0</td>\n", " <td>7</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>4.75</td>\n", " <td>9.54</td>\n", " <td>43000</td>\n", " <td>0</td>\n", " <td>8</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>7.25</td>\n", " <td>9.85</td>\n", " <td>6900</td>\n", " <td>0</td>\n", " <td>4</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>2.85</td>\n", " <td>4.15</td>\n", " <td>5200</td>\n", " <td>0</td>\n", " <td>10</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>4.60</td>\n", " <td>6.87</td>\n", " <td>42450</td>\n", " <td>0</td>\n", " <td>7</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>1</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Selling_Price Present_Price Kms_Driven Owner No_year Fuel_Type_Diesel \\\n", "0 3.35 5.59 27000 0 7 0 \n", "1 4.75 9.54 43000 0 8 1 \n", "2 7.25 9.85 6900 0 4 0 \n", "3 2.85 4.15 5200 0 10 0 \n", "4 4.60 6.87 42450 0 7 1 \n", "\n", " Fuel_Type_Petrol Seller_Type_Individual Transmission_Manual \n", "0 1 0 1 \n", "1 0 0 1 \n", "2 1 0 1 \n", "3 1 0 1 \n", "4 0 0 1 " ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "final_df=pd.get_dummies(final_df, drop_first=True)\n", "final_df.head()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Selling_Price</th>\n", " <th>Present_Price</th>\n", " <th>Kms_Driven</th>\n", " <th>Owner</th>\n", " <th>No_year</th>\n", " <th>Fuel_Type_Diesel</th>\n", " <th>Fuel_Type_Petrol</th>\n", " <th>Seller_Type_Individual</th>\n", " <th>Transmission_Manual</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Selling_Price</th>\n", " <td>1.000000</td>\n", " <td>0.878983</td>\n", " <td>0.029187</td>\n", " <td>-0.088344</td>\n", " <td>-0.236141</td>\n", " <td>0.552339</td>\n", " <td>-0.540571</td>\n", " <td>-0.550724</td>\n", " <td>-0.367128</td>\n", " </tr>\n", " <tr>\n", " <th>Present_Price</th>\n", " <td>0.878983</td>\n", " <td>1.000000</td>\n", " <td>0.203647</td>\n", " <td>0.008057</td>\n", " <td>0.047584</td>\n", " <td>0.473306</td>\n", " <td>-0.465244</td>\n", " <td>-0.512030</td>\n", " <td>-0.348715</td>\n", " </tr>\n", " <tr>\n", " <th>Kms_Driven</th>\n", " <td>0.029187</td>\n", " <td>0.203647</td>\n", " <td>1.000000</td>\n", " <td>0.089216</td>\n", " <td>0.524342</td>\n", " <td>0.172515</td>\n", " <td>-0.172874</td>\n", " <td>-0.101419</td>\n", " <td>-0.162510</td>\n", " </tr>\n", " <tr>\n", " <th>Owner</th>\n", " <td>-0.088344</td>\n", " <td>0.008057</td>\n", " <td>0.089216</td>\n", " <td>1.000000</td>\n", " <td>0.182104</td>\n", " <td>-0.053469</td>\n", " <td>0.055687</td>\n", " <td>0.124269</td>\n", " <td>-0.050316</td>\n", " </tr>\n", " <tr>\n", " <th>No_year</th>\n", " <td>-0.236141</td>\n", " <td>0.047584</td>\n", " <td>0.524342</td>\n", " <td>0.182104</td>\n", " <td>1.000000</td>\n", " <td>-0.064315</td>\n", " <td>0.059959</td>\n", " <td>0.039896</td>\n", " <td>-0.000394</td>\n", " </tr>\n", " <tr>\n", " <th>Fuel_Type_Diesel</th>\n", " <td>0.552339</td>\n", " <td>0.473306</td>\n", " <td>0.172515</td>\n", " <td>-0.053469</td>\n", " <td>-0.064315</td>\n", " <td>1.000000</td>\n", " <td>-0.979648</td>\n", " <td>-0.350467</td>\n", " <td>-0.098643</td>\n", " </tr>\n", " <tr>\n", " <th>Fuel_Type_Petrol</th>\n", " <td>-0.540571</td>\n", " <td>-0.465244</td>\n", " <td>-0.172874</td>\n", " <td>0.055687</td>\n", " <td>0.059959</td>\n", " <td>-0.979648</td>\n", " <td>1.000000</td>\n", " <td>0.358321</td>\n", " <td>0.091013</td>\n", " </tr>\n", " <tr>\n", " <th>Seller_Type_Individual</th>\n", " <td>-0.550724</td>\n", " <td>-0.512030</td>\n", " <td>-0.101419</td>\n", " <td>0.124269</td>\n", " <td>0.039896</td>\n", " <td>-0.350467</td>\n", " <td>0.358321</td>\n", " <td>1.000000</td>\n", " <td>0.063240</td>\n", " </tr>\n", " <tr>\n", " <th>Transmission_Manual</th>\n", " <td>-0.367128</td>\n", " <td>-0.348715</td>\n", " <td>-0.162510</td>\n", " <td>-0.050316</td>\n", " <td>-0.000394</td>\n", " <td>-0.098643</td>\n", " <td>0.091013</td>\n", " <td>0.063240</td>\n", " <td>1.000000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Selling_Price Present_Price Kms_Driven Owner \\\n", "Selling_Price 1.000000 0.878983 0.029187 -0.088344 \n", "Present_Price 0.878983 1.000000 0.203647 0.008057 \n", "Kms_Driven 0.029187 0.203647 1.000000 0.089216 \n", "Owner -0.088344 0.008057 0.089216 1.000000 \n", "No_year -0.236141 0.047584 0.524342 0.182104 \n", "Fuel_Type_Diesel 0.552339 0.473306 0.172515 -0.053469 \n", "Fuel_Type_Petrol -0.540571 -0.465244 -0.172874 0.055687 \n", "Seller_Type_Individual -0.550724 -0.512030 -0.101419 0.124269 \n", "Transmission_Manual -0.367128 -0.348715 -0.162510 -0.050316 \n", "\n", " No_year Fuel_Type_Diesel Fuel_Type_Petrol \\\n", "Selling_Price -0.236141 0.552339 -0.540571 \n", "Present_Price 0.047584 0.473306 -0.465244 \n", "Kms_Driven 0.524342 0.172515 -0.172874 \n", "Owner 0.182104 -0.053469 0.055687 \n", "No_year 1.000000 -0.064315 0.059959 \n", "Fuel_Type_Diesel -0.064315 1.000000 -0.979648 \n", "Fuel_Type_Petrol 0.059959 -0.979648 1.000000 \n", "Seller_Type_Individual 0.039896 -0.350467 0.358321 \n", "Transmission_Manual -0.000394 -0.098643 0.091013 \n", "\n", " Seller_Type_Individual Transmission_Manual \n", "Selling_Price -0.550724 -0.367128 \n", "Present_Price -0.512030 -0.348715 \n", "Kms_Driven -0.101419 -0.162510 \n", "Owner 0.124269 -0.050316 \n", "No_year 0.039896 -0.000394 \n", "Fuel_Type_Diesel -0.350467 -0.098643 \n", "Fuel_Type_Petrol 0.358321 0.091013 \n", "Seller_Type_Individual 1.000000 0.063240 \n", "Transmission_Manual 0.063240 1.000000 " ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "final_df.corr()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<seaborn.axisgrid.PairGrid at 0x2c7cf3477f0>" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABloAAAZICAYAAAD90x3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdfXhU5bkv/u+z1syaTF4wIYbUGlus1VikQQkolf5aq221W6yHgtoWVGjLi/TUbo+1ePYuu/ZQzxHRza5tEWS3IL60oJQfrR4Vt4rtRm0lUKlGo9uKEmtJiAkmk8msmbWe88dkJjPJTDIZ1sysZ+b7ua65IJnJ5E5yr3s9az1vQkoJIiIiIiIiIiIiIiIiGj+t0AEQERERERERERERERGpih0tREREREREREREREREWWJHCxERERERERERERERUZbY0UJERERERERERERERJQldrQQERERERERERERERFliR0tCS655BIJgA8+nHzkBXOXjxw88ob5y0cOHnnB3OUjB4+8Yf7ykYNHXjB3+cjBI2+Yv3w4/Mgb5i4fOXjkDfOXD4cfabGjJcHRo0cLHQJRVpi7pDLmL6mKuUsqY/6Sqpi7pDLmL6mKuUsqY/5SvrCjhYiIiIiIiIiIiIiIKEvsaCEiIiIiIiIiIiIiIsoSO1qIiIiIiIiIiIiIiIiyxI4WIiIiIiIiIiIiIiKiLLGjhYiIiIiIiIiIiIiIKEueQgdARES5Z9sSXQETZsSC4dFRW2FA00ShwyoI/i4oX5hrRMWDxzOROlQ9XlWNmwhg/hKR2pyqYexoGafJNz867q85dNulOYiEiCgzti3RdqQXS7buQ3t3EA01fmy6ZgYa66tKrvHL3wXlC3ONqHjweCZSh6rHq6pxEwHMXyJSm5M1jEuHEREVua6AGT9hAEB7dxBLtu5DV8AscGT5x98F5Qtzjah48HgmUoeqx6uqcRMBzF8iUpuTNYwdLURERc6MWPETRkx7dxBmxCpQRIXD3wXlC3ONqHjweCZSh6rHq6pxEwHMXyJSm5M1jB0tRERFzvDoaKjxJ32uocYPw6MXKKLC4e+C8oW5RlQ8eDwTqUPV41XVuIkA5i8Rqc3JGsaOFiKiIldbYWDTNTPiJ47YepO1FUaBI8s//i4oX5hrRMWDxzOROlQ9XlWNmwhg/hKR2pysYR6ngyMiInfRNIHG+irsXDEbZsSC4dFRW2GU5MaE/F1QvjDXiIoHj2cidah6vKoaNxHA/CUitTlZw9jRQkRUAjRNoK7KV+gwXIG/C8oX5hpR8eDxTKQOVY9XVeMmApi/RKQ2p2oYO1qISBm2LdEVMDlKpgTxb08qYt5SMWN+E5FbqVqfVI2bCGD+krqYu+QkdrQQkRJsW6LtSC+WbN2H9u5gfM3ExvoqngSLHP/2pCLmLRUz5jcRuZWq9UnVuIkA5i+pi7lLTtMKHQARUSa6Amb85AcA7d1BLNm6D10Bs8CRUa7xb08qYt5SMWN+E5FbqVqfVI2bCGD+krqYu+Q0drQQkRLMiBU/+cW0dwdhRqwCRUT5wr89qYh5S8WM+U1EbqVqfVI1biKA+UvqYu6S09jRQkRKMDw6Gmr8SZ9rqPHD8OgFiojyhX97UhHzlooZ85uI3ErV+qRq3EQA85fUxdwlp7GjhYiUUFthYNM1M+InwdjambUVRoEjo1zj355UxLylYsb8JiK3UrU+qRo3EcD8JXUxd8lpnkIHQESUCU0TaKyvws4Vs2FGLBgeHbUVBjcoKwH825OKmLdUzJjfRORWqtYnVeMmApi/pC7mLjmNHS1EpAxNE6ir8hU6DCoA/u1JRcxbKmbMbyJyK1Xrk6pxEwHMX1IXc5ecxKXDiIiIiIiIiIiIiIiIssSOFiIiIiIiIiIiIiIioiyxo4WIiIiIiIiIiIiIiChL7GghIiIiIiIiIiIiIiLKkvIdLUKIMiHEn4QQLwkhXhFC/Gjw86cKIf4ohHhDCLFNCGEUOlYiIiIiIiIiIiIiIiouyne0AAgBuFBKOQ3A2QAuEULMArAGwDop5ekAugF8s4AxEhERERERERERERFREVK+o0VG9Q1+6B18SAAXAnh48PP3AvhvBQiPiIiIiIiIiIiIiIiKmPIdLQAghNCFEH8G0AHgSQBvAuiRUkYGX9IO4OQ0X7tUCLFPCLGvs7MzPwETOYC5Sypj/pKqmLukMuYvqYq5Sypj/pKqmLukMuYvFUJRdLRIKS0p5dkAGgCcC+ATqV6W5mvvkVLOkFLOqKury2WYRI5i7pLKmL+kKuYuqYz5S6pi7pLKmL+kKuYuqYz5S4VQFB0tMVLKHgB7AMwCUC2E8Aw+1QDgb4WKi4iIiIiIiIiIiIiIipPyHS1CiDohRPXg//0APg/gVQDPAJg/+LJrAewqTIRERERERERERERERFSsPGO/xPVOAnCvEEJHtONou5TyESFEK4BfCyF+DOAAgF8UMkgiIiIiIiIiIiIiIio+yne0SCkPAjgnxef/iuh+LURERERERERERERERDmh/NJhREREREREREREREREhcKOFiIiIiIiIiIiIiIioiyxo4WIiIiIiIiIiIiIiChL7GghIiIiIiIiIiIiIiLKEjtaiIiIiIiIiIiIiIiIssSOFiIiIiIiIiIiIiIioiyxo4WIiIiIiIiIiIiIiChL7GghIiIiIiIiIiIiIiLKEjtaiIiIiIiIiIiIiIiIssSOFiIiIiIiIiIiIiIioiyxo4WIiIiIiIiIiIiIiChL7GghIiIiIiIiIiIiIiLKEjtaiIiIiIiIiIiIiIiIsuSqjhYhRL0Q4hdCiMcGP54ihPhmoeMiIiIiIiIiIiIiIiJKxVUdLQC2AHgCwIcHP34dwD8WLBoiIiIiIiIiIiIiIqJRuK2j5UQp5XYANgBIKSMArMKGRERERERERERERERElJqn0AEMExBC1AKQACCEmAXgWGFDIiK3sG2JroAJM2LB8OiorTCgaaLQYZGLMEfITZiPRKPjMUJEuaBqbVE1biKA+UvqYu6Sk9zW0fI/APwWwGlCiL0A6gDML2xIROQGti3RdqQXS7buQ3t3EA01fmy6ZgYa66t4EiQAzBFyF+Yj0eh4jBBRLqhaW1SNmwhg/pK6mLvkNFd1tEgp9wshPgugEYAA0CalDBc4LCJy0GijBSIRGx19IYQtG15dw6RKHzye6AqHXQEzfvIDgPbuIJZs3YedK2ajrspXsJ+H8mu0/OkOhvD3YwO484pp6AmGsWHPm8wRKpiugIn/f/9hbF40E7omYNkSD+97B9/6zMeZj1QUjnf0X1fAxLon27BqzhRU+73oCYax7sk23Dq3iccIEWVN1fOvqnETAcxfUhdzl5zmqo4WIcS3ATwgpXxl8OMaIcTXpJTrCxwaETlgtNECti3x2pFeLL+/Jf7choXNOLO+Ch6PBjNixTtZYtq7gzAj3MapVIyVP+/1hLBq18vx59bMa8IdT7QxR6ggBCQunXYyFm95MZ6T6xdMh4iujkqkNCdG/9m2jWvPPxUrdxxMqtu2bec4eiIqZqqef1WNmwhg/pK6mLvkNK3QAQyzRErZE/tAStkNYEkB4yEiB6WbldIVMNHRF4p3ssSeW35/Czr6QgAAw6Ojocaf9H4NNX4YHj2/PwQVzHjzZ+WOg7j+otOZI1QQoYiNFQ/sT8rJFQ/sRyjCm8ikvtHqcaYitox3ssTeY+WOg4jYvLAlouypev5VNW4igPlL6mLuktPc1tGiCSHiw+CEEDoAo4DxEJGDRpuVErbslM9FrOgJrrbCwKZrZsQ7W2KjZ2srWCJKRTb5M/nECuYIFUTElqlrGm8iUxFwYpapleYYsXiMENFxUPX8q2rcRADzl9TF3CWnua2j5QkA24UQFwkhLgTwKwCPFzgmInLIaLNSvLqW8jmPHi1TmibQWF+FnStmY+/Kz2HnitncoKzEZJM/ZR6NOUIF4dFE6prGfKQi4MQsU88Y530iomyoev5VNW4igPlL6mLuktPcdiWzEsDTAK4D8G0ATwH4fkEjIiLHjDYrZVKlDxsWNic9t2FhMyZVDm1ApmkCdVU+nFxTjroqH2+gl5hs8qeukhvYUWFMqvTh7mE5efewmkakKidmmWZy3iciGi9Vz7+qxk0EMH9JXcxdcpqQktOhYmbMmCH37ds36msm3/zouN/30G2XZhsSqS8vPQGZ5K5b2LZEV8CEGbFgeHTUVhjxDpNIxEZHXwgRy4ZH1zCp0gePx239wSUjb71Y48lf5g9lyBW1Nxy2ojlpS3g0gUmVPni93DOIRuXK2pvKaPU4U6zbRccVtZcoi/OvK2ov2w2UBVfkLsD8pay4In+Zu5SFtLnryWcU6QghtksprxRC/AXAiJ4fKWVTAcIiohyIzUpJxePR8OFqf8rniADmD6nF69Vxck15ocMgyonR6nGmWLeJKBdUPf+qGjcRwPwldTF3yUmu6GgB8N3Bf+cUNAoiIiIiIiIiIiIiIqJxcEVHi5TyPSGEDuAXUsrPFzoeIsodJ5YaIYphPpGbMT+p1PEYIKJCULX2qBo3EcD8JXUxd8lJruhoAQAppSWE6BdCnCClPFboeIjIebYt0XakF0u27kN7dzC+eW5jfRVPZDRuzCdyM+YnlToeA0RUCKrWHlXjJgKYv6Qu5i45zW27TQ4A+IsQ4hdCiLtij9G+QAhxihDiGSHEq0KIV4QQ3x38/EQhxJNCiDcG/63Jy09ARGl1Bcz4CQwA2ruDWLJ1H7oCZoEjIxUxn8jNmJ9U6ngMEFEhqFp7VI2bCGD+krqYu+Q018xoGfTo4GM8IgBulFLuF0JUAWgRQjwJYBGAp6SUtwkhbgZwM4CVjkabock3j/dHAg7ddmkOIiEqjNhUzH4zEj+BxbR3B2FGrHG9D6d0lqbhf38zYqXMp6AZQWcvmB9UUOnyM9N6R+R2Y52TnToGeO6n8WLOlDZVz7+qxk3OU7GGMX9JVcxdcpprOlqEEOcACAB4RUr5aqZfJ6V8D8B7g//vFUK8CuBkAJcDuGDwZfcC2IMCdbQQlbLEqZir5kxBQ40/6UTWUOOH4dHH9T6c0ll6Uv39H/zWeSnz6dW/92L1I63MDyoor66lzE+v7rbJxETjl8k52fDoWZ/zx/N9iBIxZ8jrSXP+9bj7/Ktq3OQsVWsY272kKuYuOc0VmSOE+BcA2wDMA/CoEGJJlu8zGcA5AP4IoH6wEybWGTMpzdcsFULsE0Ls6+zszObbEhWEKrmbOBVzw543sWZeExpq/AAQbzjWVhjjeh+AUzpVN978TfX3//Gjrdh4dXNSPq2Z14QNe95kflDOjCd3185Prndr5zflI0SitJxqO2RyTq6tMLDpmhlZnfPH832oNGSau8wZ8mgi5fnXU8Cb1JnkrxvjpvxzWw1ju5dUlmn+MnfJSW6Z0XIVgLOllP1CiFoAjwPYNJ43EEJUAtgB4B+llB8IkVmDREp5D4B7AGDGjBlyXFETFZAquZs4FfPA4R7c8UQbVs2Zgk98qAp+w5PxVGhO6Swu483fVH//3a0dWH35VOxcMRtBM4JX/96LO55ow4HDPQCYH5QbmeZuMGzh9sej9a7a70VPMIzbH2/DT756dt5iJRrOqbZDJudkTRNorK/CzhWzs17+hOd+isk0d5kzFDRTn39/9vVzgIrCxJRJ/roxbso/t9UwtntJZRnVXuYuOcwtHS0DUsp+AJBSdgkhxjXTRgjhRbST5QEp5W8GP31ECHGSlPI9IcRJADqcDZmIMjF86ZADh3uw+pFW7FwxG3VVvnG9zxenTMK85lPiJ8AdLYfHtQQJqSvdEjSapqGuyofOXmD1I60ZLVGj4rrHpB6vrqGzL4Rl97XEP9dQ44eH09CpCGS6LJimiXGd61N9H577aTycWLKO1GZ4dNRVJc+cq6syXJ8DqsZNzlK1hrHdS6pi7pLT3JI5pwkhfjv4+N2wj3872heK6NSVXwB4VUr5rwlP/RbAtYP/vxbArpxETkSjcmLpEACo8Xtx/UVnYPUjrbjqnhew+pFWXH/RGajxe3MRNrnMWHmUaZ7F1j2eu34vZq95BnPX70XbkV7YtmsnhZGi6ioM3L0weWm7uxc2o26ctY/IjZw6t4+F534ar3zlJrmXqnVD1bjJWarWMLZ7SVXMXXKakLLwN5eEEJ8d7Xkp5bOjfO2nAfwBwF8A2IOf/idE92nZDuAjAN4BcIWU8v3Rvs+MGTPkvn37Ro118s2Pjvq8Uw7ddmlevg/lXF6GyWeSu4XkxAyCzt4Q5q7fO2J0z3hnxlDG8jbFI9P8HSuPMskz5lHJKHjt7ewN4Z93HhwxEv/WuU3MNRqN62pvOvmYHciarZyC116AM1dLXZZ1o+C1l/WOYsZZwwqeuwDbvZS1gucvc5eylDZ3XbF02GgdKYmEEDuklPOGfe1/Iv0PeNHxxkZE45OuYXi8Jym3rVdL+adpArUVRjy/ugJm0oVHJnnGPKJ8MSMWdrd2YHdr8sqlP7yMuUaUKdZsyoYT7U5Sl6p1Q9W4yXkq1jC2e0lVzF1ymluWDsvUxwodABGll8tlmWLr1SZSYb1aco4T+cU8onzxerSUueb1qNb0IhopX8swsmYT0Xipev5VNW4igPlL6mLuktNUy5zCr3NGRGl1BUws2bovPhqrvTuIJVv3oStgHvd7q7peLTnHifxiHlG+eDSBtfObknJt7fwmeLh8DRWBXJ7vE7FmE9F4qXr+VTVuIoD5S+pi7pLTXLF0GBEVh1xOedc0gcb6KuxcMZtrbpcoJ/KLeUT5EjQt3P54G1bNmRJf7/f2x9vws6+fA1QUOjqi45OvJW5Ys4lovFQ9/6oaNxHA/CV1MXfJaap1tPCqisjF/IaOzYtmotzQ0RMMY8OeN9HZF3JsiQ8V16sl5ziVX8wjygfDo6OuKnnUfV2VwSWPqCgYHh1fnDJpxMahuchv1mwar3FuJE1FxvDo6OwLYdl9LfHPqbDkoKpxk/NUrGFs95KqWHspxqnaq1pHy8pCB0BEqdm2xJEPQli162W0dwfjUy7rJ5RxiQ86bswvUk2N34vrLzoDy+9viefshoXNqPF7Cx0a0XFjfpNbxfYPii1tF1turrG+yvU3KskZsSUHh+eA29uLqsZNzlK1hrFdQKpi7SXA2drrqj1ahBB/EUIcHPb4gxBinRCiVkq5u9AxElFqqdZrv+nhg6gs87i6UUhqYH6RarqD4fjFJhDN2eX3t6A7GC5wZETHj/lNbpWv/YPIvRKXHNy78nPYuWK2629SA+rGTc5StYaxXUCqYu0lwNna67YZLY8BsAA8OPjxVwf//QDAFgCXFSAmIspAuvXawxG7QBFRMWF+kWrytYcFUSEwv8mtmJsEqLvkoKpxk3NUrWGqxk0EsPaSszXMbR0ts6WUsxM+/osQYq+UcrYQYmHBoiKiMRkeHQ01/qTiNN61LVVcj5byw4n8Ol7MTxoPN+QsUa64Lb9ZnynGbblJhaFqTVA1bnKOqjVM1bjJWarWMFXjJuc4WcNctXQYgEohxHmxD4QQ5wKoHPwwUpiQiCgTsbUtG2r8ADDutS1jayLOXb8Xs9c8g7nr96LtSC9sW+YybFLE8ebX8WJ+0njV+L3YsLA5KWe5VjUVi0LX5ESsz5TITblJhaFqTVA1bnKWqjVM1bjJOarWMFXjJmc5WcOElO5JHiHETAC/RLRzRSC6ZNi3ALwC4FIp5fZcfv8ZM2bIffv2jfqayTc/mssQ4g7ddmlevg/lXF66wTPJ3Xw4npEAnb0hzF2/d0QP8s4VszmNszDyNoQj0/wt5EgT5qdyCl57O3tD+OedBzGv+RRU+73oCYaxo+Uwbp3bxJyh0biu9qbjltF/rM+uUvDaC7gnN6kwsqwJBa+9rGUUM84aVvDcjWHtLW2svaQ6p2qvq5YOk1K+COCTQogTEO0E6kl4OqedLER0/I5nbUuu60pjKeTaqcxPGi8zYmF3awd2t3Ykff6HlzFnqDi4ZT1r1mcazi25SYWhak1QNW5ynqo1TNW4yRmq1jBV4ybnOVXDXLV0mBDCJ4T4OoBvA7heCPEvQoh/KXRcRJR7sTURE3FdV8on25bo7A3h3e5+dPaGkqYLMz9pvJgzRPmRybE2Wn0nouKi6vlX1biJYniuLW2q1jBV4yb3ctWMFgC7ABwD0AIgVOBYiCiNXEwLju1nsPz+FrR3B7mfAY3K6RyMrc26ZOu+eP5tumYGGuuroGkivmbn8Oe57jClU+P3YsvimTj8fhDlho5+08IpE/2saVRS8rGMyFj1eaz6TkTFRdXzr6pxEwHRc+2hrgDe7uqP5+9Ha8sxubaC59oSoer1Mu9DUYxT1y1u62hpkFJeUuggiCi9XN2w6A6G8bs/t2PzopnQNQHLlnh43zuo/8zHOQWZkjiVg4knUiEE1j3ZFp823N4dxJKt++Jrs2qaQGN9FXaumM11hykjH4TCOBYMY9Wul+N5+pOvno0PQmFM9LCmUfHLVwfHWPW5K2Bi3ZNtWDVnSny/pHVPtnG/JKIiper5V9W4iQCgJ2iiqy+UlL/rrpyG6nIvJlYwf0uBqtfLvA9FgLPXLa5aOgzAc0KITxY6CCJKrytgxosPMHRDuitgJr1uvFOHbdvGZxrrsXjLi7jwzmexeMuL+ExjPWzbztnPQmqJ5dR7x4IZ5eBY79V2pBdz1+/F7DXP4MqNz+Pa80/FOadUx18zfG3W2JqdJ9eUxztfiNIZMC1899d/TsrT7/76zxgwud4vlYZM2wtOGK0+27aNa88/FasfacVV97yA1Y+04trzT2X7oohx+ZrSpur5V9W4yXkq1rAB08IN219Kyt8btr/E/C0xKl4v8z4UAc5et7ito+XTAFqEEG1CiINCiL8IIQ4WOigiGpLJZmHDb2LPXb8XbUd6R20kWhJYueNgUmFbueMgLPe3KykPEnOqvTt43BvWpTqRrtxxEMsvOC3+Gq7NSscjYsuUeRpR4GKZyAlu2VyU7YvSkk0blIpLWNHzr6pxk7NUrWFs95Kq2E4kwNnrFrd1tHwJwOkAvgjgMgBzBv8lIpfIZLOwbHqDpUzdOJOSZzhKzqmeYPi4N6xLdyKNrSGrypqy5F6aJlLmqQoju4icIETqY0CI/B4DbF+UlnzOpCJ38qQ5/+ouP/+qGjc5S9UaxnYvqYrtRAKcvW5xRUeLEGLC4H970zyIyCVim5zFilCqG9LZ9AZn0oFDpSsxpzbseRNr5jWNmoNjSZdvH672Y+/Kz2HnitncKJmOi1cTWDs/OU/Xzm+ClzlFJUIXGFGr18xrgp7nQ4Dti9LilplUVDh+Q095/vUb7j7mVY2bnKVqDWO7l1TFdiIBzl63eByOLVsPIjp7pQWABJD4o0gAHytEUEQ0UiabnMVOVomNxLFOVrEOnOGbT3FGAQHJOXXgcA/ueKINqy+fitMmVcLvHf9Ge+ny7UMTyti5Qo7wejSUGzpWXz4V5YaOftNCuaHD63HFGBeinNM0Dfc+91bSJvT3PvcWbp3blNc42L4oLdm0Qam4VPsN1E8oSzr/1k8oQ7Xf3ce8qnGTs1StYWz3kqrYTiTA2esWV3S0SCnnDP57aqFjIaLR2bZEV8BM28kCZHeyyqQDh0rX8Jzq7AvhQyeUoaE6OiU9tmlkprnDfKNcq/YbCFREUOHzQhOALQGfR/CGCZWM2goDN3/pE3i7qx8AYOgabv7SJ/J+4cp6X1p4w4Q0TeAjNeUo8+oIWza8uoZJle7flFnVuMlZqtYwtntJVWwnEuDsdYsrOlqEENNHe15KuT9fsRBRepGIjbaOXiy7ryWp4Td8iaVsT1aaJlBX5cv1j0EKGi2nYptGDr8gGWvpL+Yb5VrfgIUl9yXk5dUzCh0SUV6FIjZW7Xo5qTYnymTwhhNY70sHb5iQbUu80dk37nZhoakaNzlL5RrGdi+piu1EAoBQeNh1S5Y1zC3z+O4c5XFHAeMiokG2LfG3Y8F4Jwsw+uZ8sZPVyTXlqKviaCw6fuly6mgglHLTyKOBUCHDpRJ3NBCKX2wCg3l5H/OSSsdYG/rGOsnnrt+L2Wuewdz1e9F2pBe2zc1H6fiwDVraVG0Xqho3OU/FGsZ2LxGpzMka5ooZLVLKzxU6BiIaXVfAREdvSMnN+ai4DYRTbxo5ELYLFBER85JorA1903XE7Fwxm6MKiShrqp5/VY2bCGD+EpHanKxhruhoEUJ8ZbTnpZS/yVcsRJSaGbHQFTBTbs7HTe6okHQhUualLqIjplUYBUbFZ7S8JCoFY23oa0Ys1FX6kjad3LDnTQ7eIKLjour5V9W4iQDmLxGpzcka5oqOFgCXjfKcBMCOFqIC8xs6TvB7sfUb5+Ltrn7c9dQb6OwLYe38JvQNRHBiBW9oU26lW8vfb+hYO78JNz18ML6e5pp5TfjR717BDV9o5NrWVBAVPh2/XDQD73YPoNzQ0W9aOLmmDBU+vdChETlirP1VxtrQ12/o+P4ljUm1e+38JvgNHiNElD1Vz7+qxk0EMH+JSG1O1jBXdLRIKRcXOgYiSs+2JY58EML3HnopfjNkw8JmnFhpoKffxG2PvYpbvjwVH5pQxhvalBOpNrzfuLAZ9RN8sBEdbbBl8bno6TfRFTBxxxNtOHC4B63v9WLb0lnwGzoitkQ4Yiu1qSSpy5ISQTN5Q72ff306LMn9J0h9qWry8E2bNU3g9LpKbF/2KUQsGx5dw6TKobXmI7bEnteOYPOimdA1AcuWeHjfOzhtUuWI7zVahw7RcJGIjY6+EMKWDe9g3nk4+7pkWFKidyCSdP79yVfPRm2lUejQRqVq3OQ8FWsY272kMrY1yZISgZCVVMN++rVzYFWOv4a5qloLIeqFEL8QQjw2+PEUIcQ3Cx0XUalLtY768vtb8Op7vejuD+M7F56O7n6Tm9hSzqTKwWX3t+CDgQh+sPMv6AtZqPBpmL/heSy7rwUHDvfEX/d+wETb33vxlfXPccNlyhszLPHtB/cn5ey3H9wPM8y8I/WNtdE9EL1ofaOzD1dufB6fWbsHV258Hm909sVrrwbg0mknY/GWF3Hhnc9i8ZYXcem0k5MuTmIdOnPX72X9poxEIjZeO+QqWkoAACAASURBVNKLKzc+j88O5t1rR3oRiXCfgFIRMm1899d/TqpP3/31nxEy3Z0DqsZNzlK1hrHdS6piW5MAIBSW+M6vDiTVsO/86gBCWdQwV3W0ANgC4AkAHx78+HUA/1iwaIgIQPoNbU+Z6MfmvW/haJ8JQ9dG3GQhckq6HOwdiOCmi89EIBSBbQNfnDIp6TUNNX6UefX40jSxr2OuUq6Zlp0yZ8OWuy+UiTIx1kb3QLQzZt2TbVg1Zwq2LZ2FVXOmYN2TbfHaG4rYWPFA8k2ZFQ/sRyjhZlImHTpEiTr6QrjrqdeT8u6up15HR1+o0KFRnoRtmbI+RVx+00zVuMlZqtYwtntJVWO1V6k0hNPUsEgWNcwVS4clOFFKuV0I8T8BQEoZEUJwR0yiAku3oe3h94O49vxTMaHMg75QZMRNFiKnpMvBqjIPrvnln5KWtAOA3a0d8b1aYrmZiLlKuebR0myox2noVATG2ugeAGzbxrXnn4qVO5L3z7Lt6AVLJM1NRSvhpmImHTpEyWTKvBPgzepSoac5/7p9GRhV4yanqVnD2O4lVY3VXqXS4OQ52G0zWgJCiFogehYRQswCcKywIRFRbEPbhho/AMRPPnc99QZW7jgIv+FBR29oxE0WIqfUVhjYeHVzUg7+/OvTcdtjr45Y0u5HX56K/1z5OWxZfC6klBgIW/Gvi2GuUq55NIG185uScnbt/CZ4eMFJRSBVuyBxo3sAsCTiF61AtEav3HEQ1uC9Iq+upazNHn3o8iTWoTP8NazflI5Mk3ecFFA6DF1Lef41dLfd+kimatzkLFVrGNu9pKqx2qtUGryawLorpyXVsHVXToM3ixrmthkt/wPAbwGcJoTYC6AOwPzRvkAI8UsAcwB0SCmnDn5uIoBtACYDOATgSilld+7CJipumibQWF+FbUtnoaM3hEqfBwNhC8svOA0b9rwJjyawo+XwiJssRE7RNIEz6irx66WzYEZsWLaEENGZK4nau4MIRWws/MUf4yNS7rxiGn7+9XPw7QcPJG3azFylXApbEjv3v5u00fem3/8V1190eqFDIzpusXbBzhWz024cakuJukofVs2Zgmq/Fz3BMDbseRNycGPcSZU+bFjYjOX3tyTNSpxU6Yu/R6xDJ7Z8GOs3jUUCqfOu0IFR3kwsN/BBlQ+rL5+KckNHv2mhrsqHieXurhuqxk3OUrWGsd1LqpIy9QzrWHuVSkON34uBE8qwZfG50ARgS8DrEajxe8f9Xq7oaBFCzARwWEq5XwjxWQDLAMwDsBtA+xhfvgXAzwBsTfjczQCeklLeJoS4efDjlY4HTlRCNE3Aq2uIWDYWb3kxfsNj3ZXT4PdquHVu04ibLEROsW2J/zoaSLrZtnFhMx69/tNo7w5iw543ceBwDxpq/HjraCBpRMqND72Eh5Z9Cr9ZcT7CETvlDUEipxkeDVfMaBhRLw0PR6ZScdA0gboqX9rnDV3D9y9pjO+RFRvd6h0cne3xaGicVIltS2chYkt4NIFJlT54Eo6RTDp0iBIZuoZ/+oczccP2l5JrL2cFlAyPR8PkiRUoNzyIWDY8ujaitriRqnGTs1StYWz3kqoyWQ6Xil9f2ELHsYERtbfK58FEY3xdJ67oaAGwEcDnB/9/PoB/BvAdAGcDuAejzGqRUv5eCDF52KcvB3DB4P/vBbAH7GghypptS3QFTATDFvpCFuoqfWjvDqK9O4gbtr+E7cs+hfqEmy2x1/OmCDkl1YbIy+5vwao5U7Cj5TDuvHIaegciqC734udP/1fS17Z3B2FLiZOq/KnemignIrbEpj/8NWlE4qY//BW3fHlqoUMjyouIZWPz3reSjoHNe9/CLZedBSB1B/qma2agsb4qqc0wVodOvrBto4aILeMXyQCS2qpUelQdj6xq3HT8VK1hbPeSqjh7mgBgwLRS17DLzgIqxvdebulo0aWU7w/+/yoA90gpdwDYIYT4cxbvVy+lfA8ApJTvCSEmpXuhEGIpgKUA8JGPfCSLb0VUGLnO3UjERkdfCIBEdyCMZQlLe6yZ14Q7nmjDgcM9aO8OImINbRRm2xJtR3rHvHFCpW08+WvbEsFw6g3tP3xCGa49/1Rc88s/JY2YfqOjDwcO9wCIjkgRADp7Q7wxRsct89xVczNTKm6Z5m8mnQpjvUZoSH0MDL4mVQf6kq37sHPFbFd0rCRi26bwMs3dsGWnbC8ktlWpuEUiNl470jtiWcIz66sKNjskk/x1Y9yUf26rYWz3ksoyyV/OniYAgEhz3ZJFGrjljK0LIWKdPhcBeDrhuZx2Bkkp75FSzpBSzqirq8vltyJyVC5zNxKxcej9ANr+3otQ2I53sgBDm4Mtv+A0ANGb2HrCSehoIJTyxsnRQMjRGEltmeZv7ObWmx2BlBsil3n1EZvX3fTwwfh6wLGOl7ff78fc9XvRdqQXttt3kyRXyzR3Vd3MlIpbJvkbq7tz1+/F7DXPpKydti1xqCuAl989hvbuIF5+9xgOdQWSXiOlSHkMxJa8NiNWyptJZsRy+Kc+fmzbFF6mtdejiZTtBZ03TEpGR18o3lkBRI/X5fe3DA4gK4xM8teNcVP+ua2Gsd1LKss0f2Ozp0+uKUddlY+dLCXIyRrmlo6WXwF4VgixC0AQwB8AQAjxcQDHsni/I0KIkwbf4yQAHWO8nogSvN9vorM3hFW7XkZPMJzyRki13ztivXUAGAinvnEyEOZIQhq/2Ijnx/7yHu5e2By/8Gio8WP9gukYiKQe9XXKRD+2LZ2FVXOm4PbH26AJEb8x1hUwC/GjUImx0mysaHFjRXK5dDNNEmtnT9DEkQ8GsGrXy7jqnhewatfLOPLBAHqCQ6+x7NT12Rq8YomtiZ3IrWtis22jDp9Hw/oF00e0F3ycEVAy0s0ICLt8VpOqcZOzVK1hbPcSkcqcrGGuWDpMSnmrEOIpACcB2C1l/CfREN2rZbx+C+BaALcN/rvLkUCJSoBtS4Qidnzz2kqfJ+XmYA01fjy45DzYUiKxw18XIuXrdQ4KoCzERjxfNKUeP33q9aQ1M3/29Bu46eIzU+ablMBtj70GALj+otNRW2lg49XN2LDnTVeOlqbik74WshiSu2Uy0yRoWvF2Quz5mx4+iG1LZ8XXMdbSHAOxNkON34sHl5wHMxJtR9gSMDwCNX5vbn/ALLBtow7TsvHoS+9i86KZ0DUBy5Z4eN87uHb2qYUOjfIkNiNg+PHqcfkIZVXjJmepWsPY7iUilTlZw1zTLS6lfEFKuVNKGUj43OtSyv2jfZ0Q4lcAngfQKIRoF0J8E9EOli8IId4A8IXBj4koA10BE6GIjbpKHzZe3Ywyr4Y185qSRtWsmdeEH/3uFbzbHUS/aSVNp/MbOtbOT3792vlN8BvuG6FK7hcb8Vzt92J3aweW3deCq+55Acvua8Hu1g5Ulum4e0HyTJe7FzTj4X3v4IdfnoIfzPkEVu16GZ//199j9SOt+NHlZ6HCx1yk3CvzaiNmYd29MFpTidwsk5km6Ud9DX0sBFK2H2L3DHtDJo71h7Fo859w4Z3PYtHmP+FYfxi9oeRZh7Yt0dkbwrvd/ejsDRVk+Ue2bdTymcZ6LN7yIi6881ks3vIiPtNYD97qKx1+I/X512+4+/yratzkPBVrGNu9RKQyJ2uYK2a0HA8p5dfSPHVRXgMhKhK2bcPv1fD9Sxpx08MHsWrOFOxoOYzNi2biWDCMroCJO55ow4HDPWh9rxerL5+KE8qGRp9W+w3UTyjD6sunotzQ0W9aqJ9Qhmq/UcCfilRVW2Fg6zfOhS2RcoRB34CFnz6dPNPlp0+/jnnNp6A7EMaqXS8njbhe8cB+PPit8zChjBvcUW4NhO0Rs7B++tTr+OFlZxU6NKJR1VYY2HTNjBEbv9dWDJ3Hy7x6ypqcfDEicO9zbyUdA/c+9xZu+fJUAEC/aeO6B/Yn1ejrHtiPbUtnoWZwVoxbNqFn20Yd6dbY3rZ0VoEjo3wJRWTK8++PLp9a6NBGpWrc5CxVaxjbvUSkMidrmPIdLUTkHNuWOBowUW7o8SVBNux5E9+7uBHHgmHM3/B80uvbu4MoN/T4eutAdCOxybUVqCrzwoxYMDw6ait4U5uyF4rYWPdkG+68YhpufOil+M22tfOb0BeKYHdrB3a3Jm/F9c1PfwwAUo647ugNwW94UFfly9vPQKUnYsuUufnPl04pUEREmdE0gcb6KuxcMTvteXyi38CGhc3xjZsbavzYsLAZExM6HjyawOLZp8bbE7G6HVsGJ2KnnhUTSWhTpNsvZueK2Xmt4WzbqMNKk1cWd2QuGWbETnn+/cGl7t7rRNW4yVmq1jC2e0llti3RFTDZxithTtYwdrQQUVxXwMRP/uN1rJpzFu68YhrClg1dE6j0eXBCuZFy9Gq/acVPQsNPUCed4OcJio5L4k22zl4T25bOghmxYUvAowu8d2wgZV72BMMwdC3lc10BEyedUFaIH4dKCNdaJ5Vpmhi1I+P9oIm7ho36uuup1/HjuZ/EpKpofTUtGzv3J68zv+n3f8X1nz8dQGbHSCb7xQD5uUAe63dC7sDaS3qaHHD7NYmqcZOzVK1hqsZNZNsSh44G8Pb7/fFZyx+dWI7JJ1aw/pYQJ2sYF0wkojjbtnHt+afia5tewFX3vICbf/MXAMC/7HoFP37kFWwctmbh2vlNmFjhhd+rxZf3mLt+L2aveQZz1+9F25HegqylTsVj+E22o30mrv7ln3DRvz6LBf/+R0ys8I5YS3PNvCbsaDmMUyZGR1inei5xrwGiXChPs9Z6OddapyIwELZS7ps1EB4aee3VBOZOPzlpnfm500+Gd/CCZYI/9TEywT90jHg9Wsr9Yryeodew/UGJKspS51VFGWtvqfBqIuWeSl6X3zBTNW5ylqo1jO1eUlV3fwhHegewatfLuOqeF7Bq18s40juA7v5QoUOjPCrzali/YHpSDVu/YHpp7tFCRM6xUqwJG9unZdl9LTi1thwPLjkP4YiEJqI3vat8XtSU+9AVMLHuybak0a3rnmzDrXObOAKUshbblLm9O4jlF5yGbz+YvJ7/N7bsw9r5TVg1ZwpqKwycdEIZJICvnftR3PTQQZw7uRoPfOs8dPaG0BUwce9zb+GGLzQm7TVAlAvBsMQjf25PGs3/8L53cO3sj6Gm0MERHSddpB71pSfcD4zYMr5sGDDUpoitM987kP4YGZwUA0MXWL9gOlYM7uUSu+gxEr4R2x+UqG8g/RrbJ/jH/npSn88rcGKVL2lPpROrfPB53d1hoWrc5CxVaxjbvaSqYNhO2V79tcv3RSJnWTbg8whsWXwuNAHYErBsC1YWq3eyo4WI4myZek3Yan90s/uNfziEOdNOxt+ODeATH6rC5BMr4stzxGbDxDpqYrMHbJvrClP2aisMbLy6Gcvua0G135syPzUhsOy+FgDAszddgAX//sf46w4c7sFbXf1YNecsVJd7cctlZ+FDXNKO8iBs2dj4h0PY+IdDSZ//+qzJBYmHyEleXcPa+U0j9l/x6kOjvtLtwRJbZz6TYyQQsvCzp99IuuH0s6ffwA8vOwvV5dHXsP1BibhPAPWFbDz84juYP+MjQzd8X3wHV59/arxuuJGqcZOzVK1hbPeSqlTdF4mcFQxbuHnHy1h+wWnxa44Ne97ET7569rjfix0tRAQguvSGbUt8ccokzGs+JV5cdrQcRk8wDCA6WvVYMIzVj7SO2Ig2YssRs2FW7hgauUqUDU0TOLHCwKo5UzC5thybF81EuaHHT3ydfaGk/JQSIxpKu1s78M1Pfww3PvQSdq6YzU4WyguPJlLWU65VTcVASomaCm/SqK+IbUHKoYtSv1dPeQyUeaNLN3rTrIWcuEyOJVPfcPrBnLPi/2f7gxKx9pJly5Q3fBe4/IavqnGTs1StYarGTeRNs69r4uAhKn5eXaCuKnnVk7oqAx59/DWMHS1EBCC69MYDLxzCdy48HdcNW6Lj/uffjo9WnVDmxQPfOg9mxEJnbyg+o4UjAShXNE3D/kNdaKj2Y9Wul5NGT5cbOm75bSsaavzYsngmvLrAw8s/ha6AiQ173sSBwz1oqPGj37SwcWEzlwyjvCk3NHznojNw3f0t8ZzlWtVULLweDb3BCG7YPpTf666chkmxNb8AGB6B/37h6SOX/fJEL1g8g/sRDJ8Vk3hTpsyTprMmYY8Wy5aoq/QlzXrZsOdNtj9KFGsvpevEdfsNX1XjJmepWsNUjZuorsLAhoXNWJ6QuxsWNqOO9w1Kik/XRtwLvXvBdPiy6HBj1SMiAEAoYmH65Np4YQGiHSUrHtiP6y44DavmTMHO/e9CAljw738cseGsR0+9Ya2HIwHoOFWXeXD1+adi2WDjBxhaO7WqzIubv3Qmfr30PIQiNq665wXM3/A8Vj/Siu9d3IgvTpmEjVc347RJFWiYWIaeoIl3u/vxzvsBdPQOcLNkypl+045fbALRnL3u/hb0m1zOiNQXsSVu2P5SUn7fsP0lRBJqaiBkxTtZYq9Z8cB+BEIWAGDAsnH749G9VbYtnYVVc6bg9sfbMJCwGLLhEfjOhadj9SOtuOqeF7D6kVZ858LT4501AFDm1XHLl6fAGGxvGLqGW748JT5zBgAiERt/6wni7a4A/tYTRCTC47BYsfaS39CwYdim3BsWNsPv8hu+qsZNzlK1hqkaNznLtiU6e0N4t7sfnb0hJa61vV4dZ9RVYNvSWXj2pguwbeksnFFXAW9CO5KK30DEHnEv9LoH9mMgi2sGzmghIti2hABwyrBRVEC0wPQEw1h2Xws2L5oZ7+mPPbdk6z78ZsX5qKswcPfC5hGjWDgSgI6HbUu83tmHoGmlzM1jwTD6TQsRC+j4IITzP1aLi6bUo9rvRb9p4QdzpsCM2Hjg+UO4YuZH0NkbSho9vemaGWisr+JyYuS4sfanIFJZOGKnzO9wwsVI2pmug8uLeTQt9RR9beimYn/ISnnRs33prPieBboG9JvWiBmPsXEekYiN1470jhipeGZ9FTwe3sAsNqy9FLYAy7aTNpW3bBthq9CRjU7VuMlZqtYwVeMm59i2RNuRXizZuk+pa23blmg/NoC3u/rjtTdUW47JtRWujpuc5WQNY0eLS02++dFxf82h2y7NQSRUCvpMEwBQ4fNg86KZuOupN3DgcA+A6GiqE/xeNNT4MfnE8pTFZyBsoQcCP33q9aSlO3761Ou4dW4T6jgagLLUFTCx7L4WrJ3flHJ/ltpKAz39YRz5YAB+Q8e3PnMqvrFlqHF394Lp+OnTb+Cmi8/E4feD8RtxwFBH4fD9hoic4NXTrFWdxTqvRG6jidRL3GhiKL/Trtc++BpDF7jp4ka0dw8MfqzhposbYSQcI+E0Fz2JM2cGwna8Az32/E0PD+3R0tEXwl3D2id3PfU6bvnyVHy4OnkmLqmPtZdMy8a3Hzwwoj792uX7NqkaNzlL1RqmatzknK6AGe9kAdS51u4JmujqCyUN2Fl35TRUl3sxscK9cZOz0l236Fl0trGjhajEmWYEb3cNJM1EWTu/Cbc/3obOvhDWL5iOckPHv111Now0G4VpEDAjVsoNa394mQXblugKmDAjFgyPHt/XhWgsZsRCXaUPmhAjRivXVfnQHTBHfr7Sh/buYHzk8+ZFM1Hm1XBipTFiDf8Dh3tgRjhUkJxX5k29VnWZ150j6FmnaTw0Aay7clp8+bDYRWliyng9Wso9WryDs0gsW+Jo38gaPqHMG38PT5o9CxIveiyZZo8WGeuMkVjxuY+jOxAGEO3QWfG5j0NgfCPUeIyoQbXaS86z0+zb5PYlbFSNm5ylag1TNW5yjhlJvQKF26+1B0wr5XK425fOAioKHBzljT/NPlPZLN/JqkdU4joD5oj1VG96+CDu+to5WDVnCgSiS3JIKVHm0bB2flPS2sFr5zfhvWMDEIOjWxM11Pjh9WhoO9KLuev3jtjXhWgsQghcf9HpuPGhl0bkqN+rJ438i31++QWnxb8+trzYB8EITij3Jq3zH9vDJWJLrtdPjgumWas66MK1qm1b4lBXAC+/ewzt3UG8/O4xHOoKsE5TWjYkqvwebFl8Lp6+8bPYsvhcVPk9SMzuUMROuUdLaLDehm2ZciZKOCHvPJpI2e5I3By6zKvjn/7hzKT6/k//cGZ8jxZdCAQHlxa76p4XsGrXywiaVtLsmzF/3sHlMNiWcT+Vai/lhs+j4fuXNCbVhO9f0gify5cKVDVucpaqNUzVuMk5hkdPeT/I8Lh7dZN0S0ZF2MYrKU7WMJ61iUpcuhNL2LKx+pFWHO0z8beeaK9+yJKoq/Jh9eVTsW3pLKy+fCr8ho7//X9fhS6QcgNHXUPKKaRdATPvPyupRwiZdsm6dLlb7R8aDd1Q448uP3Z/CyJWdKRg7HUrdxzE//zSJ3Dro63427Egb5iRo1RqtPcETRz5YCDpRvSRDwbQE2SdptR0oaE7EMaizX/ChXc+i0Wb/4TuQBh6QudFuj1aYrV2rOeB6FI6O/e/i82LZuLpGz+LzYtmYuf+d2FaCXvBWDLlSETLir5PJE2HzvBjcbQNXI8GQinbMkcDoex+gZQzKtVeyo1Mj3m3UTVucpaqNUzVuMk5tRUGNl0zI+l+0KZrZqDW5Xv2alrqAcOctVxanKxh7GghKnGeNCcWAFg7vwknVhq4c/fr8c6Xzt6hmwqmZeNHv21FZ18IlkR8DfRtS2dh1ZwpuOup1xEIqTmFlNwhdi8tVY6aETvl5/tNK/7/NfOasGHPm2jvDuL9gDlitktPMIzdrR3o6A3xhhk5Kl1t9biw0R40rZQ3d4Im6zSlZlqp90VJ7ADxjnEMpDtGEpcFM3QNc6efjMVbXsSFdz6LxVtexNzpJ8PQhy5hTMtOO2AEyGxzS9uWaPv7sBkrfx+asTIQTt2WGQhzpK7bqFR7KTdU3ZRb1bjJWarWMFXjJudomkBjfRV2rpiNvSs/h50rZqOxvsr1HRaZzJ6m4udkDeMeLUQlzLYlfB4Ndy+YjusS1lC/e8F0TCjzIBj24oNgGDd/6Uz0mxZ8Hg23P96G713cGF/KKTZSQRdIuUfL6sunptzE3O1TSMkdvJpAIGRh/YLpSev8r5nXhE2//yvWzGvCyh0H45/feHUzaisM7LnpAhztDWH7i4ex/ILT8KEJZaipMFA/wYeNVzfH87DS58HDyz+FE/xehCM2bFu6vjFIakhXW924BIgl09zc4b0dSiOT2Sg+b5pjYHC9do8msHHhdHT0mig3dPSbFiZVGUkXNJZMPcJ7+7KhzaH1NPu4aMM6dEbb5+VoXwjr/qMtaW+Edf/Rhh//t09i0oQy6CLNe2RxuuBeL7mlUu2l3MjkmHcjVeMmZ6law1SNm5ylacLVG9+nIgCUGzpWXz413h4tN3Sw8pYWJ2sYO1qISlRsvfGqsmiHR+KJxefVYEOiPxSJ3+CI3cQGgDueiN6MOH1SJd7u6kf9BB8sG/jilEmY13xK/CbF/kNdOJpis/L6CWWun0JK7uD1aBgI2/BoGrYtnYWILfHa33txxxNtOHC4B2909GHt/CacMrEcli3x3rEB/GDny+jsC+GXi2bgypmn4B+3/Tmpg2ZHy2F8/5JG1FYaWPvEa9jd2hHfpNlv6JhYoVbjkNwpbNvQNJFUWzVNIGy7bwR82eCaysNv7pTx4pjSMHQtZc54E2aanFBmIFBuYcvic6EJwJaA4RE4oSx6/i/zCkiIpDbChoXNKPMOXdqGrdSbQ0cSegGNwZGIie2VtfObYAzenNTTdOgk3ryM2DauPf/UpI77NfOaYA0er35DT/k9/EbyoJGxOlFiba/YMmSxwSoqjPhUhUq1l3LDown85Ktn47u/Hmr//eSrZ7t+dLKqcZOzVK1hqsZNZENi+NgyCYCZW1qcrGHsaCEqUV0BE0u27sOvlsyK99rGNNT48cC3zsOmP/w1aRTpsvtasPUb50IA8ZHOdz31Bn7ytXNwUpUP1190BpYPbiAVe48F//7HESNRf7PifN5QoIxU+w30lIXxdlc/bClRU2Fg9SOtI0ZSf/WeF+J5d+cV03DbY6/h3e6B+A08YGhfllVzpuCmhw/ijiumxWdgxTZp3rZ0FlCRm5+Fo5hLi7SBZfe1jKit25fOGuWrCsOjC6y7clp8n4uGGj/WXTkNnmyG61NJqKv0YePCZixLOOdvXNgc3wcLADweDR+e4EdHXwgRy4ZH1zCp0gfPYAdeX8iOtxmAaB1efn8Lti2dhRPKo+9RNrg59PAOjqTRZUJgYoU3qUPHsi1gcL8Yry5gSyR16Ny9YDq8CfktJeKdLLFYVu44GD0nIHouqp9QlnTxVT+hDNX+oUEjmXSixNpew/d62blitqMjQCMRGx19IYQtG95hv/dip1Ltpdzw+wQm+L1Jx+sEvxd+n7vPaarGTc5StYapGjeRbQPrn/kvzGs+BeXQYVo21j/zX/jhZWcVOjTKIydrGDtaiEqUGbHi6/6mWv6jszeEmy4+E9+58HSUeXX0hSLo6A3Bqwt8bdMfk27GHTk2AEg54oZJZ28o9brpEY4PoMxomsDk2gpUl3vxXs8A/tfvXklaLuz6i04fsazMjQ+9hH+76uy0uV3t96K9O4gKQ8fGq5uTRknnaqkkjmIuPWE7zUh8F661HjQtPLSvHZsXzYSuCVi2xKbf/xXf/fzpOet4JLVpmoB/2DILfkMfUc88Hg0frvanfI9MNp20JNIsHfaphPex0dMfwY0PDXX63HnFNEwo80bfw0bSgJL27iCue2A/fnPd+UPfJ93eCFLGf95Tqv3weTREbAmPJjCp0pf08x4NhLDuyWHLjz3Zhh/P/SQmVZUBGGp7Df8+Tu5bF4nYeO1Ib9LAlw0Lm3FmfVVJdLaoVHspNwIhicWbXxxxs+Sh5Z/ChLICBjYGVeMmZ6lahwLuhgAAIABJREFUw1SNm0jTkHJWM6/RS4uTNYwdLUQlSgyuN55ubfOugAm/oeODgUjSOoXrF0xHXaUP7d1BtHcHccP2l3DbVz6JjhSdKl0BM+V7c38WGg9NE7BsxEdOd/aaWDVnCmorDNRV+VLetKqtNHDkg1DK/JtYYWDZ/zcZEojPjomNkq7w5eYmVL5GMZN7+NKMxDdceKPTb+jxDcdHWxaJKKYrYOKaX/5pRH0dXtPCYSs6oyWhc8LrjeZVuv0IEpfJCY+x0T0QnY0S2zcu9vyND70Un40StuyUF06J71HmTbd8XjTWSMRGW0ffqJ0Xlm3jm5/+WNIedndeMS1pI2sjzTJ9TraLOvpCKWcKbV/2qbSdXsVEpdpLuRGOpKkbLh/opWrc5CxVa5iqcRNJKXDvc28ltRPvfe4t3PLlqYUOjfLIyRrGqkdUgmxbwqMBmxfNgBASP//6dDTURC++E/exMHRtxFIaKx7Yj+UXnBZ/r/buILy6Fu9USbSj5TA2Xt2c9N6brpnB/VloXGxbYiAciefhgcM9WHZfC+ZveD7eUZioocaPQ0f78ZGJfvzbVWePyO21T7yGr8+ajBXDRjjf9PBBWM4NKk6Sj1HM5C62nXoTb9uFI/siaWLlKERKJ5OaFg5beK2jD1fd8wI+u3YPrrrnBbzW0YdwOPqackPD3QuT2wh3L2xGuTF0eZKuxifurzLWbJQyb/TCafUjrbjqnhew+pFWfP+SRpR5h75PdZkHG4bFsmFhM6rLomPS0nVedPSF4u8h7dQdPjLhOKqtMLDpmhk5bRel65yKWKVxs1al2ku54UlTN9y+14mqcZOzVK1hqsZNzrJtic7eEN7t7kdnb0iJv78uojNaEtuJ155/KriCcmlxsoZxRgtRCersC8GyJLoCYQS7B/DCm53Y+o1z8X7ARFfAxL3PvYVrzz8VfaFIyov1ar83/nFDjR89wXC8UyW2rmFDjR83fKERp9dVYueK2TAjFoQQ0EV0JCz3p6BMxJbcqvR50o58vnvB9KRZV2vmNeGOJ9rwv7/ySdz66KvYvGgmjgXD6AqYuOOJNhw43IOlnzktZW73mxZsW46am9nstZKPUczkLuEMlkVyC46izZ1i3ZvJ69FS1jRvwqivjr4QrhvWOXHd4B4sJ9eUw7KBiRUe/GrJLNhSQhMCmiaR2B9g6Frqje71oe+TdmbM4B4tobCdevmxhDWXPwhFUFmmJ+3z4tGjnz/R8GTUeZHJUmiaJtBYXxVvF2WbE6PllVdP/bfx6KUxvk6l2ku5oWkiZd1we+1VNW5ylqo1TNW4yTm2LXGoK4C3u/rjy8p+tLYck2srXF3HNE3D79uOJC2h/PC+d3BG/ccLHRrlkZM1jB0tRCXGtiXClgXbBgSim9nf/KUzcdtjr2Je8ymorTDwL5edhf/1u1cwr/mUlBfr/aYV//+dV0zDL/7zryM6VRIv/GsrDO5PQVmJLbn1qyXnJe3NEutQ6R0Io6Z8aOPQnmAYdzzRhs6+EN55vx9A9CacNewEmW5Zu7eOBlDh86RdzivbvVZio5iHfx1ndxWvdDd/dRfWPHYE5kYx783kSXNDMHHk9VgdD6YlcdXGP47Iu8T9V3xegboqX9JeMHVVPvi8Q9/Ho2tYd+U03LB9aMmudVdOi3cspLtwCifuBWNLvNczMOLn+diJ0U2KMum8SLcU6/BjXtPEcS0ZOVZelRsa1i+YHp+1GVv2NXGm0Hi+l2odhSrVXsqNUMTG7Y8n75d0++Nt+MlXzy50aKNSNW5ylqo1TNW4yTk9QRNHPhjAql0vJ7Wlqsu9mFjh3qWya/xeXHZ2Q9ISyhsWNqMmYXAxFT8na1hpDG0ioriugImBsISuCUhEZ7fc9thrWPqZ09BYX4XqcgNBM4L/fuHp2NFyGGvmNSUtcbFxYTOmnFSF33//Ajy07FOYXFuOW+c2oXFwnfK6Kh9OrilHXdXQJrHp9qfoCpiF+jWQImLL0wyE7fjaqduWzsJtX/kkDF2DECI6Q6rSwI0PvYRl97Wgsy+E9Qum46MT/bjzymn4P4+9Gp8G/L2LG3HOKdXRGVjDlolZM68Jdz31xqjLeWWby4mjmPeu/Bx2rphdFDdbKT1/mmWR/Fnc7My1fCxnVIqK+dwXNK34DcFtS2dh1ZwpuP3xNgTNofo51jI4UqbuAJFyqAMkELJx++OvwRycOWJa0Y8DocQ9WiQMj4bVl0/FtqWzsPryqTA8Wvx9MlmOJ5xmuYBYZ0yFL/XxnLivV5kRnX2T+Jq185tQNuyYP95lNboCJtY9mfy7X/dkWzyvAiEL9z//NjYvmomnb/wsNi+aifuffxuB0PiWqox16Mxdvxez1zyDuev3ou1Ir+uXAVGp9lJuGLqGzr4Qlt3XgqvueSHeNvS6fFaXN03cpTIbjaJUrWGqxk3OCZpWyrZUYtvQjbqD4ZTLw3YHwwWOjPLJyRrGGS1EJSQctmBGLHh1Aa8uMLHCGx+RGrZsvHcsGD85fnHKJNz8pU/AqwtsXjQT/aaFqjIPJlZ4UV0+vhEJ3J+CsmV4dNwy50xUlnnw3c+fgWX3taCu0ofvX9KIG7b/OT7q5OdfPwdbv3EujgXDqC734v/831exu7Uj3oHS2WviwOEerNxxEKsvn4oTKw1EbDvlTJjRRvEfTy4f7yhmUotlA4aOpKWILNuCG7dJcGo5I0pWzOc+w6Pj3MnV+NiJFdA1gYkVBs6dXJ1UP8u8qWdWxPZGyWQmVdiysbu1A7tbO5K+/w8uHTqQQpaNW37biuUXnIZy6DAHP/7J184BAJxYbuDuhc3xZcxiF04nlg91JKbb5yXWqRAYsPDTp15PGmn+06dexy2XnYUTBvtwBATKDT1p9k25oUNg6DhyYpaTbdu49vxTR8zwtG07/nt97q9d2N7SnvR7vclzZkbvH5Ouo3DnitmuPpdFrNS1twgOO8pQXaUPGxY2x2+cxUYn11W6N28BoK7CSB03Bz2UFFVrmErtXsoNS0pc1dyAy6c3xJeE3bW/HZa7x2cUdXudMudkDWNHC1GJCIctHOruR/v7QZQbOk6u8eMbW/ahrtKHVXOmoKGmHF/b9EL8JLO7tQOt7/XiV0tm4f2ACQlgUpWBQMhC2AqN6yYcl6WhbJ3g0zH7jEl47b1eNNSU4cEl50FAJOVqe3cQ337wAG77yicRtiS+86sDSc+t3HEQq+ZMie8f9JGJ5ejoHcDtj7fhexc3xjcvHmsUv21LCJF6Silzmf4fe3cfH1dd5/3//T1zZiaTm9KQJgXaIqBQtrJlIRUL/tZVUURFWbdFVAKKbm9gvVl3F8Hdq5fusv6Wm3VZvIECPxeBooKgP7zwUkFc3GtR0AZWxGphuW0RmzSkNDeTuTvf64/JTDPJTDKZnmTOmbyej0ce7UzOzHzn5HM+53vO926yVNbTR2/pnRIr35ywLkSQ0BDov0Y+9y1ucrX+dUcW6xSj6ZzWv+7I4uLxkrQoHtVwc67kgiXqGi2K56diqGZKxWqm7GqKRoq9wCduU2jQ2Z8u30jy+feuVmfcrepzMp6t0OCzqvj/ZDpXtsHnyx88ScrPQOZL40XOqtjIUniPS+9+vDjlWrVTVc40LVhYbzykc+HKvfCf6zo6fmmb7tx0qrI5T27EUVdrXK4b7J710WhEK7tadcfGtcp6Vq5j1NUaVzQa/nMGqhfWHBa2ei/8d0giojNXH66n+4aLdcMzVx+uQxLBzr2NXF9H9fzMYTS0AAvEK2MZHdLkKrG0VTnPyhvvvbl7MKlNt/XqR3/1xvK9Oa3VkR0JvTyS0Tk3PFxTD0zWp0CtBpMZjaay6mqLqznmyhgpkyvf83jFoc3F/0/+3eLxOVYL82xe9YOdemzXPt3y02d156ZTx6eeqdyLv9AL+Zr7d05ZK4ZYRjmVeshPXi8oKMK4FkPQNfK5bzCZked5WnFoc0mvr8FkRl3jNwX3jWX1fP+QXt21SFnPKu4YPd23X81RV53RiBzH6DVLWqbcVJwYd12tcX19w+uVztri58Tc/HYFS1riuvUjp0xZfHXJ+Hzg6WyubCPJZ999oMGgOeaU7UleWNekmnmbY275Bp+JF+p+NF7MNOVaNSPUqhlZE9YbD2HLvZgbruvoiMWJmTcMmGg0omXtzfUuBuoorDksrOWGf8bSVoctiqo5GinW6xYlHI2mbHH0bxC1J6Jl64Cs0bKw+JnDaGgBFgDPs/JklfPyCSTiGDlSyQX0718ZK9+b0zGKOE5xNIA0+x6YTEuDWllJixKu4m5E2Vw+divd8DImP3VLud/tS2aKawz9avfLemzXPi1vT+hTb1upwxY1zRiLE3sh9w+lteWsVepoiemIxYmqXo+Fp1IP+SDOEd/Ii7bXUyOf+4yRjDHa9fKBxo1l7U0yE75aNGL1qs42JTOenPFG8ld1tikayV+wZLOe9o6m5Nl8rvestHc0pc6WppKe5/uT2SkXv0csKi1PIuboNV2tylmriDGa2BYQdSscixM+Y1FTTB2tOX1jw9ridBduJP98/v0jxalWJy7wmogd+KCOlljZBp+JDWt+NF5U8x4zjVCrZmRNWBsKw5R7AWCysOawaIXrs2gD1HlQndb41L+1U+H5IBlMZvTFSSOfv1gY+cxo/wXDz9wb7GwNwBdDqbRaokbeeG9HI2lRIt97s7DY060/e67kceFmRldrXJmsd9A9MAsX/cvam9XZFm+IG02YexHHKBrJ3zxyHSNj8v9OjtVr3/9HSmVyuvzeX+vKdaunxPHy9oS2nLVK1z7wpI7pWqRHPvOWWS1IP7EX8mO79mnTbb1av/VnstYSyyjrkKapcbq1p1uHNAUvXhp50fZ6a9Rzn+dZLWpyddzSVh12SJOOW9qqRU1uyULp2ZxKFraX8o8LVYehVFrpnFUq68nz8v+mc1ZDqQNx1zecKl78FhZ+/+IDT6pvOFXcZiiV1nAqp//uG9aeV8b0333DGk7liu8Tixhdd97JJcfideedrFik9G+xbzSrD9z0sP7k6gf1gZse1r7RbPF3ixMxLV3UpMvPPkF3bFyry88+QUsXNWlxorTRIZX1tOWeJ3TujQ9ryz1PKJUtndi50HgxsSyzbbwo9LycnFtm0/OympE1ExsKH7r0zbM6Z9ZTmHIvAEwW1hzmukbXTzrXXn/eyXLdYJcbKIx83nRbr8698WFtuq1X9+3oC/xUqfCXn7mXES3AAuAaq2Sm9Dkj6aiOuO7YuFaprCdjpMXNbtn5jMM6fQTCzfOsXklmFHMdOcZRxvPkOkYyUkdLVHdszPc8NsYo4TpK56z+7l2rFHedkqloctbqNy8NaeuDT0uS+van1NbkKuFU39eAYwC1OHo8xxZicXFA5ygO61oMqJ+mmFHWM8qlDzQkRF1Hk5dAaG92NTzmFacOa21ylBlvv8h50iFNEY2kDvy+Je5MWvDX6vPvPUHprFXWs1rentDJR56g7ISVVcfSnlxHJSNasl5OY2lPhySkkVRO+0bGSo7Fp/v2q6MlpsXjM/QMjKT1yNP9+vqEES0/3vGSlrTGiw1kKxYnFHeditOcVTNKxI9RTn70vKz2nBbWtZvCknsBoJww5rBM1ureX76omz/8OkUco5xnddf2F3TBaUfXu2jAtGJuRF96/2qd9KqO4uwvjz0/wHX+AuRX7qWhBWhwY2P5Oxo5z6pwWyLiGGWt5Bop61k9PzCqdM7TCUcsKjsvcFinj0C47UumZYyUznp6+uWR4lQsRy1JKGIcNUUdZXJSU9TRWCZ/oy7iGA2OjKm9pUlW+fiORhz94bJF+vIHT9JoOqsLv3Ygjm/9yClqbXKVyXoVb3h5nlXEkW7o6damCdPXHOwxwJoY1WNfza2YG9GtF3YX19Io3IjmAgPT+d2+lC6akBOv7+nWkYceuCnfFJUGRnPKjK+vkslZZa1VR3M+ruJR6ff7M9r9crKY35cfmtBhiw6MzGhtcrSnzDZLJ2wTdY0WuVGNpT15VnKMtCgRVSFDNMedslOYNccPXDxFHKs3rzpM6Wx+m6zNP4441U9zVm2DZSaTUzqbU9azUjanTCanePzAJVk266lvOKVMzlO0zCLe6WxO/UOlo836h9IlnzNTzqy2XkfuBQBUw3GkN65cqgu/9ovieeXKdas5ZyDwFsUiOu3YTo2Ndx4ykk47tlOtXAehRg3d0GKMOVPStZIikv4/a+0VdS4SMO9yyup3+zPaO5QqmVv8hvPzN0Rcx2hJa0xf+vFTOvnI1WXfo5HnmUdwJdM5RSOOXhxMass9T2j3YFJnrOrSJ04/Tv/rv17Qu05cpkefG1D30UtKbvbdfOHr9NIrY/r4Nx4rPvev5/6RbvyPp/Xxtxyr047p0J29u9XZGtee/WO64N9KF7afODXKxLUrOlvjuvzsE3T0khY1xyNa0lL7NECsiVG9MO+rZwam3og+piN4vcPbohG1tyZ07o0Pl5S1LcoFBsobHvOKsS3lGxQu2tarOzauLS54OpaRXhnN6OLbHy3G1XXnnayWaEStTdJoymrvUKqY3wvrniyKu2pryr9HcpptFo1vE3GkF16u3OiTy1UuR4HnTb/NUCqtvcOZKZ/R5Dpqd/MFqWaUSCqV1ZN7R6a8z3FLWhSPu8pmPf12z9CUNWmOX9pWbGxJxCL69JkrK64XU03OrKZeR+4FgPoIYw6LOI5u+emzJaMtb/nps/rH9/5hvYuGeRTG2B3zshU6D0nxxr5ljkn8it/gj0GskTEmIukrkt4haZWkDxhjVtW3VMD825f0tPvlZPGCXMrfENl0W6/2Jz21JRx96cdP6VNvWzlt7/xGnWcewZWzVkamJHbXda/Q5m29Wr/mSF18+6N6y6rDp9zs2/1ystjIUnjuL+/4L63rXqGLbn9UG954jCRp85tePeW4mLwuxcSpYB7btU8Xfu0X6vnqIzIyB3UMsCZG9cK6r/Yly9+I3pf0Znjl/BtIpsuWdSAZ7H2M+sl6tuzojeyENVpSWa/YcFH4/cW3P1pctyTj2Sk5+JK7HldmwntUs02lRp/hMa+qclSzzWi6/GeMTpg6rZr1V/aOlj/W9o7mj7W+4VSxkaXw+83bekvWpMlW2CeFfV9tzpypXkfuBYD5F9YctqQlrk+9baUuv3eHzr3xYV1+7w596m0rtaQl2DfZ4Z+wxu5M9UgsDH7GbyM3z50i6b+ttc9IkjHmm5LOlrSjrqUC5lnWs2qORSreEPnN70b02Xe/VocfkqDxBIHSFI1oNFU6FcviRFS7B5OKOEa7B5Py7NSbfZXifeJrJ77X5O0mTr8yV2tXsCZG9cK6r6q5ER0UYSorgsF1TNnRG+6EesRMcZWr8HtvQtxVs81Mn1NNfPvxHtWMEpnpfTI5r/zvcwcu8jLZ8ttkxhuF/MqZ5F4AmH9hzWHMgIGwxm5Yyw1/+RkHDTuiRdIySbsmPN49/lwJY8xGY8x2Y8z2/v7+eSsccLCqjV3XMfk5zcd7WBYUboj89bd+qZgboRKEeVVN/C5picuNmJLY3ZfMaHl7QrnxRZEdY6bEdqV4L7y2cK6stN3EaV4KU8FMt00t5up9G1HQ9tVscm+lvBs0YSorDo5f9d4lzTFd39NdMnrj+p5uLWk+MHoj6jhl4yrq5C8/mioc2/EJx3Y128wUv9FIhXJEDlwGzbRNtcfITKNEai2rO6GsM+VEv3ImuRfwD/ccUK2g5bDZxC4zYCxsQYtdqbr4DWK5Mf/8jANjbWO20hljzpH0dmvtn48/Pl/SKdbaj1d6zZo1a+z27dunfd+jLvuer+Wst+eueFe9i9Do5iU7Txe7Y2NZ7dqfLLtGiyNPMpFQzLeNeTdvATFd/Gaznnb2DWnTbflhnAfWaNk97Rotw2PZsmu0fOL047S8vUkjqZwSsYj27E9NO//8XM1RH+a57+dbjfsqELn3qYGpazEc29GipqZgDSiead0IzKtA5N5qpFJZ7R1NK+vZ/HpvzbEpi7pPt96I51n99vf7tfG2A7+/8fxuHX/YopIcPNM2fqx7MtM2mUxOv+0bnvIZx3e1KjqLtYz8KOtMOdGv8wu5FwtMaHIvGlsNOYzYRSDUeP6te/xyHQTJ39zbyA0tp0r6nLX27eOPPyNJ1tp/qvQaGlowB+p+wSnlk8YrqYwynpXnWcVcRy1xo7GMYUgvKql7pafA86wGRtLFYeiLm1ztHU0rYqRMzqop6mgs4xVv9nUkYiXx7kYcGVlJRp2t8eLNqnLvXe54qGabWszV+zaiGvZVYHLvQDJdEptBvdE3001zzJvA5F4/ZLOe+oZTyuY8uRFHXXOUg6tp9JmuHNVsk8nk8r8f/4yu1visGln8LOtM+8Sv8wu5FwtIQ+VehNsscxixi8Co4fwbiPjlOgiSf7m3kSPnF5KONcYcLelFSe+X9MH6Fgmoj6Ymt2yCaGuqQ2GAWSoMQ5/o8EMSFbbOq/aGSrn3rmWbWszV+zaisO6rpiZXy0Jycy8ed7WMCwr4zHUdHbG4cr72KwfPFL8zlaOabaLRiJa1N0/7HtXwo6wz7RO/cia5FwDmHzkMYRXW2OU6CJJ/8duwkWStzRpjPibph5Iikv7NWvvrOhcrcGoZocMoGAAAAAAAAAAA8hq2oUWSrLX/W9L/rnc5Gg2NMwAAAAAAAAAA5DV0QwuCg8YZAAAAAAAAAEAjcmbeBAAAAAAAAAAAAOUwogULHqNtAAAAAAAAAAC1YkQLAAAAAAAAAABAjYy1tt5lCAxjTL+k52fYbImkvfNQnLBjP+XttdaeOdcfUmXsSvxdKmG/TDUvsSst2NzL95lb5N7aUda5UW1Zg5Z7/dKIf6sgCFpZyb3Bs9D3QVhz70L/u0nsA6m6fRC02JX420nsA3JveLEPDjL30tAyS8aY7dbaNfUuR9Cxn4KJv0t57Jfga7S/Ed9nYQnT/qGscyNMZZ0LYfr+lLVxsH/YB2H9/mEtt5/YB+HdB2Ett58W+j4I6/cPa7n9xD44+H3A1GEAAAAAAAAAAAA1oqEFAAAAAAAAAACgRjS0zN6N9S5ASLCfgom/S3nsl+BrtL8R32dhCdP+oaxzI0xlnQth+v6UtXGwf9gHYf3+YS23n9gH4d0HYS23nxb6Pgjr9w9ruf3EPjjIfcAaLQAAAAAAAAAAADViRAsAAAAAAAAAAECNaGgBAAAAAAAAAACoEQ0tAAAAAAAAAAAANaKhBQAAAAAAAAAAoEY0tAAAAAAAAAAAANSIhhYAAAAAAAAAAIAa0dACAAAAAAAAAABQIxpaAAAAAAAAAAAAakRDCwAAAAAAAAAAQI1oaAEAAAAAAAAAAKgRDS0AAAAAAAAAAAA1oqEFAAAAAAAAAACgRjS0AAAAAAAAAAAA1IiGFgAAAAAAAAAAgBrR0DLBmWeeaSXxw4+fP/OC2OVnDn7mDfHLzxz8zAtil585+Jk3xC8/c/AzL4hdfubgZ94Qv/z4/DNviF1+5uBn3hC//Pj8UxENLRPs3bu33kUAakLsIsyIX4QVsYswI34RVsQuwoz4RVgRuwgz4hfzhYYWAAAAAAAAAACAGtHQAgAAAAAAAAAAUCMaWgAAAAAAAAAAAGpEQwsAAAAAAAAAAECNaGgBAAAAAAAAAACokVvvAgBh4nlWAyNppbM5xdyIOlpichxT72IBmAWOY8wXYg1oHBzPQHiE9XgNa7kBifgFEG5+5TAaWoAqeZ7Vzj1D2nDrdu0eTGp5e0I3XbBGK5e2haYCcdRl35v1a5674l1zUBKgPhrhOEY4EGtA4+B4BsIjrMdrWMsNSMQvgHDzM4cxdRhQpYGRdPGgk6Tdg0ltuHW7BkbSdS4ZgGpxHGO+EGtA4+B4BsIjrMdrWMsNSMQvgHDzM4fR0AJUKZ3NFQ+6gt2DSaWzuTqVCMBscRxjvhBrQOPgeAbCI6zHa1jLDUjEL4Bw8zOH0dACVCnmRrS8PVHy3PL2hGJupE4lAjBbHMeYL8Qa0Dg4noHwCOvxGtZyAxLxCyDc/MxhNLQAVepoiemmC9YUD77CnH0dLbE6lwxAtTiOMV+INaBxcDwD4RHW4zWs5QYk4hdAuPmZw1y/Cwc0KscxWrm0Td+5+A1KZ3OKuRF1tMRY3A0IEY5jzBdiDWgcHM9AeIT1eA1ruQGJ+AUQbn7mMBpagFlwHKPOtni9iwHgIHAcY74Qa0Dj4HgGwiOsx2tYyw1IxC+AcPMrhzF1GAAAAAAAAAAAQI1oaAEAAAAAAAAAAKgRDS0AAAAAAAAAAAA1oqEFAAAAAAAAAACgRjS0AAAAAAAAAAAA1IiGFgAAAAAAAAAAgBrR0AIAAAAAAAAAAFAjGloAAAAAAAAAAABqREMLAAAAAAAAAABAjWhoAQAAAAAAAAAAqBENLQAAAAAAAAAAADVqiIYWY8ynjDG/NsY8YYz5hjGmyRhztDHmEWPMU8aYO4wxsXqXEwAAAAAAAAAANJbQN7QYY5ZJ+oSkNdbaEyRFJL1f0pWSrrHWHitpUNJH61dKAAAAAAAAAADQiELf0DLOlZQwxriSmiW9JOktku4a//0tkv60TmUDAAAAAAAAAAANKvQNLdbaFyX9s6QXlG9geUVSr6R91trs+Ga7JS0r93pjzEZjzHZjzPb+/v75KDLgC2IXYUb8IqyIXYQZ8YuwInYRZsQvworYRZgRv6iH0De0GGPaJZ0t6WhJR0hqkfSOMpvacq+31t5orV1jrV3T2dk5dwUFfEbsIsyIX4QVsYswI34RVsQuwoz4RVgRuwgz4hf1EPqGFklvlfSstbbfWpuR9G1Jp0laPD6VmCQtl/S7ehUQAAAAAAAAAAA0pkZoaHlB0lpjTLMxxkg6XdIOSf8uaf34Nh+SdE+dygcAAAAAAAAAABpU6BtarLWPKL/o/aOSfqX8d7pR0qWS/soY89+SOiR9tW6FBAAAAAAAAAAADcmdeZPgs9bwQi0eAAAgAElEQVR+VtJnJz39jKRT6lAcAAAAAAAAAACwQIR+RAsAAAAAAAAAAEC90NACAAAAAAAAAABQIxpaAAAAAAAAAAAAakRDCwAAAAAAAAAAQI1oaAEAAAAAAAAAAKgRDS0AAAAAAAAAAAA1oqEFAAAAAAAAAACgRjS0AAAAAAAAAAAA1IiGFgAAAAAAAAAAgBrR0AIAAAAAAAAAAFAjGloAAAAAAAAAAABqREMLAAAAAAAAAABAjQLV0GKMOc4Y84Ax5onxx6uNMf+j3uUCAAAAAAAAAAAoJ1ANLZJukvQZSRlJstY+Lun9dS0RAAAAAAAAAABABUFraGm21v580nPZupQEAAAAAAAAAABgBkFraNlrjHm1JCtJxpj1kl6qb5EAAAAAAAAAAADKc+tdgEn+QtKNko43xrwo6VlJPfUtEgAAAAAAAAAAQHmBamix1j4j6a3GmBZJjrV2qN5lAgAAAAAAAAAAqCRQU4cZY/5fY8xia+2ItXbIGNNujPnHepcLAAAAAAAAAACgnEA1tEh6h7V2X+GBtXZQ0jvrWB4AAAAAAAAAAICKgtbQEjHGxAsPjDEJSfFpti9st9gYc5cx5rfGmN8YY041xhxqjLnfGPPU+L/tc1pyAAAAAAAAAACw4AStoWWbpAeMMR81xnxE0v2SbqnidddK+oG19nhJJ0r6jaTLJD1grT1W0gPjjwEAAAAAAAAAAHzj1rsAE1lrrzLG/ErS6ZKMpMuttT+c7jXGmEWS3ijpw+PvkZaUNsacLelN45vdIulBSZfOScEBAAAAAAAAAMCCFKiGFkmy1n5f0vdn8ZJjJPVLutkYc6KkXkmflLTUWvvS+Hu+ZIzpKvdiY8xGSRsl6cgjjzyYogPzithFmBG/CCtiF2FG/CKsiF2EGfGLsCJ2EWbEL+ohEFOHGWP+c/zfIWPM/gk/Q8aY/TO83JV0sqTrrbUnSRrRLKYJs9beaK1dY61d09nZWfN3AOYbsYswI34RVsQuwoz4RVgRuwgz4hdhRewizIhf1EMgGlqstf/P+L9t1tpFE37arLWLZnj5bkm7rbWPjD++S/mGlz3GmMMlafzfvrkqPwAAAAAAAAAAWJgC0dAiScYYxxjzxGxfZ639vaRdxpiV40+dLmmHpO9K+tD4cx+SdI8vBQUAAAAAAAAAABgXmDVarLWeMeaXxpgjrbUvzPLlH5d0uzEmJukZSRcq34h0pzHmo5JekHSOvyUGAAAAAAAAAAALXWAaWsYdLunXxpifK7/WiiTJWvue6V5krf0vSWvK/Op0f4sHAAAAAAAAAABwQNAaWv6+3gUAAAAAAAAAAACoVmAaWowxfyrpNZJ+Za39Yb3LAwAAAAAAAAAAMBOn3gWQJGPMdZI+JalD0uXGmC11LhIAAAAAAAAAAMCMgjKi5Y2STrTW5owxzZL+j6TL61wmAAAAAAAAAACAaQViRIuktLU2J0nW2lFJps7lAQAAAAAAAAAAmFFQRrQcb4x5fPz/RtKrxx8bSdZau7p+RQMAAAAAAAAAACgvKA0tf1DvAgAAAAAAAAAAAMxWIBparLXPV7OdMeZn1tpT57o8AAAAAAAAAAAA1QjKGi3Vaqp3AQAAAAAAAAAAAArC1tBi610AAAAAAAAAAACAgrA1tAAAAAAAAAAAAARG2BpaTL0LAAAAAAAAAAAAUBCohhZjzJUzPHf+PBYHAAAAAAAAAABgWoFqaJH0tjLPvaPwH2vtE/NYFgAAAAAAAAAAgGm59S6AJBljLpJ0saRjjDGPT/hVm6SH6lMqAAAAAAAAAACA6QWioUXS1yV9X9I/SbpswvND1tqX61MkAAAAAAAAAACA6QWiocVa+4qkVyR9wBgTkbRU+bK1GmNarbUv1LWAAAAAAAAAAAAAZQSioaXAGPMxSZ+TtEeSN/60lbS6XmUCAAAAAAAAAACoJFANLZL+UtJKa+1AvQsCAAAAAAAAAAAwE6feBZhkl/JTiAEAAAAAAAAAAARe0Ea0PCPpQWPM9ySlCk9aa/9lpheOr+2yXdKL1tqzjDFHS/qmpEMlPSrpfGttem6KDQAAAAAAAAAAFqKgjWh5QdL9kmKS2ib8VOOTkn4z4fGVkq6x1h4raVDSR30sJwAAAAAAAAAAQLBGtFhr/16SjDEt1tqRal9njFku6V2SPi/pr4wxRtJbJH1wfJNbJH1O0vW+FhgAAAAAAAAAACxogRrRYow51RizQ+MjU4wxJxpjrqvipf8q6dOSvPHHHZL2WWuz4493S1pW4TM3GmO2G2O29/f3H9wXAOYRsYswI34RVsQuwoz4RVgRuwgz4hdhRewizIhf1EOgGlqUbzB5u6QBSbLW/lLSG6d7gTHmLEl91treiU+X2dSWe7219kZr7Rpr7ZrOzs7aSg3UAbGLMCN+EVbELsKM+EVYEbsIM+IXYUXsIsyIX9RDoKYOkyRr7a78zF9FuRle8gZJ7zHGvFNSk6RFyjfYLDbGuOOjWpZL+t1clBcAAAAAAAAAACxcQWto2WWMOU2SNcbEJH1CpQvcT2Gt/Yykz0iSMeZNkv7GWnueMeZbktZL+qakD0m6Zy4LvlB5ntXASFrpbE4xN6L2RFSDyUzxcUdLTI5TboBR5feo5jVzJUhlAXBANcem51ntS6aVTOeUs1ZN0YiWtMTLbsdxjvmQTmfVP5JW1rNyHaPOlphisaBVvYDa+JFLq3mPbNZT33BKmZynaMRRV2tcrhu0QfkAgiSs59+wlhuQiF+EF7ELPwUtcjZLulb59VR2S7pP0l/U+F6XSvqmMeYfJT0m6au+lBBFnme1c8+QNty6XbsHk1rentDWnm598YEndd+OPi1vT+imC9Zo5dK2ihfe5d5jptfM5/epV1kAHFDNsel5Vs8NjGjP/jFdctfj027HcY75kE5ntbN/RBdt6y3G2vU93VrZ2ULFHaHnRy6t5j2yWU+/3TOkzROOo6093Tp+aRuNLQDKCuv5N6zlBiTiF+FF7MJvgbpCsdbutdaeZ61daq3tstb2WGsHZvH6B621Z43//xlr7SnW2tdYa8+x1qbmruQL08BIunhxLEm7B5PavK1X67pXFB9vuHW7BkbSs3qPmV4zV4JUFgAHVHNsDoyk9fzAaLGRZbrtOM4xH/pH0sUKu5SPtYu29aqfWEMD8COXVvMefcOpYiNLYZvN23rVN0y1HkB5YT3/hrXcgET8IryIXfgtUA0txpirjDGLjDFRY8wDxpi9xpieepcL5aWzuWIyKtg9mNTiRLTkcTpbeZmdSu8x3WvmSpDKAuCAao7NdDan5likqu04zjEfsp4tG2tZz9apRIB//Mil1bxHJueVP45yXg2lBrAQhPX8G9ZyAxLxi/AiduG3QDW0SDrDWrtf0lnKTx12nKRL6lskVBJzI1renih5bnl7QvuSmZLHMTcy6/eY7jVzJUhlAXBANcdmzI1oNJ2rajuOc8wH1zFlY81lijo0AD9yaTXvEY045Y+jSNAuYQAERVjPv2EtNyARvwgvYhd+C9pVSmEoxDslfcNa+3I9C4PpdbTEdNMFa4pJqTBv9t29u4qPb7pgjTpaYrN6j5leM1eCVBYAB1RzbHa0xPSqjmZdvX71jNtxnGM+dLbEdH1Pd0msXd/TrU5iDQ3Aj1xazXt0tca1ddJxtLWnW12tcR+/DYBGEtbzb1jLDUjEL8KL2IXfjLXBGQ5ljLlC0p9KSko6RdJiSfdaa18/H5+/Zs0au3379vn4qIbheVYDI2mlsznF3IjaE1ENJjPFxx0tsRkXRZ38HtW8Zq7MQVnm5YtUG7tHXfa9Wb/3c1e8q5YiIfzm7SCsJn6rOTY9z2pfMq1kOqeclZqijpa0xMtuF5ScgzkTiNybTmfVP5JW1rNyHaPOlhiLKmImgcq90/Ejl1bzHtmsp77hlLI5T27EUVdrXK4btL5iGBeI3AvUcP4NRO6l3oAaBCJ2JeIXNQlE/BK7qEHF2A1U5FhrLzPGXClpv7U2Z4wZlXR2vcuFyhzHqLOttFfh5Me1vEe9BKksAA6o5th0HKNDW+JSy8G/F+CHWMzVMirpaFB+5NJq3sN1HR2xODHtNgAwUVjPv2EtNyARvwgvYhd+ClQkGWOaJf2FpCMlbZR0hKSVku6tZ7kamedZ7R1JaSyTU8QYJWIRLYrPflRKLQo9FDM5T1F6KAI4SLPNKbMdkcdIGMxWKpXV3tEDvaOWNMcUjweq6gXUlV91wZnyM3VOYGEJ6/k3rOUGJEYFILzXy+Re+ClokXOzpF5Jp40/3i3pW6KhZU54ntXOPUPacOt27R5Manl7Qte870S1t8T04Zt/UXzupgvWaOXSNl8TZDbr6bd7hrR5W2/xc7b2dOv4pW1c+AKYtdnmlHL5b2tPt774wJO6b0fflNxXbvu5yI1oHKlUVk/uHdFFE2Ly+p5uHbekhYo7IP/qgjPlZ+qcwMIS1vNvWMsNSPlGlp39U+N3ZWcLjS0LRFivl8m98FvQri5eba29SlJGkqy1Sc3jnH0LzcBIupgEJWn3YFKfuvOX2vVysuS5Dbdu18BI2tfP7htOFS94C5+zeVuv+oZTvn4OgIVhtjmlXP7bvK1X67pXFB9PzH3ltp+L3IjGsXc0XaywS/mYuWhbr/aOEjOA5F9dcKb8TJ0TWFjCev4Na7kBSeofKR+//VwrLRhhvV4m98JvQWtoSRtjEpKsJBljXi2Jq6A5ks7mismkYPdgUs2xyJTn0tmcr5+dyXllPzub83z9HAALw2xzSqX8tzgRLXlcyH2Vtvc7N6JxZD1bPiY9W6cSAcHiV11wpvxMnRNYWMJ6/g1ruQGJ+EV4r5eJXfgtaA0tn5X0A0krjDG3S3pA0qfrW6TGFXMjWt5eurjo8vaERtO5Kc/F3NLGl4MVjThlP9uNBC0kAYTBbHNKpfy3L5kpeVzIfZW29zs3onG4jikfkwEeOg/MJ7/qgjPlZ+qcwMIS1vNvWMsNSMQvwnu9TOzCb4G5wjDGGEm/lfRnkj4s6RuS1lhrH6xjsRpaR0tMN12wpphUCmu0rDg0UfLcTResUUdLzNfP7mqNa2tPd8nnbO3pVldr3NfPAbAwzDanlMt/W3u6dXfvruLjibmv3PZzkRvROJY0x3T9pJi8vqdbS5qJGUDyry44U36mzgksLGE9/4a13IAkdbaUj99OrpUWjLBeL5N74TdjbXCGQxljeq213fX6/DVr1tjt27fX6+PrwvOs9o6kNJbxFDFSIhbRonhUg8mM0tmcYm5EHS2xOVm8Kpv11DecUjbnyY046mqNN+KipPPSDF5t7B512fdm/d7PXfGuWoqE8Ju3Lhx+5d7Z5hTPsxoYSRdzXXti+tw3efu5yo3wRSBybyqV1d7RtLKelesYLWmOsagiZhK63Hsw/KoLzpSfF0idMwgCkXuBGs6/gci91BtQg0DEriSl01n1jxyI386WmGIx4nchqeF6ORDxS+5FDSrGbtAi52FjzOustb+od0EWCscx6mprmvJ8Z9vc9/JzXUdHLE7MvCEAVGG2OcVxzJRcN13uK7c9MJ143NUyKulARX7VBWfKz9Q5gYUlrOffsJYbkKRYzNUyGlYWtLBeL5N74aegRdKbJW02xjwnaUT5FiJrrV1d11KhJjO1ZtM7HMBszXYUClBPhV70mZynKL3o0WCqqcdR1wNQD2E9/4a13IBE/CK8iF34KWgNLe+odwHgD8+z2rlnSBtu3a7dg8ni/Iwrl7bJccyMvweAySbnjTNWdekTpx+nzdt6ySMInGzW02/3DJXE59aebh2/tI2KO0KvmnocdT0A9RDW829Yyw1IxC/Ci9iF3wIRNcaYJmPMX0q6RNKZkl601j5f+Klz8armeVb9Qym9ODiq/qGUPC8469/Mt4GRdPHCWpJ2Dya14dbtGhhJV/V7AJhsct5Y172iWCGS5i+PkOtRjb7h1JT43LytV33DqTqXDPOpUfNFNfU46npzp1Hjyi/sn4UtrOffsJYb/gtjDiN+IRG7gBScES23SMpI+j/Kj2pZJemTdS3RLM22114jTqUw8TvlrC0mqoLdg0mlszlJUjqbm/b3ADDZ5LyxOBGtKY8cTP6lhzaqlcl5ZeMzm/PqVCLMt0bOF9XU4xqtrheUunsjx5UfPM9q5++HtOG2Cfvn/DVaeRj7Z6EI6/k3rOWGv8Kaw4hfhLV+kiV24bNAjGiRtMpa22OtvUHSekl/XO8CzdZ0vfYmt+pms5527hnSe697SG+48t/13use0s49Q6Fo7a2kkFQL3+npvhEtby9ddHR5e0IxNyJJirmRaX8PABN5nlXOsyV5Y18yM+s8MjFXfezrj+mJF1/RCy+Pqm9orKocTA9tVCsaccrGpxsJStULc62R80XULR/f0QlTLDRSXW9yPfdg6u4H29uzkePKD3uHU7rmRzu15axVumPjWm05a5Wu+dFO7aVn6oIR1vNvWMsNf4U1hxG/CGv9JOKYsrEbCXDjEIItKFkvU/iPtTZbz4LUqlKvPc8r06jSN6Rr7t8ZugQ0nclJ9YsPPKWr168uJqxCa3ZHS0yS1NES000XrKn4ewCYaGAkrX/83g5due5AXrm7d5eu7+meVR4p5KrO1rj+5u0rteWeJ/Smf35Qf3bdT6u6adZoPbQxdxJRMyU+r+/pViJKpX2haOR84TpmSj3v6vWr5U64KG2kup5fNw/8aLBp5LjyQ9bz9KHTjtbl9+7QuTc+rMvv3aEPnXa0ch49UxeKrta4tk46/27t6VZXa7zOJZteWMsNf4U1h1HvRVjrJ9GI0XXnnVwSu9edd7KiLrGL2gRl6rATjTH7x/9vJCXGHxtJ1lq7qH5Fq06h197ExLK8PaGc1ZQLs0239WrLWat0346+4rb1SEB+ToEwOak+tmufrvrBTt2xca0kTXl/xzFaubRN37n4DXWfggFA8KWzOfUPpeUY6baPnKKctfr9K2M6fFF8VnmkkKu2nLVKl979+JSbZt+5+A3qbKt8QVsp14exhzbm1kja05ceeFJbzlqlxYmo9iUz+tIDT+p/vvu1am+pd+kwHxo5XyTTOV31g50l8X3VD3bqyx88SRqPb8cxOrazVXduOlXZnCc34qirNR7Kup5fNw8qNdjMdO6ZqJHjyg/Wasr5/dK7Hy9ek6Dxua6j45e2Tck9QV/UOKzlhr/CmsOo9yKs9ZNMzurLP36qJHa//OOn9Nl3v7beRcM88+seeSAaWqy1NR95xpgVkm6VdJgkT9KN1tprjTGHSrpD0lGSnpP0Pmvt4MGXtrxCr73J8xHaCmuVTO7NV20CKvzhPc9TzkrW2poCwO/5E8sl1f7hlGJupOKFo+OYqi8qASxsiVhEnz5zpS656/Fizrp6/Wo5jtGhLaV5ZOIJMuo6ch2jZDp/sixMd1Pr+i6Vcn0Ye2hjbuWnByrt7d4/lA71NKGYnUbOFzE3ov7hlDbd1lt8bnJd1vOsnuofDt1c3eXE3IjOWNWldd0rihfhd/fumvXNAz8abBo5rvyQ88pfe+UsuXchCutfPazlxsELaw6j3ouw1k9yntV9O/pKOsJL0v84a1WdSoR68Dyr5wZG9PzAqJpjEY2mc3pVR7OO6miZ9XVLIBpaDlJW0l9bax81xrRJ6jXG3C/pw5IesNZeYYy5TNJlki6dq0JUGqExMJIu26rb1RYvPl9tAio0jlxz/0596LSjiz0darlwPZgedeVa+cKaVAGEQ9azxUYWKZ+zLrnrcX37otNKtivXiHz1+tW66gc71T+c0q0fOUU3XbBGv39lrKYeN4zGQ7WaouUbB5uiwe7VBf80cr6opt7nx+iNoFjc5Orjpx+ni7b1Fr/v9T3dWtw0u0spP3p7NnJc+aGwTsDkfRx1GBWwUGSznn67Z0ibJxyvW3u6dfzStkCPDglrueGvsOYw6r0Ia/2kKVq+btYU8JE48NdgMqU9+8e05Z4nSnLYIc2uOlqaZvVewc7WVbDWvmStfXT8/0OSfiNpmaSzJd0yvtktkv50rstSGKGxrL1ZnW35qREqzU99xCEJfefiN+ihS9+s71z8hqoaSQoXrOu6V5Sd8mY280TX2qOu0tzSkopJdTbfCQCqkcl6ZXPWaDpX0lOq3I29S+56XJvf9GrtHkzqgn/7uZYuiuvEFYfohlmu71JQLtcDk2VyXtnGwUwu2HNsw1+NnC/irqPLzz5Bd2xcq8vPPkHxSTcCwzpXdzn9I+liI4uU/x4XbetV/yzXaPFr3ZpGjquD5RjpC+ecWLKPv3DOiWIXLRx9w6liY4WUP143b+tVX8AXEw9rueGvsOYw6r2Qwlk/ObQ5NuW+wA093Tq0mU7jC0kyXT6HJdOzz2GNMKKlyBhzlKSTJD0iaam19iUp3xhjjOmqV7mWLorrjo1rlbNSk+vIjRjtGRpTzI1oaVuTBpMZvfRKUjE3osVNrvpH0srmPEUcI9cxchxHHS2x4gVrrVPeTDSbHnUTR7AYY3TN/Tsr9k4MWw9FAOFQadqWZ/eOqCXuqrMtLs+zGstky+bHlYe16TsXn6qRVE5DY1k1x9xQ9rhBeGQrTP2QZQoFNICBkbSu+P5vtK57hZoVUTrn6Yrv/0aff+/qYl1wPufqzmRy6htOKetZuY5RV2tc0WjpNGYHM+dyJle+sT876QbSTJ8T1t6eYeI4jqKO1R0b1xbjYc8ro3IC3hsc/ql0vAb9hm9Yyw1/hTWHUe9FWA0mM7p20vpC1z7wZEmdFo2v0rSNtUx/2DANLcaYVkl3S/pLa+1+Y6q7YDHGbJS0UZKOPPJIX8tUbgqbrT3d+uIDT+q+HX06Y1WXPnH6ccWeK2es6poyLcGV61brlp8+q0+9baWWLspPN7YvmTnoC9dqp/oq9x2uXLda/UNpPbZrn6Tw9k4Mu7mM3YmOuux7s37Nc1e8aw5KgkYy2/htT0Sn5MfrzjtZ2372vI5b2lqcU1NS2fy4++VRRRyjy779q9CvFYD6qjZ24275qR8m9/oH5pNfdQfP86ZMY3vlutXyvAM3BOdrWtlMJqff9g1Pmdbr+K5WRaMRX9YlrDSVixs5cDxX+zmsUVibamO3LRpRNBrVuTc+XBIPbUxfs2C4jil/vNaxvldN/Aax3Jh/Qcth1HsRZtXEbzqbK7tGy2ffzT3OhaRSDovVkMMaIusZY6LKN7Lcbq399vjTe4wxh4///nBJfeVea6290Vq7xlq7prOz09dylZvCZvO2Xq3rXiFJWte9omR48LruFVOmJbj07se1rnuFNty6XVnP6qYL1uju3l26ct3qg5p2YGKPuumm+ir3HS69Oz8NT8Fc9U7E9OYydoG5Ntv4HUxmpuTHi29/VO/4w8MVcyMaGEnr+YFRXfH930zJj1/54MmKOGbKUNDZTrkISNXHrpF09frSWLx6/WpxuwT15FfdIWc1ZRrbS+9+XLkJnb6qrWserL7hVNlpvQrT7VRaK2Y2+b855ui6804uOZ6vO+9kNccOXEr58TmorNrYHUiWn+ZtIMnfYaFoiUfKHq8t8fpdr1YTv0EsN+Zf0HIY9V6EWTXxWxiBPRH3OBceP3NY6Ee0mPzQla9K+o219l8m/Oq7kj4k6Yrxf++Z77JVmpt6cSIqSVOmAKs0JVjh+UzW08qlbfr8e/M9Bu/cdKqstSXTDsxmaoRqetRV+g6FRh0WvQcwHyrloqOXtKijJaaXXkmqORbRfTv61D+ULhn6e2hLVC3xSMOsFYBwGMt6uuoHO0ti8aof7NS/vv+P6l004KBZW354vbWlw+v9GL0xU912pulK/FgrZiSV07afPa+bP/w6RRyjnGd10388o0++9VgtbpZvn4ODx/Q1WNQUU2dbTt/YsFaetXKMkRvJPx9kYS03/BXWHEa9F2E1XyOwEWx+5rDQN7RIeoOk8yX9yhjzX+PP/a3yDSx3GmM+KukFSefMd8EqzU29L5mRpClTgFWaEqzwfMyNTHvB6sfUCNV+hyMWJ/TQpW9mbmkA86JSLmqO5/NizI1oNJ3T8vaEHtu1T5tu6y1us+WsVYpVmPaFniqYK65j1D+cKsaixBQgaBzztf5KNXXbmabb8aOsMTeinz4zoDt7d5e8xyXu8SXbcJ6pP6ZfgiTtG81OyRtL2+pdqpmFtdzwT1hzGPVehBXr50HyN4eFvqHFWvufUsXRPKfPZ1kma09EdcP53dp024E5owtrtEjSo88NaGtPd3H6sLt7d+n6nu6ya7RU06JamLKgszWuK/7sD3XYIU2KOEZ7h1Na0hqvmCim6ylYqXX3sEVNJB4A86aQi665f6fWda9QR0tMnW1xOZL6h1JqT0T1qo5mfeWDJ+nlkYyaY/mGl/aWqP7+uzsk5YeCFqYPo6cK5lpL3NHtG16vTNbKMZJnpahr1BJviFlbscDNZq2/aUejZD31DaeUyXmKRhx1tcblujNPx/Wdi99Q7HjU1RovqU8X6ttdrfFZlfVgvy89IoOhIxHTzRe+TrtfThbrAssPTagjwd9hoRgYSeua+0t7pV5z/87AL2wc1nLDX2HNYdR7EWaeZ5XJecp6VibnyfMs9zsXmJa4Uzb31pLDQt/QElSeZ/VU/7Cu/dGT2nLWKnW0xNTVFtfhi5r0+feu1uVne9o7kp7y+8Pa4rpz06nK5jxFHCPXMbpi3WplPauXXklO27qazubU2RrXZe84Xn/9rV8WL/KuXr9aw6msjupomfK6mXoK0roLIAgcx+jYzlZ98q3HlTReFxqjP/W2lXrNkhY92Z/TlnueKP7+C+ecqGO7WnX6qqVqikb0zQ1rNTia1t7hNIszYk5lclI6k9PuwbEDlbX2JmVYkBkNoJr64Ux1zGzW02/3DE1pIDl+aVuxsaVQt51443Hrg0+XTMcViThqjkZ0+dknFI+15mhEkfGF6v2oy1b7HnHXKSkH55n5F4kYpbNeSV3ghvO7FYlw7bJQeJ6ni869FYUAACAASURBVN/8Gg2O5GeRiEUcXfzm18jzvDqXbHphLTf8FdYcRr0XYVVNfRSNbyxjlc2Vnm+zOU+pzOynbaShZY4MjKT1/z+6S5e8/XhFHCMraWgsK5kxJaKujGO06bZedbbGtajJVUdLTOmc1cBopmS0iOdZPTcwoucHRosnrBWHJnRoS1RjmXxvgZxnlfOs3Iij63pO0kjK020fOUW/3z+mq36wU5fc9biued8fFS/2Jl4cVtNT0I/5tQHgYO1PZdS3P6UvnHOiMjlP7S0xtcZd/cPZJ8jzrF4aGtPiRFR3bForz5PGMlntG82q59RX6eLbHy2pOC1vb9LzA6NqjbvK5Lx5aUSezRpaCD/Ps4pHI1pxaHOxZ1/Mza+lBjSCmeqHAyNpJVNp3bFxrbKelesY7XllVAMjaXW2xdU3nFI6k5ny+77hlI5YnF+IMhGL6G/febw+deeBDkTXvO9EJWKRks+54OafT5lmZWJdthoz5ehqvu8F/3bw5fDDTCOFGlnfcEqHtrglceU4Vn3DKS1rb6538TBPcp4tuVF9bUjWiQhrueGfsOYw6r0Iq77hlL74wJMlnXq++MCT+tx7TijWR9H4jKSWuKsVh0ZKclgtaGiZI0ZW7zpxmS782i+KFaXrzjtZX37gv/XTZwa07aOvV2drXJ99zyol0zmdP35hNrm332AypT37x/SNnz9fnC7HMUbZnNXnvvuEPnTa0br07sdLRq9c9YOd6h9O6er1q/XZ96zS1x9+QU1RR+fe+PCUz2DhTgBh4HlWL+0bK7n4vHr9at3y0HN678nLSqYEK4xy+dhbjlVbU0QvvZJvnCn0hN68rVe3fuQUfePnz+vjbzlW//OeX6t/OHXQa1rNVH6/19BCsEVdo1fGcnpxQs++Ze1Nao3Tsw8LQzxqFY1GS+qf1/d0Kx7N33RpjRu1Ncf15J7hkiH6rfEJU4vlbLGRRcrXUT915y/17YtOK24zU122mvzrR44OSp16offMXJxw9MxAqmQq5ut7unVMB53GFoqctbrhJ0+X3DS74SdP63PveW29izatsJYb/gprDqPei/CyU+6rXrlutfLd5bFQ+JnDGr+2Pcc8z6p/KKUXB0fVP5Qqttinsl6xB7WUv9C6+PZH9bHTj9UXzjlRWc/qE6cfq8GRTPEGYWG7Dbdu196RlPqHUkqmPd380LP60GlH6/J7d2j91p/pgn/7ufqG0rrwDQeSQeG1l9z1uD595kptOWuVohFHrfGoPnb6a3TRpLJsuHW7BkbSxYU7J2LhTgBBMzCS1rXjPU3u2LhWW85apZsfelYb3njMlBx66d2Pa133Cn35x08p60lb7nlC5974sC6/d4f+5u0r1dka18sjaa3rXqGLbn9Um9/06pK8WEmlfF9t+cuNHpzu8xBumaxVMl16gzWZzimTpdKOxjBTThxKesUbRVI+7120rVdDyfyw/GTaau9Qqpijt9zzhPYOpZRMH3ifsQqNF2PZA0P7Z6rLVpN/J66NUDjHXHP/zlnl6KDUqfuGU8VGFin/fTdv61XfcKpku4M5pwXZvgpxty/J9EsLycVvfo1i49MHFqbgCkO3lrCWG/4Jaw6j3ouwslZT7qteevfjapBqEarkZw5jRMtBmK73W9azZS8MszlP5974sM5Y1aXPvPMP1Lc/VXa70VROPV99RLf/+eu1rntFyYHf2RpX/1BKx3S2aMtZq7T1waf12K59xd+1xt2S3t1be7rV2Rov+ZxCD7vDD0mwcCeAwPM8r2xPk6aoU3b+/sWJqNZ1r5hys+nSux/X5WefoIGRtBYnoto9mNTiRLT4+0o9jw+2t3NQejpj/lhpyhzb17zvRPpGoSFUkxOzni2bn7PjV64Zz05pKL/krsf1zY1ri58TMUbL2xNTpuOaOFX9TIvQV5N/K51jZrM2wkzlmC+ZnFfxGqSgkUdZVrwG447JghExRpky51/HBDu2w1pu+CusOYx6L8LKWpU95ojdhcXPHMaIloMwXQ+5aMTRGau6dMP53bpj41rdcH63zljVpdz4CfK+HX3asz81vkjY1N5vz+4d0e7BpHKeVUdLrPgZJ61YrL95+0ptuecJ/cnVDxZ7aJ+0YrEk6ROnHztl9Mrmbb36xOnHTvmMmBspWdzzoUvfrO9c/IaGuMgC0FhyFXqaGGP06TNX6vJ7dxRHrXz6zJXybGnuLNg9mNSRHc26u3eXPGt184dfp47WWDFHV+p5fLAjUoLS0xnzJ+eVn/IoF/ALZaAa1eTEhOuUzc+J8emrchVuJk0cWRGNOLp6/epi/ixMGxmNHLiEmakuW03+rXSOyc3icHUco2M7W3XnplP1k0vepDs3napjO1vnvU4djThlv687YZ818ihL1zFlr8Fcrm0WjGyF82/Qb1SHtdzwV1hzGPVehJUxKltvCvYRB7/5mcMY0XIQKvWQy3qe4q7RJ08/TpsmzY+cznl6X/dyvffkZTpsUZNirtF15508ZaHmQ1ui+sklb5JjpM62eLE33+Y3vbrsheCWs1bp8nt36MiO5oo3FgvvMbmHHYvdAwgyz7PKVuihm6vQI/rLHzhJ7S2xsj2h466jz7zzeO0dSpf0WLi+p1uLm8qfFg92REpQejpj/lS6icwFJ8JgpoXhq8mJWauy+fnOTadKkprGG0Cm5ugDDSDWWrXGXV1+9gnF+ZJb466sLT2OPM8qk/OU9axMzpPn2WJ5q8m/1pYffTPxc2baJ55n9VT/cN1HiXS1xrW1p3vKGi1drQfq+o08yrIl7ugTpx835fu3xOlfuFBUGhEQ9PNvWMsNf4U1h1HvhTRzXSmIjJGuXLd6yqjmgBcbPvMzh9HQchBiZS4Qz1jVpaGxjFzHKTaySAdGllx+9gm64LSjlPM89Xz1Ee0eTOqMVV36xoa1ynpWz+0d0a0/LV3cedMfH6Uberq1aVtvcaqbiXYPJnX8YW361viFa7mL1oTr6M5Np8paG5qEBwCF6U2aok756WMcUzYnHtIcU8w1+soHT9ZffP3RkkrTP/yvX+vv3rVqSo+Fi7b16ut//notb2+ekh/L5fvZjEiZ2OM6TBVP1C7iVJjyiL85Aq6aaaWibvmcHJ2w2HqlKawy41NYJWLSDed3a9NtB24m3XB+txIT2p9d10y50HVM/vmCmRZ/dxyjo9ubdcfGfF3bdYw6EqX5NxGL6NNnriyZevfq9auViEWq3id7R1JlR4l8++LT1NXWVOufY9Ycx+iQhKuvXXiKHCN5Voq7puT7Huw5LchGUl7ZNWru2LhWi5vrXDjMi0rn36DXucJabvgrrDmMei/COy2p0X/s3KObP/w6RRyjnGd11/YXdPSSY+pdMMwjP3NYsJvFA67QQ27idAaXveMP9OLgmF4eSZe9uGyORbR5W69eHskUf3/fjj69uC+p87/6iC782i90+qqluvmhZ4sLcp58VIck6fKzT1DX+OiWiZa3J9Qcc3X44oSWLmqaUqabLlijww5J6IjFCS1rb1ZnWzzgiQ4A8grTm/z+lbEp08dcd97JstaWzYnP7R3R47v363Pf/bW+vmGt7tp8qractUr//MOdum9Hn/qHyq+P1TeUKjt1Srl8P9sRKYXRg+ThhaHQO2pizNA7CmFQzbRSTVGjrT3dJfG9tadbTdEDAe6OX7BMtLw9UZz+ZGjM07U/erJkAfprf/SkhsYOrCWSzlpt2vaoLvzaL3TujQ/rwq/9Qpu2Par0hIUp+4YqLP4+lF/8PZXK6qmBEZ1748P6k6sf1Lk3PqynBkaUSmWL75GtMDqyMGVPNftkLFN+lMhYZn4XMB4YSesDNz2it/7LT/SWL/xEb/2Xn+gDNz1SUlY/zmlBxagAxCpMORiLBPvWR1jLDX+FNYdR70VYpyVtbXK0/nVHavdgsniPYP3rjlRrE7l3IfEzhzGi5SBM7qFsJfUPpdQci2hgJF22NWxfMlNscDlpxWL99RnH6fBDEmqJR3TrR07RK8mMDm2J6eI3v0Yf+/pjxZbgL5xzopa3N+mfvv+bKcPabujpLpkGjF7TABpFOpvTacd06IjFCcVco29sWKtMziv2NFm/ZsWUKVKuXLda//zDnbrsHcfrsV37lM15Wr/1ZyXvWylHD4ykdfghU3sek1sxW9ZKt/z02ZKpiG756bP67LtfW++iAdOqZlqpZMpTzvNKpvTKeZ6SKU+LxlNoIuaUncIqEctfuGY9q/t29Om+HX0ln/V371o1oSwVRsVkDzReZLwK24wvZL93NK2LJjXEXDTeO3hZPH8plJnhc6rZJxFToSfcPJ8mqilrtee0ME4BwqgAeNaqORYpyU/NsYg8G+wb1WEtN/wV1hxGvRdhnZY0mfK0dyhVMqX41etXa1HcLdZp0fj8zGE0tBwkxzFqT0T18qindM6qvTmmiGP01f98ZkqDyFc+eLI+991f50+Uxugfzn6t9g6nNZrOaiSdLVmn5er1q9XZGtfuwaR2Dyb119/6pW79yCla171Ci5pcfWPDWu0dTqlvKKX2lmjJiZc1VwA0ipZ4RD2nvkqf/94Ofewtx5bkyS+cc6JG0zmls7Z4UbovmdE//3Cn+odTOmJxQt+5+FQlYhHdtflUDYyktfXBp/XYrn26u3fXlBuAX/ngyfrKvz+lk49cXbYs5FbMRjTiaMMfH1Ocom55e0LXvO/EkkW8gySMN1QxN6qZVirjWf3FeIegidt8c+Pa4mPPk2KuKblpGHONxts/igv+ruteUbygubt3V8mCv9XccHIrbFN4n0q9gycuMD3TVGjVTJWWiEV09frVFacfO7BfDv5Ym+49qp0WbKZzWlinACmMCpj8d2BUwMKRynr63Hd3aPObXq1mRZTO5R//6/v/qN5Fm1ZYyw1/hTWHha3eC/+FdVrSjGeLMwoV6qM3P/Ss/ieNhAuKnzmMhpaD5HlWv9uf1L7RTPEG4BmruvTx04/Tlx54Ulf82R/q8EMSirmO9o9l9Lfv/AMtaYspFnH+L3t3Hx9XWef//33NbaZJ2oQ0rdAUW7EUK1uwKVhgFxFcrFJFvsVFpVKqSwvFxVVXwe/KQ3aRXRD9ecPaIqxAuVFhQVa+gCILsu6CKC0oSrHcFWgB2zRNS5ImM5k51++POZnOJJPmZHLm5iSv5+ORR5szZ8655uRzPnNmPue6Lu3qyVZNByeyHzpcwaXLFmjNLZtyy/b2DWjNLZvU1pzIPdbWnMhNKgoAE82+lKO1tz2pS5ctyOVYSbkC9E2rjtWvtryu0446RLvdbsmtjTH9w/vn6/J7n9GqE+Zq55v9uuK+Z9XRk9RVyxdqw2Nb9ZmT52nj1l0FRetI2Ohzfz1/QgydghpgraYOmSch42Syt8vUGMex2vLnbp13S94Xqp9crPlvqe0vVFEeXiaPH2nCSCeveJFMO/rUTRuHfeC+3S3GTImF9HenHJ7rbdLWnND6Fe2aEtv/gWZKLKSffuZ49aec3PwqdbGQ8qMyHglp3dmLCgrx685epLhbBPFS0ImFjdafvUgX5G1j/dmLFHO7o4z2uCRNjUfV2hgvKCy1NsY1NR7NreNH8WK0bXj5+3kx0hAgd689obZvOrBWB9VHA5F7UR7RkFFHTzL3OVpyC6M1/n4W1HbDZ0HNYQG67kV5+HX9UWkhI608fm7BTfJXLV9Y8R7JqC47Qg6zJeQwCi3jlL2bzBZ8ATg4BMLXTj9SO3tSuurnz2p5+2y11MfU0hDT+l++qOYpEa04bq5u+dSxioRDud4rg7Z39akpsf+DWVtzQju7k7k7Gr7+8y25D6QzGmr4ww4AjMPgZMqHTKsruMtksGdKxnH03nfM1Dk3/LagZ8ptj7+Sy8VfWvoOXf3RhXqxo1cbHtuqryx7p2779VadOH+mLr/3GS1vn63L792sO9Ycp7dMreOLZfgiY61CpjCWQsYoU4MfOHf1JHNFFsn9QvWWjfrJBcdrBn3mJx0vw0pFwyMUL/I+laYdq9aG+LDcPdiTpH/A6t7fbR82+ei5J+yffDQckl7dnRxWjDn0oP3Xvg3RiKY3xvSj85YoY63Cxigczi6XpJZErGhBpyWx/4N/csCRY21BkcSxVkl3fpV9yYyuefj5gtdyzcPP67IPvTM3OXFX34C+/vM/aXn77Nzd6F//+Z90xRkLc4UJP4oXo23Dr6EugzoESJByL8pjaqL4sIVTE7V9Z31Q2w1/BTWHBbXd8Fc8Eiq4lopHaj9/WatckUXKXutcfNfTuRuDMDmMlMNKGb6TQss4pdIZhYyGfRDp6E6pL+3ouw89N6w6esO5i5UccPTx6x8v6A769Z9v0VPb9kjKFlb2pTK5/1+7ol3TEhHdvnqJHGv1zb85SrFISDMb4ooEIHkBQCmi4ZBOXTBDVsr1/Bu8y2TDY1s1JRbJ5VIpm4sv/GG2B8zzO3u08vi5OvfG3xY8z8hq0ZwWfeOBbM5dfeJhuv6cxRRZ4KtoOKS+AUdrb9t/V9e6sxepeUrtvWf3jTiJd21/oYryGW1YqWg4pL87ed6wHh753evrIiF9aen8YcOf1LnXreGQdNpRs7TqpicKzpH8Hvo9/c6I86tMy85Vqd50Wru6U8N7tIRDqlNEu/sHdM1DzxUWSR56Tpd9+EgdUufO0TLKUGgDI8wn85WC+WQyRdf56ocyBeuMt3jhdQ6W8fY6CeoQIEHKvSiPPX2OUgMDun31klxPuB1792lPX1QNNXzvQFDbDX8FNYcFtd3wT2dvKnfz46C25kTN94QdqZd2xqFIOJnEwiHt8imHkfXGKRYJy7HZBJLvolPmqaM7qeXts4dVR1/r6s99MB1c9sU7n9ZFp8yTlN3Wt886Wg3xiB76/Ht06bIF+u5Dz6knmVEiFlbIGDXWRXXItISi0dr+sAMA49GSiOofTxs+bNjFdz2t//vBBdrdmyp6YdSUiOr8kw4rendK/4CjNbds0lPb9qitOaGDp9XV/JjzCJ5k2hkWt2tve1LJvEm8a8XgHBf52poTCnNOYAQDGTvsWvaC257UQGb/h1LHKldkGVzni3c+rcHPrQMZW/Qcyd+Gl/lV+geKn2v9A4PnmtXK4+fq8ns366zrHtfl927WyuPnSspvq9Xxb2vRg587UQ9/4T168HMn6vi3teSGC/ByjgwWJoauk1+Y8LLOaPzYhheDQ4AM7isoQ4AEKfeiPEJG6ktLZ133uN5z9SM667rH1ZdWzQ8DE9R2w19BzWFBbTf8E9SesKERrvH4bmBy8TOHUWgpkeNYdXQnlUpn1DwlovUr2gs+iMyZPkWdvSm11MeGJZspsXDRBPS21nrdf9Ff6tJlC3Tdr15UQzyi5vqojjxkqq44Y6Hmz2zUQfVxzWqekhsaAAAmsl37UrJ2eK/B7V19srL685v9RS+M9vQNFM2/27v6hvUWnNlITxb4z8sXxLUiEjK6+syFBdcxV5+5sGAOCyBf2h3WMV82vvd/GBkYYZ2BTHYdL+fISAWO/Ngc7U7EkYaEyB8JoD4W1orj3qpVNz2hk7/531p10xNacdxbNcWdyH5wovuh50j+RPdeChN+FC8qVQDJH4Ls0Yvfq7vXnhCImxKClHtRHiOd87UeAkFtN/wV1BwW1HbDP5W6EcRv0RE+BzE/1uTiZw5j6LASDE5C+a0Ht2h5+2wdPrMhN8Z0LBJSKu2osyeluzZt0yUfeMewbvf7UpmiXfHDIaNpiaimJqJadOjC/eMp11fjVQJA9aUdq4GMUzRnpjNWd23apquWLywYnvH7K9o1NRGRMabo86bEwrrz/OPU2hjXIVPrGH4RZTH4BfHQ+KvF4sWAY/X1n28pGFrp6z/fon/7xLuq3TTUqPAI8R3OG9t4xHXcc8DLOdKUCGn9ivZh86s05c1ZMNp+RizE2NF7xQyOz+1lonsvc6P4NX9KpcZA92MIskoLUu5FeQR1GJigthv+CmoOC2q74Z+W+phu/tSxeqVzX+765K0tU2q+J2w4ZNTSECu4rmppiNGzf5LxM4fx7VIJOntT+s8nt+nLH3iHWupjyjhW3/+fl/XX3/qV/vTnbq266Qldcd+zWnn8XN3+21f0vU8sKqiOzj4oexd1/rL1K9o1kMmoLhZSGz1WAEBS9g3vzo2vDsuZ685epIa6sC465XBteGyrLl22QHeef5xu+9t3q6EurBd29qonOaBvfvSoguddu6JdqYyjg6fVaXbzFIZfRNlMc78gHvpeP60GJ7WNRULq6ElqzS2bdNZ1j2vNLZvU0ZNUlCIkRmCMdNXywrv/rlq+UPmXrtGw0bqzFw3L3VF3HJz6ePFzpD6+P+56U9KsprhuX71E//3Fk3T76iWa1RRXb8p7W0YcEiKvKDTaXWyDE92n3N44gxPdd/UNFDxnsDBxoN7nXtY5kMEx0Ffd9ITOuu5xrbrpCZ1zw2/VmX9QJrEg5V6URyQcKt4TLlzbMRAeIVfxZd/kEtQcFtR2w2dD68IBqBNbGd21cZvamhNqbYyrrTmhuzZukxW5dzLxM4fRo2UMHMeqszclax2dc/xcpR2rt0yrk5Fyla9rH3kxd3f1Nx7YootOmaeWhqh+dN4SpR1H1ko9ybRmNdXlJroLh4z6BzKyjlFzIlh3jQFAOTXUhbXs6DYZSbd8+liFjFE4ZHIfOo2kc46bo2g4pP6BjHa+mdT0hpje1lqvK+7brI7ulC4//UjNmT5Fe/cNqLt/QB+//jf61Zfe6/nLrcHcP567jzH59CatZjfHCya1rY+H1Ju0NTep7eDQYUMnLecuRIzEGJMrcg/2gtrw2Fb90+lH5tYZyFjd9/vXdOO5xygcMso4VndufFXnHD9XUnY+gplTY/rx6iXKuNfDsYgpKNY41mrLn3uHxebc6fndvYu35bIPZ9sSC4eKxncs70vX0e5i8zLRvVSZ94tKjoEexPe/IOVelMeMhriuXdGu8/N6wl27ol0zGmr7c/aMhnjRHny13m74K6g5LKjthn+6+pJKxI3mzWzIXdeFQ1ZdfUm11NduELTUx/SRRbO16qYncrk3CHPSwV9+5jAKLR45jtVre/YpZMz+gx4LKxGVupNO7mLuqW17tOGxrbrtb9+tPe6Xep09KV34w6f2D2vzyXZJ2Q911t321LqopjfQiwUA8llrdci0uNIZq46elM6/dZNaG+L60tL5uvHRrVp5/Fxd8pM/5PLrVcsX6l9/9qwuO/2dunTZOzWQcZRxrH78m1d08jveoq//fIvamhOqi3q7M2FwqMjzbt5YcOHlxzj1QfwCC941xI1ef3NA23f35bqhtx2U0CFTo6M/ucL6UpmRhw5j+FIUEY8YffZ9h2vNLZsKrm/jkf05rLEupGVHtxV8cF2/ol2Nddn861ijYrc6ZpdnpR2rR/60Y1ixZrZbrJGk6VOiRdsyfUr2XItHjaYPGfZremNc8ej+/UxNhIt+wTk1ke31GIuEddmyI3TygoPlWKuQMXp48xsF446X8/0i3+AY6EOLQn6PgV6p1+O3IOVelEckEtIRMxt1x5rjlM44ioRDmtEQr/mhYqPRsI6Y0VDwJc+Mhji9ryeZoOawoLYb/gkbaWo8rD192d6/RtnfB8Y+l3hF+TWsK4LNzxxmrA1AX64KWbx4sd24cWPRx/b2JdWXcpRMOwqHjKIho4b4/hPvzaQj60gZ98NXNGw0kLHKWKtYOCTHZr8w5KSddCryhz5Q7Oabc8l9FWiN9PKVp1VkPyiriiWpkeLXcay27upRPBKSMUbZUV6M0hlH8UgoO2a1yU4eOvjFl3G/t5sSDyk5YDXgWDmOVSRsZK3Vg8/8WSe/4y3undNhNSei6uobGPGiqqM7qTPWPTrsC627154wrnHrg/oFVrWUUJSqeu7t7e+XJO3pc3JfmAzOK1FfV1t3dXV0J/Xs6106bMbUXFtf3Pmm3nFIc+DmZ5gAqp57vdjbl43vnv798d3gFlCmJbLx3e2eA2/mnQNT3XOgsa5OnT39ikak7rzHGxMhDaSlFvfWsZ1v9ikSNupL7V8nEQspnbGaMTXbtX/vvn7JFGmLlaZNqdOu7n4ZY9U/YHOP10WNrDWa3pjdTyqV1p7kgFJpW9C7pikeVSwWUSqV1hs9SQ2krUJGcqwUjRgd3BBXLJa9b83r+0UymdaufalcW6ZPiSke33/vWzrtaGdPUgMZR9EiXxA7jtXLnb3DxkCf01Kfy4t+FPJLfP8j9yKoApF7MfGVkMNqInbf2LtPjfGQ9ua1e1oipO6ko4OnTalUE1FFJb7/1kT89ven1dm3/9qsJRFTXR39EiYTP3PvhI4cY8xSSd+RFJb079baK0vZjuNYvdbVr9V5d8pdfeZCTW+M56pbYRNSv5Ptsu9I6htwFDLZ4Q8GMo5mNU3hyzMAGIM9fSnFIiF19aVzdxmfumCGLjrlcP2/323XaUfN0pMvd6p97vSCu5BvXHWMdnQn9Xc/2t+T8NtnHa3rfvWiLjrlcN32+Mv6/v+8nNtW/tASQ4sd5RqipbM3lSuyDG7zvJs3jruAMxEFuSj1Umdy2B3yb2upvb9vYzSs5oaEzrru8cKeB9xFixGEjPRykfieMyS+D7ROPCJtLfL43Lxt1MWMXimyzlvz1jEhHXCdUEh6bU9q2OOzmvZvY09/Wi92DB+i7LDWBs2IRfRmMq29+wa09rYnc4+vO3uR6qNhTXcLLV7eL5LJtJ7b1TusLYdPr1c8HlE67ehPO7qHDXl0xMzGgmJLMu3o0p/+sSAnDvIrZ1ZyiDK/BSX3AkAxQcxhYRPS5+/4g5a3z871jr5r0zZ97SN/Ue2moYKCGLv9/Wk93zn82mxeSz3FlknGr/it7f6z42CMCUv6nqQPSFog6ePGmAWlbKuzN5UrskjZDxlfvPNpbd/dpz19jvb0OUplHIVCRqGQUcZmq1+xsFE8EqHIAgAl6EtlJJncm50kLW+frfNv3aQzFx+qtbc9brXiUwAAIABJREFUqZMXHFzw+PauPm3f3Zcrsgwu+/vbf1fw3PxtDS125E8oPDhESz4/hmgJ8hdYlTZSUarWJ37e0+cMi80Lbt2U605fSzr7UkXb2tlX28cY1fPmCPH9Zl58j7bO3hEe35u3je4R1ukewzp9qeKP96X2byOVcXJFlsF1vnjn00plsusk006uyDL4+NrbnlQyvX8bXt4vdu0rfq7t2pc913b2JIe9L51/6ybt7EnmtjFaTvQrZ5br/a/cgpR7AWCooOaw6Q1xfe5983X5vZt11nWP6/J7N+tz75uv6cwxNGkENXb5HATJ3/idsIUWScdKesFa+5K1NiXpx5JOL2VDI30hNiUWVtrJDkOQcayiIaOI+3PwtIRmTkuotZF5VwCgFBmbHX4xP/82JaLa3tWncMhoe1efnCGPS9KUWLhozs5/bv62hq6XX+xoqY/p+nMW575s8mtyvKB+gVUNQS1KpZ3hsbm9q09pp/aGbA1SW1EbvMTMaOv4sQ2/9pMZYZ3MGLbh5f1itO0MZJzij2fyikKj5ES/cma53v/KjXwGIMiCmsNCIaP5b8nOc/Hoxe/V3WtP0Py31H7vc/gnqLEb1HbDX37GwUQutMyStC3v9+3usgLGmNXGmI3GmI0dHR1FNzTSF2L7UplcYWVwzpZQSHpLYx1vKCg7L7EL1Cov8VsXDStsTEH+3dM3oLbmhDKOVVtzQqEhj0vKTlxWJGfnPzd/W0PXyy925E+Ol/vQ4MOQVUH9Aqsaaq0o5TX3RkLDY7OtOaFIDV4fBKmtGB+/rh28xMxo6/ixDb/2Ew2Hiq4TDYc8PS55e78YrS0j7SeSt5/RcqJfObNc73+lmoi5F5MHn9vgVa3lsLHEbihk1NoY16zmKdxwPAnVWuxK3uK3FtuNyvMzDiZyoaXY0RhWirLWXmetXWytXdza2lp0Qy31MV33yfaCL8SuPnOh2g5KqCkRUlMipGmJkDIyml5fVzCGMlAuXmIXqFVe4nd6fVyRsLR+xf78e9embbp2Rbvu3Piq1p29SA9vfqPg8bbmhNoOSuiaj7+rYNm3zzq64Ln52xqt2FGODw219gVWLau1opTX3NuSiA2LzfUr2tWSqL1i2vQpxds6fUrttRXj49e1g5f4Hm0dP7bhZZ3W+uKPt+blkNb62LD3g2vz1pnREC/6+IwhQ6KM9n4x2rnmZT+j5UQ/c2YtfWk2EXMvJg8+t8GrWsthxC68qrXYlTx+31uD7Ubl+RkHxtqJ2R3KGHOcpMuste93f/+yJFlr/3Wk5yxevNhu3Lix6GOOY9XRnVQynVEorweLJIUVYZIkjKQin0gPFLv55lxyXwVaI7185WkV2Q/KqmLfpoyWe7v7k+pJOko72fmv6uMh7UtZRULSQMaqLhpS/8D+x6cmQtqXtBpwrBzHuncCWxkZTa+PaU9/Wql0RrFIWM2JqLr6BnK/t9THKHbUIMex6uxNjeXvVBO5t78/rc6+VC42WxKxmr1eSCbT2rVvf1unT4kpHq/Ntk5wNZF7vfAS36Ot48c2vKyTSqXV0bv/8db6mGKxwm0MDGS0syeZW2dGQ1zR6P5eIOm0k3084ygSDmlGQ7ykm6tGO9e87Ge0nFhCzvQLuRdBFZjci4lvjDmM2EXNKOH9tybil+sGSP7l3okcOU9ImmeMmSvpNUkfk/SJUjcWChnNnFbnV9uACY2CDvwSChlNm1KnaVMKlzdNKb7+oMYDpOvWaOHwKa2NTNJY6wbvqg6aurqIZgXkIj0ej2gWhRWMgZf4Hm0dP7bhZZ1YLKJZsQNvIxoNa1bzyG8ukUhIhzQlRnzcq9HONS/7GS0nBjVn+iVIuRcAhiKHIaiCGrtBbTf85VccTNhIstamjTGfkfSApLCkG6y1z1S5WQAAAAAAAAAAYAKZsIUWSbLW3i/p/mq3AwAAAAAAAAAATEzM2g4AAAAAAAAAAFAiCi0AAAAAAAAAAAAlotACAAAAAAAAAABQImOtrXYbaoYxpkPSK6OsNl3Srgo0J+g4Tlm7rLVLy70Tj7Er8XcZCcdluIrErjRpcy+vp7zIvaWjreXhta21lnv9MhH/VrWg1tpK7q09k/0YBDX3Tva/m8QxkLwdg1qLXYm/ncQxIPcGF8dgnLmXQssYGWM2WmsXV7sdtY7jVJv4uxTHcal9E+1vxOuZXIJ0fGhreQSpreUQpNdPWycOjg/HIKivP6jt9hPHILjHIKjt9tNkPwZBff1BbbefOAbjPwYMHQYAAAAAAAAAAFAiCi0AAAAAAAAAAAAlotAydtdVuwEBwXGqTfxdiuO41L6J9jfi9UwuQTo+tLU8gtTWcgjS66etEwfHh2MQ1Ncf1Hb7iWMQ3GMQ1Hb7abIfg6C+/qC2208cg3EeA+ZoAQAAAAAAAAAAKBE9WgAAAAAAAAAAAEpEoQUAAAAAAAAAAKBEFFoAAAAAAAAAAABKRKEFAAAAAAAAAACgRBRaAAAAAAAAAAAASkShBQAAAAAAAAAAoEQUWgAAAAAAAAAAAEpEoQUAAAAAAAAAAKBEFFoAAAAAAAAAAABKRKEFAAAAAAAAAACgRBRaAAAAAAAAAAAASkShBQAAAAAAAAAAoEQUWgAAAAAAAAAAAEpEoQUAAAAAAAAAAKBEFFoAAAAAAAAAAABKRKElz9KlS60kfvjx86ciiF1+yvBTMcQvP2X4qQhil58y/FQM8ctPGX4qgtjlpww/FUP88uPzT8UQu/yU4adiiF9+fP4ZEYWWPLt27ap2E4CSELsIMuIXQUXsIsiIXwQVsYsgI34RVMQugoz4RaVQaAEAAAAAAAAAACgRhRYAAAAAAAAAAIASUWgBAAAAAAAAAAAoEYUWAAAAAAAAAACAElFoAQAAAAAAAAAAKFHZCy3GmJeNMX8wxvzOGLPRXXaQMeZBY8zz7r/N7nJjjPmuMeYFY8zTxphFedtZ6a7/vDFmZd7ydnf7L7jPNQfax3g4jlVHd1Kvde1TR3dSjmPHu0mgIohdAKg8ci+AocgL5ccxBhBk5DAEVVBjN6jtRm2KVGg/77XW7sr7/RJJD1lrrzTGXOL+frGkD0ia5/68W9J6Se82xhwk6auSFkuykjYZY+6x1na566yW9Lik+yUtlfSzA+yjJI5jtWVHt867eaO2d/WprTmh689ZrPkzGxUKmVI3C5QdsYuJYM4l9435OS9feVoZWgJ4Q+4FMBR5ofw4xgCCjByGoApq7Aa13ahd1Ro67HRJG9z/b5D0kbzlN9usxyU1GWMOlvR+SQ9aa3e7xZUHJS11H5tqrf21tdZKunnItortoySdvanciSdJ27v6dN7NG9XZmxrPZoGyI3YBoPLIvQCGIi+UH8cYQJCRwxBUQY3doLYbtasShRYr6RfGmE3GmNXuspnW2jckyf13hrt8lqRtec/d7i470PLtRZYfaB8FjDGrjTEbjTEbOzo6RnwRqXQmd+LldtbVp1Q6M+JzgHIidhFkXuMXqDXkXgQZube6yAulI/ciyMi98KrWchixC69qLXYlb/Fbi+1GsFWi0HKCtXaRssOCXWiMOfEA6xbrl2VLWO6ZtfY6a+1ia+3i1tbWEdeLRcJqa04ULGtrTigWCY9ld4BviF0Emdf4BWoNuRdBRu6tLvJC6ci9CDJyL7yqtRxG7MKrWotdyVv81mK7EWxlL7RYa193/90p6W5Jx0ra4Q77Jfffne7q2yXNznt6m6TXR1neVmS5DrCPkrTUx3T9OYtzJ+DguH0t9bHxbBYoO2IXACqP3AtgKPJC+XGMAQQZOQxBFdTYDWq7Ubsi5dy4MaZeUsha2+3+/1RJ/yzpHkkrJV3p/vtT9yn3SPqMMebHkt4taa+19g1jzAOS/sUY0+yud6qkL1trdxtjuo0xSyT9RtI5kq7J21axfZQkFDKaP7NRd689Qal0RrFIWC31MSZHQs0jdgGg8si9AIYiL5QfxxhAkJHDEFRBjd2gthu1q6yFFkkzJd1tjBnc1w+ttT83xjwh6Q5jzKclvSrpo+7690v6oKQXJO2TtEqS3ILK5ZKecNf7Z2vtbvf/F0i6SVJC0s/cHylbYCm2j5KFQkatjfHxbgaoOGIXACqP3AtgKPJC+XGMAQQZOQxBFdTYDWq7UZvKWmix1r4k6agiyzslnVJkuZV04QjbukHSDUWWb5R0pNd9AAAAAAAAAAAA+KXsc7QAAAAAAAAAAABMVBRaAAAAAAAAAAAASkShBQAAAAAAAAAAoEQUWgAAAAAAAAAAAEpEoQUAAAAAAAAAAKBEFFoAAAAAAAAAAABKRKEFAAAAAAAAAACgRBRaAAAAAAAAAAAASkShBQAAAAAAAAAAoEQUWgAAAAAAAAAAAEpEoQUAAAAAAAAAAKBEFFoAAAAAAAAAAABKRKEFAAAAAAAAAACgRBRaAAAAAAAAAAAASkShBQAAAAAAAAAAoEQUWgAAAAAAAAAAAEpEoQUAAAAAAAAAAKBEFFoAAAAAAAAAAABKVJFCizEmbIx5yhhzr/v7XGPMb4wxzxtjbjfGxNzlcff3F9zH5+Rt48vu8i3GmPfnLV/qLnvBGHNJ3vKi+wAAAAAAAAAAAPBLpXq0fFbSs3m/XyXpW9baeZK6JH3aXf5pSV3W2rdL+pa7nowxCyR9TNI7JS2VtM4t3oQlfU/SByQtkPRxd90D7QMAAAAAAAAAAMAXZS+0GGPaJJ0m6d/d342kkyXd6a6yQdJH3P+f7v4u9/FT3PVPl/Rja23SWrtV0guSjnV/XrDWvmStTUn6saTTR9kHAAAAAAAAAACALyrRo+Xbkr4kyXF/b5G0x1qbdn/fLmmW+/9ZkrZJkvv4Xnf93PIhzxlp+YH2UcAYs9oYs9EYs7Gjo6PU1whUHLGLICN+EVTELoKM+EVQEbsIMuIXQUXsIsiIX1RDWQstxphlknZaazflLy6yqh3lMb+WD19o7XXW2sXW2sWtra3FVgFqErGLICN+EVTELoKM+EVQEbsIMuIXQUXsIsiIX1RDpMzbP0HSh40xH5RUJ2mqsj1cmowxEbfHSZuk1931t0uaLWm7MSYiaZqk3XnLB+U/p9jyXQfYBwAAAAAAAAAAgC/K2qPFWvtla22btXaOspPZP2ytPVvSLyWd6a62UtJP3f/f4/4u9/GHrbXWXf4xY0zcGDNX0jxJv5X0hKR5xpi5xpiYu4973OeMtA8AAAAAAAAAAABfVGKOlmIulvR5Y8wLys6n8gN3+Q8ktbjLPy/pEkmy1j4j6Q5JmyX9XNKF1tqM21vlM5IekPSspDvcdQ+0DwAAAAAAAAAAAF+Ue+iwHGvtI5Iecf//kqRji6zTL+mjIzz/CklXFFl+v6T7iywvug8AAAAAAAAAAAC/VKtHCwAAAAAAAAAAQOBRaAEAAAAAAAAAACgRhRYAAAAAAAAAAIASUWgBAAAAAAAAAAAoEYUWAAAAAAAAAACAElFoAQAAAAAAAAAAKBGFFgAAAAAAAAAAgBJRaAEAAAAAAAAAAChRxOuKxphWSedJmpP/PGvtp/xvFgAAAAAAAAAAQO3zXGiR9FNJ/yPpvyRlytMcAAAAAAAAAACA4BhLoWWKtfbisrUEAAAAAAAAAAAgYMYyR8u9xpgPlq0lAAAAAAAAAAAAATOWQstnlS229Btj3jTGdBtj3ixXwwAAAAAAAAAAAGqd56HDrLWN5WwIAAAAAAAAAABA0Hju0WKyVhhjLnV/n22MObZ8TQMAAAAAAAAAAKhtYxk6bJ2k4yR9wv29R9L3fG8RAAAAAAAAAABAQHgeOkzSu621i4wxT0mStbbLGBMrU7sAAAAAAAAAAABq3lh6tAwYY8KSrCQZY1olOWVpFQAAAAAAAAAAQACMpdDyXUl3S5phjLlC0v9K+pcDPcEYU2eM+a0x5vfGmGeMMf/kLp9rjPmNMeZ5Y8ztgz1jjDFx9/cX3Mfn5G3ry+7yLcaY9+ctX+oue8EYc0ne8qL7AAAAAAAAAAAA8IvnQou19jZJX5L0r5LekPQRa+1/jPK0pKSTrbVHSTpa0lJjzBJJV0n6lrV2nqQuSZ921/+0pC5r7dslfctdT8aYBZI+JumdkpZKWmeMCbs9bL4n6QOSFkj6uLuuDrAPAAAAAAAAAAAAX3gutBhjviPpIGvt96y1/2atfXa059isHvfXqPtjJZ0s6U53+QZJH3H/f7r7u9zHTzHGGHf5j621SWvtVkkvSDrW/XnBWvuStTYl6ceSTnefM9I+AAAAAAAAAAAAfDGWocOelPQVd4iuq40xi708ye158jtJOyU9KOlFSXustWl3le2SZrn/nyVpmyS5j++V1JK/fMhzRlrecoB9DG3famPMRmPMxo6ODi8vCagJxC6CjPhFUBG7CDLiF0FF7CLIiF8EFbGLICN+UQ1jGTpsg7X2g8r2InlO0lXGmOc9PC9jrT1aUpv73HcUW83914zwmF/Li7XvOmvtYmvt4tbW1mKrADWJ2EWQEb8IKmIXQUb8IqiIXQQZ8YugInYRZMQvqmEsPVoGvV3SEZLmSPqT1ydZa/dIekTSEklNxpiI+1CbpNfd/2+XNFuS3MenSdqdv3zIc0ZavusA+wAAAAAAAAAAAPDFWOZoGezB8s+SnpHUbq390CjPaTXGNLn/T0h6n6RnJf1S0pnuaisl/dT9/z3u73Iff9haa93lHzPGxI0xcyXNk/RbSU9ImmeMmWuMiUn6mKR73OeMtA8AAAAAAAAAAABfREZfJWerpOOstbvG8JyDJW0wxoSVLercYa291xizWdKPjTFfk/SUpB+46/9A0i3GmBeU7cnyMUmy1j5jjLlD0mZJaUkXWmszkmSM+YykBySFJd1grX3G3dbFI+wDAAAAAAAAAADAF6MWWowxR1hr/6RsD5JDjTGH5j9urX1ypOdaa5+W9K4iy19Sdr6Wocv7JX10hG1dIemKIsvvl3S/130AAAAAAAAAAAD4xUuPls9LWi3pm0Ues5JO9rVFAAAAAAAAAAAAATFqocVau9oYE5L0FWvtoxVoEwAAAAAAAAAAQCCEvKxkrXUkfaPMbQEAAAAAAAAAAAgUT4UW1y+MMcuNMaZsrQEAAAAAAAAAAAgQL3O0DPq8pHpJGWNMnyQjyVprp5alZQAAAAAAAAAAADXOc6HFWttYzoYAAAAAAAAAAAAEjadCizEmIukDko5wF22W9IC1Nl2uhgEAAAAAAAAAANS6UedoMcYcIukZSV+QdIikWZK+JOkZ9zEAAAAAAAAAAIBJyUuPln+RtN5a++38hcaYiyT9q6SV5WgYAAAAAAAAAABArfNSaFlirT136EJr7XeNMVv8bxIAAAAAAAAAAEAwjDp0mKS+Azy2z6+GAAAAAAAAAAAABI2XHi3TjDH/p8hyI2mqz+0BAAAAAAAAAAAIDC+Flv+W9KERHvuVj20BAAAAAAAAAAAIlFELLdbaVV42ZIxZaa3dMP4mAQAAAAAAAAAABIOXOVq8+qyP2wIAAAAAAAAAAKh5XoYO88r4uK2a5DhWnb0ppdIZxSJhtdTHFApN+JeNCYL4BYDKIu8CEwfnc3DwtwIQZOQwBBWxiyDzK379LLRYH7dVcxzHasuObp1380Zt7+pTW3NC15+zWPNnNpI4UPOIXwCoLPIuMHFwPgcHfysAQUYOQ1ARuwgyP+PXz6HDJvSZ09mbyh1wSdre1afzbt6ozt5UlVsGjI74BYDKIu8CEwfnc3DwtwIQZOQwBBWxiyDzM379LLQ8OnSBMWa2MeaXxphnjTHPGGM+6y4/yBjzoDHmefffZne5McZ81xjzgjHmaWPMorxtrXTXf94YszJvebsx5g/uc75rjDEH2kepUulM7oAP2t7Vp1Q6M57NAhVB/AJAZZF3gYmD8zk4+FsBCDJyGIKK2EWQ+Rm/ngstxpjPGmOmusWQHxhjnjTGnDr4uLX2M0Welpb0BWvtOyQtkXShMWaBpEskPWStnSfpIfd3SfqApHnuz2pJ6919HyTpq5LeLelYSV/NK5ysd9cdfN5Sd/lI+yhJLBJWW3OiYFlbc0KxSHjE5ziOVUd3Uq917VNHd1KOM6FHV0MNKyV+iyGmAcAbv/IugOoL2vk8ma/Xgva3QnkE9RwIarvhnyDnMOJ3cgty7AJ+xu9YerR8ylr7pqRTJbVKWiXpygM9wVr7hrX2Sff/3ZKelTRL0umSNrirbZD0Eff/p0u62WY9LqnJGHOwpPdLetBau9ta2yXpQUlL3cemWmt/ba21km4esq1i+yhJS31M15+zOHfgB8dra6mPFV1/cHy3M9Y9qhOu+qXOWPeotuzo5s0GVTHW+C2GmAYA75oTUV27or0g7167ol3NiWiVWwZgrPy4jqqUyX69FqS/FcojqOdAUNsNfwU1hxG/CGrsApK/n91Ntj7hYUVjnrbWLjTGfEfSI9bau40xT1lr3+Xx+XMk/UrSkZJetdY25T3WZa1tNsbcK+lKa+3/ussfknSxpJMk1Vlrv+Yuv1RSn6RH3PXf5y7/K0kXW2uXGWP2FNtHkXatVrZHjA499ND2V155ZcTX4DhWnb0ppdIZxSJhtdTHRpwUp6M7qTPWPVrQ9aitOaG7156g1sb4KEcLE0jZ5i4aS+xKY4vfYojpSaes826NNX7nXHLfmPfx8pWnldQ2TAhVz70d3Un9491Pa3n7bDUlotrTN6C7Nm3TFWcsJGfiQGoq92K/8V5HVUqVr9eqnnul4PytUB4lngNVz7181sKgMeawqseuRPwiq4T335qIX6CEz+4jxm5kDPvdZIz5haS5kr5sjGmU5Hh5ojGmQdJdkv7eWvumO42K14baEpZ7Zq29TtJ1krR48eIDPjcUMp7fJBifEOU2ltiVxha/xRDT8NNY4xeoFV5jN5XO6Bebd+oXm3cWLP/qh8iZqB5yb+nGex1VKRP1eq1cn9kw8dTiOeAlfmux3aiOWsphY7nuJX5RS7Ercd0L7/z87D6WocM+rew8J8dYa/dJiik7fNgBGWOiyhZZbrPW/sRdvMMd9kvuv4OvZLuk2XlPb5P0+ijL24osP9A+KoLxCTHRENMA4B05E0A1kHsw2QX1HAhquwGJ+AUQbFWZo8Va6yg7uf2Jxpj/I+k9kt5+oOeYbNeVH0h61lr7/+U9dI+kle7/V0r6ad7yc0zWEkl7rbVvSHpA0qnGmGZjTLOy88Q84D7WbYxZ4u7rnCHbKraPimB8Qkw0xDQAeEfOBFAN5B5MdkE9B4LabkAifgEEm585zPPQYcaYGyQtlPSM9g8ZZiX9ZMQnSSdI+qSkPxhjfucu+7+SrpR0hzHm05JelfRR97H7JX1Q0guS9sntMWOt3W2MuVzSE+56/2yt3e3+/wJJN0lKSPqZ+6MD7KMiQiGj+TMbdffaExgfGBMCMQ0A3pEzAVQDuQeTXVDPgaC2G5CIXwDB5mcOG8scLUustQvGsnF3UvuRWnVKkfWtpAtH2NYNkm4osnyjpCOLLO8sto9KqrXxCYHxIqYBwDtyJoBqIPdgsgvqORDUdgMS8Qsg2PzKYWOZo+XXxpgxFVoAAAAAAAAAAAAmsrH0aNmgbLHlz5KSyvZUsdbahWVpGQAAAAAAAAAAQI0bS6HlBrnzrWj/HC0AAAAAAAAAAACT1lgKLa9aa+8pW0sAAAAAAAAAAAACZiyFlj8ZY34o6f8pO3SYJMla+xPfWwUAAAAAAAAAABAAYym0JJQtsJyat8xKotACAAAAAAAAAAAmpVELLcaYNmvtdmvtqiKPfag8zQIAAAAAAAAAAKh9Xnq0PGSMeb+19uX8hcaYVZK+ouxQYpDkOFadvSml0hnFImG11McUCplqNwuoCZwfAIDJhvc+lANxdWAcHwBBRg5DUAU1doPabtQmL4WWz0l60BjzQWvt85JkjPmypE9Iek85GxckjmO1ZUe3zrt5o7Z39amtOaHrz1ms+TMbOUEx6XF+AAAmG977UA7E1YFxfAAEGTkMQRXU2A1qu1G7QqOtYK29X9L5kn5mjDnSGPNtScsknWit3V7uBtY6x7Hq6E7qjb19uRNTkrZ3ZX/v7E1VuYVjN/iaXuvap47upBzHVrtJqAHjiYvO3pSn84PYAzCRpNOOXt/Tp1c6e/X6nj6l0061m4QK8vreh/GbTNcPfsXVRD1mnHeQghvfQW03/BPkHEb8Tm5Bjd2gthu1y0uPFllrHzLGnCvpEUmPSTrFWttfxnYFQn7l85sfPSp3Yg7a3tWnVDpTpdaVhmouihlvXKTSmVHPD2IPwESSTjv6045unX/rplxOu3ZFu46Y2ahIZNT7XDABeHnvw/hNtusHP+JqIh8zzjsENb6D2m74K6g5jPhFUGM3GdB2o3aN+knfGNNtjHlT0s8kTZV0iqSdecsnjaEV+l29ydwbyZ6+AbU1JwrWb2tOKBYJV6m1paGaO/GVcqfJeOMiFgmPen4QewAmkp09yVyRRcrmtPNv3aSdPckqtwyV4uW9D+M32a4f/IiridzT2BhT9PgYwxd9k0VQc0JQ2w1/BTWHEb8IauwaqWi7Mfn4dd3rZeiwRmvtVPffmLW2Pu/3qSXtNYAGK/RnrHtUJ1z1S52x7lHtS+6vfF77yIu6avnC3Ak5WMFvqY9Vs9ljFtQqNLwpFsdbdnSPmkDGGxct9TFdf87iA54fxB6AiWQg4xTNaekMw4dNFl7e+zB+k+36wY+4GktP47FeM1Zb2GjYZ7Krli9UuLa/54GPgpoTgtpu+CuoOYz4RVBj14zQbjpiTS5+Xvd6GjoMxSv0W3f1qq05oe1dfXpq2x5944Etuvz0I3XYjAYlomG11McC101y8C65/DdJ7r6cOEa60+TutSeotTE+4vPGGxehkNH8mY26e+0JSqUzikWGnx/EHoCJJBIyRXNaOGDXBSidl/c+jN9ku37wI668HLNSrxmrLWOlDY9t1aXLFqgpEdWevgFteGyrLvvwkdWc3up0AAAgAElEQVRuGiokqDkhqO2Gv4Kaw4hfBDV2JRPQdsNPfl73Mki4R8Uq9N996Hl9f0V7rvLZ0ZPUW6bVqa0podbGeCA/SHP35cRW6p0mfsRFKGTU2hjXrOYpRc8PYg/ARBKPhLTu7EUFOW3d2YsUZ36WSWW09z6M32S8fhhvXE3knsZhI608fq4uv3ezzrrucV1+72atPH5uzd9RC/8ENScEtd3wV1BzGPGLoMbujIa4Ljrl8IJ2X3TK4ZrRULs3lcB/fl730qPFo2IV+o6epA5uqptQdypy9+XEVuqdJpWIC2IPwERiZXTf71/Tjeceo3DIKONY3bnxVf3tiW+vdtOACYXrh7GbyD2NQ6FQ0TtTrzhjYbWbhgoJak4Iarvhr6DmMOIXQY3dSCSkI2Y26o41xymdcRQJhzSjIa4IN8dNKn5e91Jo8WiwQj/YlWiwQt+UmHhvHoN3yWHiGSmOvdxpUom4IPYATBQt9TF9ZNFsrbrpiTHnWwBjw/XD2I12zMZzzVhNLfUxfe6v5weu3fBXUHNCUNsN/wQ5hxG/k1uQYzcSCemQpkS1m4Eq8vO6l0KLRxO5Qu84Vp29qQn3ujBcrccxsQhgogiFjOa1NuiONcdpIOMo6t4dRU4DKo/ri7Gr9WvGkQS13fBXUM/5oLYb/glyDiN+JzdiF0HmZ/yWtdBijLlB0jJJO621R7rLDpJ0u6Q5kl6W9DfW2i5jjJH0HUkflLRP0rnW2ifd56yU9BV3s1+z1m5wl7dLuklSQtL9kj5rrbUj7WO8r2ciVugdx2rLju5hVbv5MxtJLBNUrcYxsQhgInEcq+c7eshpQJVxfVG6Wr1mHE1Q2w1/BPWcD2q74b8g5jDiFxKxi2DzK37LPejcTZKWDll2iaSHrLXzJD3k/i5JH5A0z/1ZLWm9lCvMfFXSuyUdK+mrxphm9znr3XUHn7d0lH1giM7eVC6hSNnJfs67eaM6e1NVbhkmG2IRwERCTgNqA+ciMLkE9ZwParsBifhFcBG78FtZCy3W2l9J2j1k8emSNrj/3yDpI3nLb7ZZj0tqMsYcLOn9kh601u52e6U8KGmp+9hUa+2vrbVW0s1DtlVsHxgilc4UTPYjZRNLKp2pUoswWRGLACYSchpQGzgXgcklqOd8UNsNSMQvgovYhd+qMUfLTGvtG5JkrX3DGDPDXT5L0ra89ba7yw60fHuR5QfaxzDGmNXK9orRoYceOmKjvY7ZV2w9STU73l8iFtaN5x6jKbGw9vQN6NpHXlRHT1KxSLjaTcMovMbuoFLGnfRjrEqv24hFwjp1wQwtb5+tpkRUe/oGdNembcTiBDXW+AVqhdfYjUXCuuZjC/Wut7Yo41iFQ0ZPvdJJTkNVTcbcW2vXF5W4tpqIY42PJXYHBjLa2ZNU2rGKhIxmNMQVjZJ7J4taO+clb/Fbi+1GddRSDhvLde+av5qjMxcfqnDIKONY3bnxVeJ3kkmnHe3sSRbMTxmJlHsgpZF5zb3ELiT/4rcahZaRFLv6tyUsHxNr7XWSrpOkxYsXF32+1zH7hq536oIZunTZO5VxrLbu6tV3H3peHT1Jff+T7Zo/o7GqCWewvTveTOrSn/4x97quPnOhZk6tyxWIULu8xO6gUsadHHzOtx7couXts9VSH1NfKq2Dp9ZpT3/a04f3sey3ORHVRaccrvNv3ZRb99oV7WpOREs5PKhxY4lfoJZ4jd2psbCOOKRJz+/o0ZRYWPtSGR1xSJOmxrhoR/VMxtzr9fqiUgWQ8Y4DPto2JupY415jd2Ago5e79mn77r5c7t03kNGc5ikUWyaJWvxM4SV+a7HdqLxay2Fec29TXURnHnNoQbvPPOZQNdXV0leOKKd02tGfdnQPy2FHzKzed59e4repLqJlR7dp1U1P5Nq9fkU7sTvJpNOOXt7dq235ufegtOYcVD/m+K1G5Owwxhzs9jQ5WNJOd/l2SbPz1muT9Lq7/KQhyx9xl7cVWf9A+yjJSGP23b32hIKJcvLXe9fsJq08fq4+fv3juZP1quUL9Y0HtmjNLZv04/OWKBYNaXp9vGofeoq9ri/e+bR+svb4QH8Qw3BeY3iQ41j9+c1+OdbqwvfO04U/fLLgTeeah57TLzbvHPXD+1j229U3kHtTHlz3/Fs3jdhGYDRzLrlvzM95+crTytASTEZ7+ge0q3v4zQxT4xHNjHPhDng13gKIl+uLShRApLFfjxUz2jb82EeQ7d6XGjn3TktUu3mogKB+pghqu+GvoOawrr7i173T6qKaQZF7UtjZkyyaw+5Yc5wOaard2O3oTemCIe2+IADthr9270upo1jurYtqxtS6MW2rGmXFeyStdP+/UtJP85afY7KWSNrrDv/1gKRTjTHNxphmSadKesB9rNsYs8QYYySdM2RbxfZREq9j9uWvd/5Jh+niu54uOFkvvutpnX/SYdre1aeOnqSeee1NvbG3T6/v6dNrXfvU0Z2U41Tu5sKRXtdA2vG8Dcex6uhOVqX91RDU1+s1hh3Hamd3v17dvU9b/tytrt5Ursgy+JwLbt2k5e2zc78faKKwsYx36WXdoB7/WsCxAyprwLH64p2F1wFfvPNpDXDuAZ45jtXLnb3642t7tb2rT398ba9e7uwd03uYl+sLLxOhptOOXt/Tp1c6e/X6nj6lh1wve9mGH+OAj7aNyT7WOLkXqXRGx7+tRQ9+7kQ9/IX36MHPnajj39ZS8+dAUNsNfwU1h6UyTtF2pzLev1tCsA1knKLXH+kaj4Ggthv+8jOHlfWWSmPMj5TtjTLdGLNd0lclXSnpDmPMpyW9Kumj7ur3S/qgpBck7ZO0SpKstbuNMZdLesJd75+ttbvd/18g6SZJCUk/c390gH2UJBYJq605UXDytTUnZEy2e/5gN31jTG69pkS06MnalIiqrTmhaYmo1j/yglYePzdXkKl01/6RXpfXsQgn6tAEIwny6/Xyty72+jZ86tiicXxYa71uX70kN6/PSB8ARtpvxrG5c8drG4N8/KuNYwdUnuPYovmTIifgXVdfUjve7B9+h+yUiFrqvd1d5uUaKJXOqLUhrkuXLcjNjZB/feNlOAwvBY7xXnt72cZkn+chQ+6d9OqiIa047q0Fw8CsO3uR6qLVHbZ7NEFtN/wV1BzGdS+i4VDR65NIuLZzWFDbDX/5mcPKGjnW2o9baw+21kattW3W2h9YazuttadYa+e5/+5217XW2guttYdZa//CWrsxbzs3WGvf7v7cmLd8o7X2SPc5n7HWWnd50X2UqqU+puvPWay25my3scFhwC6754/asqNb6bSjLTu6ddk9f9RVyxeqrTmhgYyTW39QW3NC+1IZ/WDlYu3sTupLS49QKu2otSHbFXi03gF+K/a6rj9nsef5WbzcuTeRBPn1NieiunZFe8HfeuiYv7t6kgWvr7UhLmtVNI637e7TWdc9rsvv3ax/Ov2dqo/vL4bk95poTkT1/U+2Dzt3vnbf5mHHbbR4DPLxrzaOHVB5kZApmj8jFDcBz/pSxe8u60sV3l12oF6bLfUx/ei8d+u/Pv8ePfyF9+i/Pv8e/ei8dxdc7yZiYX1p6Xxdfu/m3PXNl5bOV8KdU2mk4TB29iRz24hGQkXP+WjeuM7jvfb2so3BeR7yX8tFpxw+aeZ5iI/wd4hVeW5MVE7/gKN/e/h5XbpsgW5fvUSXLlugf3v4efUP1PbdyUFtN/wV1BwWHuG6N8x176TRWh/T+iHfOa1f0a7WGp//OR4xWnf2ooJ2rzt7keIRYncy8TOHMUi4B6GQ0fyZjbpjzXF6fU+fOntT+sYDW/TUtj3a/Ea37lhzXO5LzI7ulK4+c6HmTK/X+rMX6YLbniy48216Q0zdybT+4T9+n1s+OHfLU9v2jLtr/1jGsR58XXevPaGkca8n29AEQX69XX0D+u5DzxXcqfndh57TFWcsVGtjXI5j1ZtK517fu2Y36R/eP1//+9wOXbuiveAOzm/9zVFKOzbXo+XfHn5e/3jaAtVHI3phV++wXhMzGwvvEB2M9a9+qPC4jRaPQT7+1caxAyovEjbD8ue1K9oVCXPRDgwa7brVy529XiaH39uXHnYuHjx1f8/atGN146NbC65Xbnx0q752xl9I8jasRCRk9J2PHa3P/vh3uf1852NHFxRXx3vt7WUbk32eh5Ckaz7+Lv3dj57K/R2u+fi7qjJeNqrDGOnTf/k2fSHv8/Y3P3qUTI2//Qa13fBXUHNYdITr3ijXvZPGnv60rhnyndM1g9851fA8PT3JjG799Su68dxjFA4ZZRyr63/1kj5z8tvV0lDt1qFS/MxhFFo8CoWMrLU689pfFywf/JDV2hDX9q4+zZvRoCmxiD567a/V2hDX5acfqTnTp2jHm0ld+p9/VEdPUlefuTC3/uDcLZcuW6A1t2zKDUmWz2vxpJThgUIhU/KHLj+GPwiSIL/eVDqjX2zeqV9s3lmw/CvL0np1d1phY/Tyrn2513f+SYfpV1t26LSjZuUKNC31MbU2xhUOSc/v6NWUWFixcEhr3/t29STT2jGkR8xgr4k71hyny+/d7Om4HSgeg3z8q41jB1Re2Bg11IV106pjFTKSY6VIOLscgLfr1mg4VHQYrPzhHEab/N3L5KzWscOG871q+UJZt6DjZVgJx7FqrIvo8tOP1JRYWPtSGTXWRYYNOTCea28vJv3NFUaqj4cL/g718bBE6p08rPSD/32p4Mu+H/zvS7rsQ++sdssOLKjthr8CmsO47sVI3zkNvcG21kTDIT32Uqfu2LQ9t6ytOaG//+vDq9gqVJqfOYxCyxjUx8P6r8+/RyGjXJXzsZc69WJHr772kXeqPh6VMdJLHb1qbYjrqW17tOqmJ3Tqghn64vuP0CUfOCJ3h9z5Jx2mNbdsklQ4d8tVyxcqv2A2+CH0Ww9u0fL22Wqpj6kvldYh0xK5MaEHjfZB02+DQxcM/YA8luEPgiTIrzcRC+s/1hyn6Q0xZazVn/f26+Zfv6wXd/Zq1U1P6L6L/lLRsNEtnz5WGSfbffIdB0/V1+59puDNcs1fzdEnlsxRY11Enb0p3bVpm1adMFfNTTGl0sXv9rTW+nLcgnz8q41jB1Re2rHu3e7736vTGUdpxqoGJGWvW//zyW0FdxDeufFV/e2Jb89dt8bCRn938ryCHuLrz16kWN7F8mjzq3jpjZKxyhVZBh+/+K6ndcea4yRJMxriumnVMdq2uy/3xdfsgxKa0bD/+jqZdvSpmzYOK8bcvnpJwb7H0vu8mNEKVH7eXDHetlbDQMbqro3bdObiQwvi6pzj51a7aagUI61979vV1TsgSbkbw2r++96gthu+CmoO47oXsUhYa/5qzrDYrfWbO6fEQlp39iKtzbvWXHf2Ik2J1Xo/MvjJzxxGocWjdNrR9q7+gm5E685epPNOnKvrf7VVZyyapTW3PllwF9w3HtgiSVp5/NyCSe2uWr5Qsw9K5IZeumvTNs1wh1fa8NhWXXHGwtwHm4F0Rt96cMuwu+y+v6JdBzfVqSlRvaGV/Bj+IEiC+nodx2rPvgGlHUefvOG3+7+oWNGuR57doR+d925ZK13ykz8UxOiGx7Zq5fFz1dGd0lPb9uhds5v0wYWzdPa//6ZgvexQG+9UKGyKfrAPGaN5rQ3jPm5BPf61gGMHVF44ZLQv5WjtbRsLrhuaErV53gXxC1UEm5HVaUfNGjbxs9H+DzSpjM0VWaTsde0Ftz2ZK4BI2TsRL/vwAu3O+3Lysg8vUNTtbRKLFO+Nkj93irXFhyhzp39UKGQ0kHZ06U//uL+48cl2T8OcZcYwzJkXo91Y5dfNFX60tRqiYVM0rhi+ZvIIG6O+VKbgfL36zIUK1XjFIqjthr+CmsOCdt0L/zXVRbTs6LaC2F2/ol1NdbX9tXPvCEOHffZ989Q0pdqtQ6X4mcMo0Xm0syeZG0Ipf3K6RDSiDx99yLCJOi++62mdf9JhOv+kw4reIZfOWO3pG1BLfUz/eNoC3fv713OTVTbVRbRlR7fOWPeo9g1ktLx99rBtrLl1k36/ba+27OjODUngZRJOvw0OfzCreYpaG+M1/cHLD0F8vZ29KfUk0+ofcPTNjx6l73+yXa0NcV3z0HM66YgZMsYMG1Lj4ruezsXd+ScdJkk6/6TDdOEPnyy6XjKd0eX3PjNsErGrz1yojp6knu/oUUt9bNzHLYjHv1Zw7IDKSqad3J1RUjZnrr3tSSXTtTep7eAXqmese1QnXPVLnbHu0YLrC6AcvJwjzigFEC/Cxuj7KxbpxnOP0e2rl+jGc4/R91csKhgKYLRr6F09SZ13S+G10nm3bNKunuT+/XiYRHNXb/FhVnf17t+O41h1dCf1Wtc+dXQnh52Ho91YFQplb3C5Y81x+u8vnqQ71hz3/7N353Fy1XW+/9+fU1tXd2cj6QAmQRAhEJgA6QgB7zgIgxcHlDs3ERkIiKOExW34MYCzoM5w7/0J6CCLJMAoso4gOA6DCnpBxJFBTdhGAyFsTuII6XTW7q6u7XzvH9VVqeqq6q6uVHfV6X49H49+JFV1+pxPn/rUt845n/P9fnVIV+eYv/erFXR6+1NjWs9ES2ddxbxKZ2nPpoq078rOzS9/8EWlW/w7Lahxo7GC2oYF6bgX46OnP1WYoyV/zfSmx19RT4sfN0TDIT39eq9Ouf4pnfTVn+qU65/S06/3tnxPHDRWI9uw1i4tthCT06r3Hay/uH/PBJdf++jRkkn7zWirOGTBzHhEIc8qngyZqTBvRb6HyoePmaf7nnlTXf/tXXpr56C++pGjFBu6q7TSOhbsE1cy4+v3O3OveWb6+tnH6FP37Zk47boVi0sm4cTUY3LyzErujlqzslshz3T9jzfo8x88vGJ+HdzVoa7OWOEOyGp5OLsjqrd2DhaGF7vj/PdoMJ1VWySkvmRGs9qjuvqR3+QmQZsCk7ACgJTrflxxuKIWvGAy0UOPYurIZHxt6UsqnfUVCXma2xkrDH1by2fEs8q9ZYvnM/Sd00CFu8D9QjHGyXcqeX31OUukop4zIZOuW7G4cJEzv478DcSJdOXixmB6T6/xsGe6Zvnisnleio/DB9OVhzkbTOdO4mrpRRINhyrOW5O/IOD7Tht7+va6J0pQ53oJUtuL8eFXyYFWv3kgqHGjsYLahgU1bjROtWumxT2VWxHDrENqbBtGoaVGTlZoMKTcDv+L+5/XAxcer45YWFecurDs5GzezDYl0n7FE8Q3tw6U9VC5+owj9ZH3HKCt/anCyeAHFs3V35y2qOI6tvallPWdLrx7z3BmX/3IUYUuxjsSaV376AbdfPYxUsfE7q+xYLiS8ZXM+BUngb33k8dpefcC/bZ3oGJ+bdqW0BWnLtS8WXE9cdkfVZ0ItmtaTF9/4lVJUs/ulOIRT4PpbNlweb6/93ezkCsAgiLsVb5A3Io3PwT1gipaWybj6+W3d5cMu7tmZbcO23eawmGvps9INGRafc6SEedoyVS5C/zbQ3OjpKsMP1Y8d0p/MqtrH91QUgC59tENuuGsozW7c09vlbLhUYti9TxPdz79Rsk68kMC58VCXsVzhtjQ31Otx8t3LzlBc6e1SZJmxSP67MmHlu3XWfGIpMYVThs518tEilR5ryIt2PZifFQ7Z8kPJ9iqgho3GiuobViQjnsxPka6ZtrqOmOlk6DHwuTtVNPINoxv7RqNNJFmJlv5BO/N3gFd8eCLumb54pLhlFafs0Q3Pr5RxyyYqVvP7S50q5vTGdWmbYlC4USSfrR+i+575k2tWdldso7rzzxKzrmyIcUu+84L2jWY0Zd/+LIk6W9OO1xmNmF3wow23EGl5RmuZHxVq8x6ZprdEdWNj2+smKNtEU93/PwNvbalTyd99af67D89p1uH5eHXz16i+555Ux8++h06ZsFMXXHqQm3c0l92QePKh17U3vZ2JlcABElb2NPqYcMprj5nidrGcTjPeplVHvLIGBcee2FLX7LijR5bhobbao96Wj3suGL1yu6SyUdTWaebnthYOgzFExuVKjqoqDY3Sv74oKaeM56ppy+pC+9ep4/e9owuvHudevqSe3qReKbrVpQeK123YrGiRSdfszuiuvSUhbr6kfX66G3P6OpH1uvSUxaW3BHpO1U8Z8iHMli158yem1W2J9IV9+v2RG6OmkYVTvN3eBb/zUG4wzPsma4/86iy8yYu9k0dnqliDrR6CgQ1bjRWUNuwIB33YnyMdM20le1IpLQrkdambblrmJu2DWhXIq0didYe8gyN1cg2jB4tNRrpTrZKJ3hdnTHNmxnX5z94mGbEw7p/1TJl/NwQTu1RT13TomUT3K9Z2a1D5uaGaype360/e1Of+MN3FdYR8kw3/t+NWt49v2JDtt/0Nv3lf19Ysu5bV3Zr/5ltmhkfvx4AY500M5Px9fbuQfUnM7rq9EVa8+Rrem7TDoYrabBqlVnfOc3ujKqnL6l/ee53+vaqZUpmfP1n74C+8C+/Ude0qD7/wcNlJt16brceWrdJszoi+tpHj9aczphCnsl3TtsHMtp/Zlx//SeH69IHntdXP3JUxbysZTz1kYYYqeUuTwBoFcmsr862kP7pgmXyXe77P+NnlWzBk42QqeKQRy0+7yqabKTvbKm2E+4Z8XDJHYTRYXcQZrK+enaXnuj27E6VrKPacU5+bpSaes4MFVKG9zTJF1J8Sft0REpizfpZFX+ai+dGKd4nxcfA1eacyQ9zFqoyVFrxZ3G0QkqjeqJ4nmnhvtP0z5e8N1A9iTPOadqwvMr4WWXGMK8Pgm0w4+v//ODlkt5l/+cHL+trZx3d7NBGFNS40VhBbcOCdNyL8VFL799WlMn4ZUPQXn/mUcowv9CU0pfK6smXt+i+C5bJOScz0788u1kfPmaeZo9xXRRaahTxTDecdbQ+9+094w3ecNbRingmTyppUPJ39p/7zV+WDHPQl8zojp+/oc+cfKi+8KEjdNZtz5TdjXb1GUfqilMX6tpHN+i5TTskSRf+4YFKpH317E6qtz+lZ9/s1UUnHiyn3HwYNz6+sbDs/FlxzemMlk1afsPjr+iKUw/XrkRG7bGQ5nQ0fjLssQxVUGk4iWuWL9ZXHsv93QxX0jgdsZBuPbe7ZIi5r330aP3kpbd00qL9dMf5SzWQykpO+thQzh6zYKY+dsJBOm/ocX4Iu6zvNHd6TG/vTBbGRP/k+w7SYCqr/We2afP2hHYk0nWd4I82xEgtd3kCQKsIm2l7MqstuxNqj4Y0kMpq7rSoOiKtd+hlnmnjWzt1X9HJ8RPrf69D9u1sdmhoUaN9Z0u5AkeluUTyBZDBtNP/emR92et/9+EjC9uJhj397emHlx1/R4sKOvm7fy994IWSE+R8IaUt4mnNyu6yWNsie9bhS5reFtbVZxxZ+LxObwsXCim+c9oxkNFl3ykdrnd6W2TPOmqYG2W0Ikg8GqpY8IlH9xxDjbaORo417nkWuBufwmbancjo0gfWleTDPvHW7omDxgl7pq5ppe9317Roy/cICGrcaKygtmFBOu7F+BjpmmkrS/uucAwp5a4xXfrACyVDzGLya4+GdNLhc/Xalr5CG3bS4XPVHh37kLm0ejWa2RbR7nim5ARsRjyiDW/t1KH7zdAt5yzRJUPDJX325EMKJ0jHLJipi048WMmMr65pbbrk/e/WTY+/oi99+IiyiTCf27RD7dGQLvvOC7r6jCP18W/9Sh9YNFcfOnq+zvnHXxQueH/6pEMKF8DzJ2DXPrpBXdOi+tuhi+HFPUTyF83Pv+OXVU/8GmEsQxVUGk7iyode1FWnL9LVj6xv+fGfg6QjElYs7A3L3bBOOWJ//d2//kaf/+DhCntOoZDp7j8/Vtmh6u01P3yppOiSz8HinOvpS+q6FYu1YJ+4fN/lLl48+VrZndG1nOBXG2LkgQuP1ztmxmu6yxMAWoWTKt4d1Yr3I8bCpu6D5ujs25/Zc4PIym7GJ0ZVo31nS1JnzKs4l0hnLFfgcHK65P3v1vb+3JBX0ZCnS97/bhVPUu8k3frT10qOmW/96Wv6uzP2FGNM0qxhvU0kX/ns7QiH1RZJlxwHtUU8dYT3nAY55xQNe1qwT3thHc75ckOxOCdd9p3Sk/DLvlN6El7LDUejFUFmxqPad3pbSaz7Ts/1SM8bbR1B7YnSKGnf6fafvV6SM7f/7HV98UNHNDs0TJCOmKfPnHyoLi5qe1av7FZHrLWHMApq3GisoLZhQTruxfhoi5pmxCNl10zboq19/JGt0ts42+K9yNBYzlVpw+pIAwotNdqWSOv8O35VdpH3vguO02Da1z4dET2wapl2JNLqiIULF6iHD+F13YrF+tTQSeXVj6wv6c1x59NvaEcirc3bEzq4q0NP/uWJCoespOfL8u4FhYKOtGds5wdWLdP2RFpnF10Mz/cQuejEg8vmchmP4bmG32F3zIKZ+uzJhyjrcvO2FJ/kVRtOIn/y2OrjPwfJ1v5Uxdx94MJl+tgJBymRzioW8fTm1v6SOyivWb5YPbtTFfPn8gdzRbEL715XmHA27O0ZeuYrj23Q1WccqQNmtyse9rTfjD1dRqtNaD/aECO13OUJAK0iE6C7o/oGs4ULO9LQZOH3rNP9q5ZpRnyUX8aUVMuwYP1Jv3IxZtUyzWjPDZOVGHZCc92KxfKK5gZyzpUNtXvN8sUqPusJh02J3b4uvndP4WH1OUu0T0duPdsSVY6DVi3TO9pyp0Ihz9PWvlTZMcaMoQJH9SG/9jyu5Yaj4uHFMllf4WHDi3me6cDZHZrWFqlaJKmlkBLEniiN4pkq5swUqTNBuban2nfazPYmBzeCoMaNxgpqGxak416Mj/6kq3Ld6fiWPp+IeF7FG3ojHkXuqSSd9RvWhpE5NUpVOaF0Q+NJm0wyU0csLG/ozvtqF6j36Yjpwgq9Of7mtEV6fP3bmj8rLoGa+u8AACAASURBVCdp5Td+od9tT5Rsd2Y8UvnE1qkwNFTxOi/7wKGa3REd8cRvrBPYV1M8aWZ++LSr/uXXet+1T5ZNXB4JeRUn3t1/RlvDe9pMdSPl7pUPvahoyNOmbYmyyVmvfOhFXXTiwVVzbmY8Uvi/7zu1RUO68+k3dNXpi/T5Dx6mVNbXNT98SZFwqKTIUm1C+2o5EQ7lmqniuzzvX7VMV59xZNldngDQKqpNwJ2t8zt2PNUyWThQbLTvbGn0vEr7ruLE8OmivMsfqww/PilOzYGUr4uH3YR08b3PaiDlF7ZTKY7i7aSyvu74ee4Y5v5Vy3TV6Yt0x8/fUGqocBTyKv+9oaLj1fwNR8OXKe6lnR9e7Mxb/13vu+5JnXnrv2tjT1/JsXe+SDJvVru6plUe6reWZaYqv4acweQW1O+0oMaNxgpqGxak416Mj2o34aRbfJ4ez6TrViwumQQ9d+NPkwPDhGpkG0aPlhpVm9gp5JliYU9v9g4UxiL8wKK5uuWcJUplKjc01e6K2zGQ1gf/YH997IQD9b+/n+vtMny+i2rzX4RNFdc5b1a7JFd1LOexTmA/kuF32H102Bw0xb1o5nbGKo6Xve+0Nk4WG6xa7ubzsC+ZUXs0VLWHUW9/quLv70ikC/8Ph0zTYxFdesrCEccEH2lYjWo5Mbczd0dmLXd5AkCrCNKEkLVMFg4Um9sZ030XHKdUxpVMZJ//zpZGPnaWpGyVE5riokO1ZbJjWGa0OKTqdxDnhyc1c2XDol6zfLGKOt/UNDfKWOYzRH242IegfqcFNW40VlDbsCAd92J81HK81YoGM76ufXRDyXB91z66QV876+hmh4YJ1Mg2jB4tNYp6VrHKGfVMibRfKLJI0o/Wb9HNT2zUftPbKt7Zlsr4FZ9/a9egDtinXb5z6tmd0q3ndusdM9q0ZmV3YfmH1m3S6nOWlMUxkM7qA4vmlq3zza396oiGdWvROopP/Kqd8PX2p6rui5F6wBQPVTBSL5pw2NPCuZ26f9Uy/fTyE3X/qmVaOLezMIEqGqda7uZ7XmX93KT2lXJyRjxSloP531/z5GuF4TmiIU/bE2kt3HeavnvJCXrqivfr/lXLtO/00osGIw2rEQ57OmzfaXrgwuP11OUn6oELjy+ZVFfiDk4AwRGp0va24oSQsbCnW4YdW9xyzhLF+E5GFc457UxkdP4dv9RJX/2pzr/jl9qZyMgVDelllhtStDivioc/qaVXTDRceZloUW5Ghk6Mhi+T/6yNdAy/5+8Z+Q5i56vQazff4+XOp9+QG3YMnL/h6OdXvl//fMl7y25cGst8hqhPuEo+tPqFHjROPOpp9bBzl9UruxWPtvZ3WlDjRmMFtQ0L0nEvxkctx1utKOyZuqaVjpLSNS1KkXuKaWQbRo+WGmWcU2csXDKxU2csrIxzFe+k+9H6Lfrb0xeV3aF/zfLFuv2p18vuirv57GM0mM5NutkRC+tLH16kT933XKGHzF1/fqx2JtLasjsp37lCHPlueDsG0vrC0ARpP1q/pXABvC+ZO+k9fP/pZWM5S1IinRnTCd9IPWAkFebesCoTl+eHT/B9p1e39jekJw1GVi138xdA5k6PKRKysvlP1qzs1ta+pO74+Ru6+MSDddXpi3TYftO0vT+lWR1RffXMo5T1nR5c+58694SDCpPO9vblinddnTF99uRDdNCcDrVHQwqHTCZVHv9y6IJJOOwVJtEFgCALeaY5ndGStndOZ7QlT5T7U1nd8++/1R3nv0chz5T1nW5/6nV96qR3a06zg0NL2tKXrDqXQK43tWQybXxrp+67YJmcczIzPbH+93rXnA5JuV4kN5x1dOFmpfmz4rrhrKNLhmrwpIrzsxVfdgyHTavPWVIYPix/DBwO51aUcU7xaKjksxiPhpQpKgqNNhFqOOTp4+89qCyO4qKQNPrcKMPnM5TKhxfD3omFvYr5QOF46hhM+brp8VdK7k6+6fFX9KUPHSF1NDu66oIaNxorqG1YkI57MT5Gumbayjpinj5z8qGF49p8kbsj1tqfOTRWI9swCi01ck666YmNWt69QO0KKZX1ddMTG/XFDx2hWLjy5Elv70wq4/u65xPHyUx6+a3d+spjG/Tcph3auKVPV52+SIfM7dTbuwaVzvj6y++8UHLy1tUZ0+btCf1o/Rat//1uffl//oEkaVpbRG/tSuqH636vM46ZV3LSd8s5S/R3Zxyh/qSv3YNpDaZ97U5m1DVNJSd++YLJWzsHRz3hK5683Mx0/Y83lPWAefjT79Xbu5KFwskHFs0tKzIVD5/A0AkTp1rufulDR+jOp9/Q35y2SF96eL2uOHWh7v3kcfKd05tbB3TV936tnr6kbjlniaIh0z7tuar+jPaIXu/p142Pb1RPX7IwtEYsEtKOREpv7RzUTX92jGbEI/ryD18qFP6uW7FYbRGv4gUT7hYAMNmk/dyNEAv2aS8MreScX3i+lYQ909Ov9+qBdZsLz82fFdfn/viQJkaFVpbxnbo6YyUXBNc8+VrJXAKxiKn7oDk6+/ZnSk5cY5GheducU8izkhOakGclvWISNQznkM44rXuzV/ddsEy+c/KGCjqnHLG/pNxx0C0/ebXkOOiWn7yqLw7doCRJoSo3CIWGxgZLZyvHcfPZx4xpv9UyvBj2Tr6NLc6r4ucx+aX93OgQxXp2p0rmZWpFQY0bjRXUNixIx70YHyNdM21l/Um/6s1DM9ubHBwmTCPbMAotNYqETJ8+6RBdUnRnwS3nLFEkZHJOZUWFrw/1UMlfUL7j/Pfo6kfWl5zARUPe0PBN7br6kd+UTQZ61emLdOHd6wrPvWNmXOd985eFbdz158cWHueXufmJjWVxXrdisfbpiGqfjj0FjHyho6szVta7pviEr1IPlmuWL1bP7pSe27SjsN1EKltSOPnR+i2SpAcuPF7OubL5NFp16ITiotJkmQOkWu6GPNPH33uQQkNdJXcNZtSV9bVpW0I3Pr6x8P5ecu+z+s5Fx2v7QH9h3p18HnzlsQ268qEXdc8njlPIyw0pd9W//Lpirlz+4Iv61sffo7//1xcrX6io4U6tyfj+AJicPJkGUllt6x8snCjv0xHR9LZIs0MrE9S7J9E8bWFPV5y6sOzGibainElUuTv7i0N3ZzsnfXqo93be/Flx3b9qWeFxyDP19CULx8P5ZYrvLouETEsOnF1S0Mkfo0u5/P7MSYeMmN8dsVDFz0BHLHfjUTQcqhjHWHuiDJ/PkGOZxvP9YF7oQePU0j61oqDGjcYKahsWpONejI+Rrpm2sqDOi4TGamQbNqkLLWZ2qqQbJIUk/aNz7st7sTZ9/4XflQyr8eDa/9T/WLJAHbGQujqj+vaqZfL93J10b/b26/Pf/Y/CB/bGxzcW7uTv6oyVHURVKl7MjO95Q+fPiuu3vQMlRZVt/amyBmF594JCw5Zf7vIHX8ydtBZdyM4XOjZvT+grj+25Q2/+rLj2n7Fnwp9KPU+ufKi0CDR/VrzikAs/Wr9FX/yQKwwhUawVh04YaVi0IJ8AZ31VzN2zlx2oax/doFvP6y77QswXUZ7btEObtyeUybpCvkrlebB9ICXPi+nCYXcCFC+zeXtCIat8waSW932yvj8AJicnaSCVLSk+X7disVrxkN3JKvYIOO2o+c0ODU0y2o0NWaey44LLH3xRD1x4fGEZqzLBfH4C+WrDdflFPVry4yUPv/BYPF5yOuvKjn0vuffZQsEmlfUVCZu+9fFjC3eoZfysUtk9d6i1h0Oa3h4pWSYSNrUPHZ/QEyU4quUdh4pTh1+lffpOUfvUioIaNxorqG1YkI57MT6qXXc6/73vanZoI2rkJOgIrka2YZO20GJmIUlfl3SKpM2SfmVmDzvn1tezvn3ao/rQ0fP18W/9qmQOC8+cYkPjM5tyH9JN2xNqi4RKPqjPbdqhax/doG8PnfSdNdQzQKpevMh3E81v66rv/bokpt7+VFmDMLsjWmWM6dK/p7jQ8dymHbrw7nWaPyuuf77kvTVN2pk/scyfaLZFxlY4acUT1sk6nFksYhVzNxLKFT1Sab/sAkVxPs6fFVcq41fMg3xxbsdAWnOnxaouI+Xy4a1dgyP2oBrJZH1/AExOGb+8QH35gy8WjgNayax4REuHDfG0ZmW3ZsW5C3EqquXGhqxf+bggW9S9vtoE8/kCSLXhujzbcxzqJE1vKx3ve3pbuOSkp9JcibljX1eI45N3rivbTnHPmZ7+lM65/RcVl5kXDTesJwo3jYy/0fIOk1+6SvuUafEhjIIaNxorqG1YkI57MT6qXXfKDxnbqqKhysPbR0P0JpxKGtmGTdpCi6RjJb3qnHtdkszs25LOkFRXoWV7Iq0bhw1/cOPjr+jPjn2nOmMRZX2ncMjkOxUmzBl+8tjTl9TGt/t0wOz2UYsXt57brazvdP+qZdqRSGv3YFo9fcmS33lo3aayYQ7mTotVPGlti5Q2ErUWOqr1PHnHzLh+fuX7CyeaksZUOGnFoRNadTizvZVI+RVz93//6R9ozcruqneU5osot5yzRD19yYp5MJDK6roVi7Xv9DbFo5VzZUciXfiyuvbRDeqaFtV9nzxOIc/G9L5P1vcHwORU7eKv34Ld0Lcn0oXhT6VcnBfds45C9hRVy40NXg1FktEmmPdMZTdfDL9r16SSeV809Lj4qCFc5U7E8FAsbmi7w+MoXmu1YSOKtz3aRPe14KaR8Tda3mHyq9Y+mbX2xb6gxo3GCmobFqTjXoyPated8kPGtirnnNqjoZKbetqjoZI5AzH5NbINm8yFlnmSNhU93izpuOELmdkqSask6YADDqi6slQmqx+t31KYeyTvE//tXcr6Tp6Xm6slkcqqIxaSZ+Xztty6slt/+71f6x/OPKriQdSMeEQPXnS8ZrZH1RY2/bdrnyy8fsyCmWUnox874SDd/e+/LdzdEA2HNCseqVjwmNNRevJWa6GjWkFmv+ltZcuOtXDSiBPWRmrF4cxGUmvuZnxXMXf/5rSs9p8eUzLjV/y7953epqtOX6Tvv/A7feQ9B5RV+W9d2a05nVFFwp5mxisX2249t1tzOqL67iUnKOyZbj77mLqLakF7fzCyWvMXaDW15m405FVssyIteHcUheypo5b8rSUfrEqRpPh6YLjKRcN8AcR30p1Pv1FyQn7n02+UjEMfqTI3QfHzbdGQrj/zKF36wAuFWK4/8yi1RXPHB7Eqxw+xouOHqsWaBt8AxGetfrW2vWGvctsb9lqv7cX4qGXIwYlWS/62YtyYeK3Whk3G416Mj+rXnRY1KaLa8ncw4+tLD6/XRSceXJgX6UsPr9fXzjp6IkNFkzWyDZvMhZZKRyRlpSjn3G2SbpOkpUuXVi1VVbvIO5DKKhzyFDIpFJLuevo/ddZx71Qm6+Sc0x3nv0cDqay6psXUFvHU05fUW7sGdcNZR+tz336+5OT0usde1gV/+C5JTr/fWTos2HObdujOp9/Qtz5+rHr7ktqRSOsrj21QT19Sl4cPKylY1FrwqKXQMZaeJ61WOBmrVhzObCS15m61iwchz2Se1Bb1yoqC1595lC69/3n19CV1/ZlHqT+ZUdjzcvMQOakt4mlOR2zsxba9uJMhaO8PRlZr/gKtptbcbY+Zbj23uzBHVb743B5rvQsmFLKnjlryt5Z8cDUUSdpj5ccXa1Z2qz2WO2GZ2xnTZ04+VBcXvb56Zbfmdu45lpwZj2pHW1rb+tOF56a1RQo3eOSXmd0ZK7kTcXZnrLBMLccPcztjWr2ye8RYGoHPWv1qbXs7YlYx7zpasO3F+IiEvYp3J1cr3E6EWvK3FePGxGu1NmwyHvdifEzUTStjUUv+hr3K8wg3M25MvEa2YTZZu0OZ2fGSvuSc++9Dj/9Kkpxz/3+131m6dKlbu3Ztxdd832nDW7t1wd1rS+4w6ZoW0/R4WO0R002Pv6bTj5qnGe0R/a9H1utH67eUjL0sSRve3q3rf7xBl7z/3ZKTZnXkhhkLWe6ktS0a0vRYRLuSaf1+x2BhcvH8emJhT+d985eM6zxORpv8tQ4T8saMlLupVEYbevrLLh4csE9MZtL63+3Wgtnt8n2T75wiQwWY/mRWW/tSaot4uuUnr+rSUxY2PdfG4f1BdRO2Y0fK37wDP//9CYnlzS+fNiHbwbhrets7OJhRfzajwZSvjO8U9kxtUU8dobDa2lrrPhfmjWgpTW97a8mHwcGMNvaWH1scMrujkN/JZEY7U2mlMk5Z3w0NGWqaEY0oFsstk05ntaUvWfiMzO2MKRIJlcUz2nf/aMvUso5aYtlbU+CzRtuLpvN9pzd7+/Xb3oFCweKds9t14OyOkT5nLdH21hE3Jpk62rCm566U+87vy5TH3RkOF77zMbnVcmxYQdPzN53O6uUtfWVxHza3s+HHgWhdjWx7J3OhJSzpFUknS/qdpF9JOts595tqvzPaxT7fd9ral9RgOivPM0U8UyScK5LsSGQV9kwdsZA6oxFtT6QrnszlT/R831fW5cYDHMtJoyQuNAdL0084pVyxpac/VWgwOobuJjUz9Q3mhrsbSPnKZH21DX2ZpLO+zHL57XkeuTb1NP2gpxiFFoxRS7S9g4MZ9Sb2tL2z49GWvdBHIbtltETbW0s+1JLfyWRGWwf2LDOnPTrlL7hM8s8abS9aQh2fs8C0vZj8xtiGtUTuSnzno67v35bI34m42Qatr1Ft76Rt9ZxzGTP7tKTHJIUkfXOkIkstPM80d3pbxddmtJc+rjaE1liG16q2bJCH50JzRKNhzYtW/rjPiOf+ndle8WUAQJ3a2sKaF5CLe0Ef/hONVUs+1JLfsVhY87jIUoLP2vgLUtuL8RHUz1lQ40ZjBbUN4zsfQc3dSCSkebO4IDbVNSp/g/cJGAPn3A8k/aDZcQAAAAAAAAAAgMmJmdUAAAAAAAAAAADqNKl7tAAAMBb1zAXDvC4AAAAAAABTGz1aAAAAAAAAAAAA6kShBQAAAAAAAAAAoE7mnGt2DC3DzHok/XaUxeZI2joB4QQd+ylnq3Pu1PHeSI25K/G+VMN+KTchuStN2baXv2d80fbWj1jHR62xtlrb2yiT8b1qBa0WK21v65nq+yCobe9Uf98k9oFU2z5otdyVeO8k9gFtb3CxD/ay7aXQMkZmttY5t7TZcbQ69lNr4n2pjP3S+ibbe8TfM7UEaf8Q6/gIUqzjIUh/P7FOHuwf9kFQ//6gxt1I7IPg7oOgxt1IU30fBPXvD2rcjcQ+2Pt9wNBhAAAAAAAAAAAAdaLQAgAAAAAAAAAAUCcKLWN3W7MDCAj2U2vifamM/dL6Jtt7xN8ztQRp/xDr+AhSrOMhSH8/sU4e7B/2QVD//qDG3Ujsg+Dug6DG3UhTfR8E9e8PatyNxD7Yy33AHC0AAAAAAAAAAAB1okcLAAAAAAAAAABAnSi0AAAAAAAAAAAA1IlCCwAAAAAAAAAAQJ0otAAAAAAAAAAAANSJQgsAAAAAAAAAAECdKLQAAAAAAAAAAADUiUILAAAAAAAAAABAnSi0AAAAAAAAAAAA1IlCCwAAAAAAAAAAQJ0otAAAAAAAAAAAANSJQgsAAAAAAAAAAECdKLQAAAAAAAAAAADUiUILAAAAAAAAAABAnSi0AAAAAAAAAAAA1IlCCwAAAAAAAAAAQJ0otBQ59dRTnSR++Gnkz4Qgd/kZh58JQ/7yMw4/E4Lc5WccfiYM+cvPOPxMCHKXn3H4mTDkLz8N/pkw5C4/4/AzYchffhr8UxWFliJbt25tdghAXchdBBn5i6AidxFk5C+CitxFkJG/CCpyF0FG/mKiUGgBAAAAAAAAAACoE4UWAAAAAAAAAACAOlFoAQAAAAAAAAAAqBOFFgAAAAAAAAAAgDpRaAEAAAAAAAAAAKhTuNkB1MPM2iQ9JSmm3N/woHPui8OWiUm6S1K3pF5JH3XOvTmecfm+U29/SqlMVtFwSLM7ovI8G89NAoHB5wOTBbkMAGgmvodGxv4BEGS0YQiqoOZuUONGawpkoUVSUtJJzrk+M4tI+jcz+6Fz7pmiZT4habtz7t1mdpakayR9dLwC8n2nDW/v1gV3rdXm7QnNnxXX7ect1cJ9p/EBxZTH5wOTBbmMehz4+e+P+Xfe/PJp4xAJgKDje2hk7B8AQUYbhqAKau4GNW60rkAOHeZy+oYeRoZ+3LDFzpB059D/H5R0spmN26ektz9V+GBK0ubtCV1w11r19qfGa5NAYPD5wGRBLgMAmonvoZGxfwAEGW0YgiqouRvUuNG6AllokSQzC5nZ85K2SPqxc+4XwxaZJ2mTJDnnMpJ2SppdYT2rzGytma3t6empO55UJlv4YOZt3p5QKpOte53ASBqVuxOBzweGC1L+FiOXEdTcBSTydzKYqt9DtebuVN0/aG20vahVq7Vh5C5q1Wq5K9WWv60YN4ItsIUW51zWOXe0pPmSjjWzI4ctUqn3yvBeL3LO3eacW+qcW9rV1VV3PNFwSPNnxUuemz8rrmg4VPc6gZE0KncnAp8PDBek/C1GLiOouQtI5O9kMFW/h2rN3am6f9DaaHtRq1Zrw8hd1KrVcleqLX9bMW4EW2ALLXnOuR2SnpR06rCXNktaIElmFpY0Q9K28YpjdkdUt5+3tPABzY/rN7sjOl6bBAKDzwcmC3IZANBMfA+NjP0DIMhowxBUQc3doMaN1hVudgD1MLMuSWnn3A4zi0v6Y+Umuy/2sKSPSfp3SSskPeGcK+vR0iieZ1q47zT98yXvVSqTVTQc0uyOKJMnAeLzgcmDXAYANBPfQyNj/wAIMtowBFVQczeocaN1BbLQIml/SXeaWUi5XjkPOOceMbO/l7TWOfewpG9IutvMXlWuJ8tZ4x2U55m6psXGezNAIPH5wGRBLgMAmonvoZGxfwAEGW0YgiqouRvUuNGaAllocc69KOmYCs9/oej/g5I+MpFxAQAAAAAAAACAqSXwc7QAAAAAAAAAAAA0C4UWAAAAAAAAAACAOlFoAQAAAAAAAAAAqBOFFgAAAAAAAAAAgDpRaAEAAAAAAAAAAKgThRYAAAAAAAAAAIA6UWgBAAAAAAAAAACoE4UWAAAAAAAAAACAOlFoAQAAAAAAAAAAqBOFFgAAAAAAAAAAgDpRaAEAAAAAAAAAAKgThRYAAAAAAAAAAIA6UWgBAAAAAAAAAACoE4UWAAAAAAAAAACAOgWu0GJmC8zsJ2b2kpn9xsw+V2GZE81sp5k9P/TzhWbECgAAAAAAAAAAJrdwswOoQ0bSZc65Z81smqR1ZvZj59z6Ycv9zDl3ehPiAwAAAAAAAAAAU0TgerQ4537vnHt26P+7Jb0kaV5zowIAAAAAAAAAAFNR4AotxczsQEnHSPpFhZePN7MXzOyHZnbECOtYZWZrzWxtT0/POEUKNB65iyAjfxFU5C6CjPxFUJG7CDLyF0FF7iLIyF80Q2ALLWbWKekhSX/hnNs17OVnJb3TOXeUpJskfa/aepxztznnljrnlnZ1dY1fwECDkbsIMvIXQUXuIsjIXwQVuYsgI38RVOQugoz8RTMEstBiZhHliiz3Oue+O/x159wu51zf0P9/ICliZnMmOEwAAAAAAAAAADDJBa7QYmYm6RuSXnLO/UOVZfYbWk5mdqxyf2fvxEUJAAAAAAAAAACmgnCzA6jDeyWdK+k/zOz5oef+WtIBkuScWyNphaSLzSwjKSHpLOeca0awAAAAAAAAAABg8gpcocU592+SbJRlbpZ088REBAAAAAAAAAAApqrADR0GAAAAAAAAAADQKii0AAAAAAAAAAAA1IlCCwAAAAAAAAAAQJ0otAAAAAAAAAAAANSJQgsAAAAAAAAAAECdKLQAAAAAAAAAAADUiUILAAAAAAAAAABAnSi0AAAAAAAAAAAA1IlCCwAAAAAAAAAAQJ0otAAAAAAAAAAAANSJQgsAAAAAAAAAAECdKLQAAAAAAAAAAADUiUILAAAAAAAAAABAnQJZaDGzBWb2EzN7ycx+Y2afq7CMmdmNZvaqmb1oZkuaESsAAAAAAAAAAJi8ws0OoE4ZSZc55541s2mS1pnZj51z64uW+aCkQ4Z+jpO0euhfAAAAAAAAAACAhghkjxbn3O+dc88O/X+3pJckzRu22BmS7nI5z0iaaWb7T3CoAAAAAAAAAABgEgtkoaWYmR0o6RhJvxj20jxJm4oeb1Z5MUZmtsrM1prZ2p6envEKE2g4chdBRv4iqMhdBBn5i6AidxFk5C+CitxFkJG/aIZAF1rMrFPSQ5L+wjm3a/jLFX7FlT3h3G3OuaXOuaVdXV3jESYwLshdBBn5i6AidxFk5C+CitxFkJG/CCpyF0FG/qIZAltoMbOIckWWe51z362wyGZJC4oez5f0XxMRGwAAAAAAAAAAmBoCWWgxM5P0DUkvOef+ocpiD0s6z3KWSdrpnPv9hAUJAAAAAAAAAAAmvXCzA6jTeyWdK+k/zOz5oef+WtIBkuScWyPpB5L+RNKrkgYkfbwJcQIAAAAAAAAAgEkskIUW59y/qfIcLMXLOEmfmpiIAAAAAAAAAADAVBTIocMAAAAAAAAAAABaAYUWAAAAAAAAAACAOlFoAQAAAAAAAAAAqFPTCi1mFjKzS5u1fQAAAAAAAAAAgL3VtEKLcy4r6YxmbR8AAAAAAAAAAGBvhZu8/Z+b2c2S7pfUn3/SOfds80ICAAAAAAAAAACoTbMLLScM/fv3Rc85SSc1IRYAAAAAAAAAAIAxaWqhxTn3/mZuHwAAAAAAAAAAYG80bY4WSTKzfc3sG2b2w6HHi8zsE82MCQAAAAAAAAAAoFZNLbRI+pakxyS9Y+jxK5L+omnRAAAAAAAAAAAAjEGzCy1znHMPSPIlyTmXkZRtbkgAAAAAAAAAAAC1aXahpd/MZktykmRmyyTtbG5IAAAAAAAAAAAAtQk3KP+MnQAAIABJREFUefv/n6SHJR1sZj+X1CVpRXNDAgAAAAAAAAAAqE1TCy3OuWfN7I8kLZRkkjY459LNjAkAAAAAAAAAAKBWzR46TJKOlXSUpCWS/szMzhvtF8zsm2a2xcx+XeX1E81sp5k9P/TzhQbHDAAAAAAAAAAA0NweLWZ2t6SDJT0vKTv0tJN01yi/+i1JN4+y3M+cc6fvbYwAAAAAAAAAAADVNHuOlqWSFjnn3Fh+yTn3lJkdOC4RAQAAAAAAAAAA1KjZQ4f9WtJ+47Tu483sBTP7oZkdUW0hM1tlZmvNbG1PT884hQI0HrmLICN/EVTkLoKM/EVQkbsIMvIXQUXuIsjIXzRDswstcyStN7PHzOzh/E8D1vuspHc6546SdJOk71Vb0Dl3m3NuqXNuaVdXVwM2DUwMchdBRv4iqMhdBBn5i6AidxFk5C+CitxFkJG/aIZmDx32pfFYqXNuV9H/f2Bmt5jZHOfc1vHYHgAAAAAAAAAAmJqaXWg5WLlJ6zc2cqVmtp+kt51zzsyOVa7nTm8jtwEAAAAAAAAAANDsQsuBklaa2TslrZP0M+UKL8+P9Etm9k+STpQ0x8w2S/qipIgkOefWSFoh6WIzy0hKSDrLOefG648AAAAAAAAAAABTU1MLLc65L0iSmcUlXSDpcklfkxQa5ff+bJTXb5Z0c4PCBAAAAAAAAAAAqKiphRYz+1tJ75XUKek5SX+pXK8WAAAAAAAAAACAltfsocP+p6SMpO9L+qmkZ5xzg80NCQAAAAAAAAAAoDZeMzfunFsi6WRJv5R0iqT/MLN/a2ZMAAAAAAAAAAAAtWr20GFHSvpDSX8kaamkTWLoMAAAAAAAAAAAEBDNHjrsa5KelPR1Sc855/qaGw4AAAAAAAAAAEDtmjJ0mJmFzexaSUcrN0/LjZLeMLNrzSzSjJgAAAAAAAAAAADGqllztFwnaR9JBznnljjnjpF0sKSZkr7SpJgAAAAAAAAAAADGpFmFltMlXeCc251/wjm3S9LFkv6kSTEBAAAAAAAAAACMSbMKLc455yo8mZVU9jwAAAAAAAAAAEAralahZb2ZnTf8STNbKenlJsQDAAAAAAAAAAAwZuEmbfdTkr5rZn8uaZ1yvVjeIyku6U+bFBMAAAAAAAAAAMCYNKXQ4pz7naTjzOwkSUdIMkk/dM493ox4AAAAAAAAAAAA6tGsHi2SJOfcE5KeaGYMAAAAAAAAAAAA9WpqoaVeZvZNSadL2uKcO7LC6ybpBkl/ImlA0vnOuWf3drvJZEZbB1LK+E5hzzQ7HtXudFapTFbRcEizO6LyPJMk+b5Tb39KqUxWkbCnsGdKpLKKR0PK+E7pjC8zU8gkz/NKfhdotHQ6qy19yULutkU8hTxTfzKXu7PiEW0bSCnj+3JOyvpObZGQ5nTGyEs0XXF7ms/X7Ym0Qp5TIuXLTAqZKeM7ZXynSCjX5jrnlHWSc66sjQYAjL/h7ffwdni01yUpk/G1pS+pdNZXJORpbmdM4bDX8O00Yh0TtU8wssHBjHoTpedsbW2BPO1FnYL6OQpq3GisoLZhqVRGPf174u7qiCoabf240ThBzV1Aalz+BjXjvyXpZkl3VXn9g5IOGfo5TtLqoX/rlkxm9MrWfl18zzpt3p7Q/FlxrV7Zre19CZ13xzrNnxXX7ect1cJ9p0mSNry9Wxfctbaw7HUrFuufn/2d/nTJPF3+4IuF569Zvlh3Pv2GLj1loRbuO40DKTRcOp3Vy1v6SnL3lnOWaEY8rK8/8Zp2JFL67MmH6sbHX9HHTjhIVz60Jz9vP3epFu5HXqJ5fN+VtadrVnbrjZ5dOrBrum56/BVd8v53K5HKlrStN5x1tEKe6dP3Pbcnn4faaPIZAMZfpfa7uB0e7XUpV2R5+e3duqjoGGbNym4dtu+0QrGlEdtpxDomap9gZIODGW3sLT9nO2R2Bxd7poigfo6CGjcaK6htWCqV0Yae8rgXdnVQbJkigpq7gNTY/PVGX6T1OOeekrRthEXOkHSXy3lG0kwz239vtrl1IFXY4ZK0eXtCF9+zTgfPnV54fMFda9Xbn1Jvf6pwgJR/7fIHX9QF73tX4UJg/vkrH3pRy7sXFH4XaLQtfcmy3L3k3meVzkoXvO9dWt69QBfds07LuxcUiiz55S64m7xEc1VqTy+6Z52OeedsXTyUt9v702Vt6+e+/by296dL85l2FgAmTKX2u7gdHu11KXcMc9GwY5iL7lmnLX3Jhm6nEeuYqH2CkfUmKp+z9SbYh1NFUD9HQY0bjRXUNqynv3LcPeTvlBHU3AWkxuZvIAstNZgnaVPR481Dz5Uxs1VmttbM1vb09FRdYcZ3hR1eWOn2hDK+K3mcyuSGEqu0bMizis/PjEcKvwvUam9z1zMp5Fkh//L/Dl+OvMR4qDV/q7Wn2aG8nhmPqD0aqrhMezRU9hz5jL1Va+4CrWgi87da+51vh0d7XZLSWb/y8XfWb+h2GrGOWkzUdiajRp6zYXJrxc9RLfnbinFj4rVaG0bbi1q1Yg5w3oZaNTJ/J2uhpVLf2op7xzl3m3NuqXNuaVdXV9UVhj3T/Fnxkufmz4orXNSNd/6suKLhkKLhUMVls76r+PyORLrwu0Ct9jZ3/aG5WPL5l/93+HLkJcZDrflbrT0NDeX1jkRaA6lsxWUGUtmy58hn7K1acxdoRROZv9Xa73w7PNrrkhQJeZWPv0N7TmEasZ1GrKMWE7WdyaiR52yY3Frxc1RL/rZi3Jh4rdaG0faiVq2YA5y3oVaNzN/JWmjZLGlB0eP5kv5rb1Y4pz2q1Su7Czs+P17ba1t2FR7fft5Sze6IanZHVLeft7Rk2etWLNbtT72u61YsLnn+muWL9dC6TYXfBRptbmesLHdvOWeJIiHp9qde10PrNmnNym49tG6Trllemp+3n0teorkqtadrVnbrud/2avVQ3s7qiJS1rTecdbRmdURK85l2FgAmTKX2u7gdHu11KXcMs2bYMcyald2a2xlr6HYasY6J2icY2ex45XO22XH24VQR1M9RUONGYwW1DevqqBx3F/k7ZQQ1dwGpsflrzgWzK5+ZHSjpEefckRVeO03SpyX9iaTjJN3onDt2tHUuXbrUrV27turryWRGWwdSyvhOYc80Ox7V7nRuqLBoOKTZHdGSSTV7+1NKZbKKhD2FPVMilVU8GlLGd0pnfJmZQiZ5nlfyu5hUJuRNHS130+mstvQlC7nbFvEU8kz9yVzuzopHtG0gpazv53q6OKe2cEhzOmPk5dQ1YW/8aPlb3J7m83V7Iq2Q55RI+TKTQmbK+E5Z3ykcyrW5zjllneScK2ujMem1RNubd+Dnvz/mdb/55dPqCQnB1zJtbyMMb7+Ht8OjvS5JmYyfO4bJ+gqHPM3tjCkc9hq+nUasY6L2SQtribZ3cDCj3kTpORsT8U4tdXyOWqLtDfjnHw0yxjasJXJXklKpjHr698Td1RFVNErbO5XU8f3bMvkLNKrtDWSrZ2b/JOlESXPMbLOkL0qKSJJzbo2kHyhXZHlV0oCkjzdiu7FYWPNipbus2k73PFPXtFjpkx2NiAIYu0gkpHmz2suen1n01NzpbRMYEVC7Su1p4THtKgC0rIrHw2N4XZLCYU/vmBkfcZlGbKcR66jFRG1nKmtrC2sehZUpLaifo6DGjcYKahsWjYY1j8LKlBbU3AWkxuVvID8Bzrk/G+V1J+lTExQOAAAAAAAAAACYoibrHC0AAAAAAAAAAADjjkILAAAAAAAAAABAnSi0AAAAAAAAAAAA1IlCCwAAAAAAAAAAQJ0otAAAAAAAAAAAANSJQgsAAAAAAAAAAECdKLQAAAAAAAAAAADUiUILAAAAAAAAAABAnSi0AAAAAAAAAAAA1IlCCwAAAAAAAAAAQJ0otAAAAAAAAAAAANSJQgsAAAAAAAAAAECdKLQAAAAAAAAAAADUiUILAAAAAAAAAABAnQJZaDGzU81sg5m9amafr/D6+WbWY2bPD/18shlxAgAAAAAAAACAyS3c7ADGysxCkr4u6RRJmyX9ysweds6tH7bo/c65T094gAAAAAAAAAAAYMoIYo+WYyW96px73TmXkvRtSWc0OSYAAAAAAAAAADAFBbHQMk/SpqLHm4eeG265mb1oZg+a2YJqKzOzVWa21szW9vT0NDpWYNyQuwgy8hdBRe4iyMhfBBW5iyAjfxFU5C6CjPxFMwSx0GIVnnPDHv+rpAOdc4sl/V9Jd1ZbmXPuNufcUufc0q6urgaGCYwvchdBRv4iqMhdBBn5i6AidxFk5C+CitxFkJG/aIYgFlo2SyruoTJf0n8VL+Cc63XOJYce3i6pe4JiAwAAAAAAAAAAU0gQCy2/knSImR1kZlFJZ0l6uHgBM9u/6OGHJb00gfEBAAAAAAAAAIApItzsAMbKOZcxs09LekxSSNI3nXO/MbO/l7TWOfewpM+a2YclZSRtk3R+0wIGAAAAAAAAAACTVuAKLZLknPuBpB8Me+4LRf//K0l/NdFxAQAAAAAAAACAqSWIQ4cBAAAAAAAAAAC0BAotAAAAAAAAAAAAdaLQAgAAAAAAAAAAUCcKLQAAAAAAAAAAAHWi0AIAAAAAAAAAAFAnCi0AAAAAAAAAAAB1otACAAAAAAAAAABQJwotAAAAAAAAAAAAdaLQAgAAAAAAAAAAUCcKLQAAAAAAAAAAAHWi0AIAAAAAAAAAAFAnCi0AAAAAAAAAAAB1otACAAAAAAAAAABQp3CzA6iXmZ0q6QZJIUn/6Jz78rDXY5LuktQtqVfSR51zb9a7Pd936tmd1GAmq5BninimzpiVLLMj4SvjO4U9UzzqKZ1xyvhOWd8p5JnMJDnJPCka8jSYLl1+MO0rnc09bo96GkjlXo9HQpKkVNZX1ndqC3vKOqdMNrfesGdKZnxFQp4iYVMq48s5KTu07ljEk3NSKuvknFM0HNLsjuhQzCmlM77SQ3FGQ57mdES1YzCjVCaraDikWfGItifSFR/HoyFlfKd0xs/9P+ty+8hMHbGQUtnca/ltet6efZZOZ7WlL1nYB7GwJycrW24i+b5Tb3+q8LcOj2W011vV4GBGO5PpwvscC3uaNpS/fUmnzpiV5G8s7Ml3Tumsk+dJzpdkKuRVyLNcTkvqjJn6006SaXokrN5ESja0rO+cPDNFQp4G01l5nqkj6imRdkpnczk7tzOmcDhX800mM9o6kCrEMac9qlhsTzOVSmXU07/n9a6OqKLRwDZjEyqouZvJ+EpkUkqkcvmUzPiFNthMkkwhTyXtaVvYUzLry3dSR1Fbms/tfA5LUjrrlMrm1hkLe4qETP3J0n2U33em3PYzvivL3VoMfw+Gt61BeU+aIaj5CwRVLZ+5wcGMehN7vpNnx6NqawuPaZlGrGOitjNRsday74cfQ8/tjCkydL4g1Xa8VMt2MhlfW/qSFY/ZWlkt7wMmt6DmQFDjRmMFNQ+CGjcaJ6g5ENS40ViNyoNAZo6ZhSR9XdIpkjZL+pWZPeycW1+02CckbXfOvdvMzpJ0jaSP1rM933d6+a1dWnX3Om3entD8WXFdt2Kx5kyL6R3TI5Kk13uTuvie3OsfWDRXV5x6mLb3p3TpAy8Ufuea5Yt159Nv6HN/fKh83+nie58tvLZ6ZbduevwV/Wj9lpLHPbtT+tKHF2kgldXlD76ors6Yrjh1oS5/8MWSWK59dIN6+pL6+tnHaDDt67Lv7NnumpXdioVNH//W2sJzt5+3VJ2xkLb1pwrrLl7+xqFYPrBorj578qG66J51Za/37E4VYhke1wcWzdWnTzpElxT9jbeft1QL950mzzOl01m9vKWvsM/mz4rrlnOW6Psv/E7/Y8mCwnITyfedNry9WxfctbZizKO93qoGBzPatCuhrbuTJe/zY587Qf+1K6250yIl+Zt/L6bHw/qnZ36rkw7fT9/4t9f1sRMO0pUP7fn96888StGwp/ZYWO+YHtG63+7QrM64bnr8lbJl8znaNS2qz5x8aMm21qzs1mH7TlM26+uVrf0lr61e2a1D53QoFgsrlcpoQ0/56wu7Oii2jCKouZvJ+NqdSqm3L62BVLakPbluxWLN6YwqHg1p+650SXt6yzlLFI94+vnGHnUfNKcst9ujnsIhT32D2ZK27boVi9U1Labbfvq6nn69V7eft1SHdHVqY0+fvvfsJp121LySGPK5W8tFp+HvQaW2NQjvSTMENX+BoKrlMzc4mNHG3vLv5ENmdxROSEZbphHrmKjtTFSstez7SsfQq1d267C5nYpEQjUdL9WynUzG18tv7y47B6j1e69ZankfMLkFNQeCGjcaK6h5ENS40ThBzYGgxo3GamQetO5R8siOlfSqc+5151xK0rclnTFsmTMk3Tn0/wclnWxmdV2R6e1PFYoskrR5eyJ3wXpbQjsSvnYk/MKbIUnLuxdo07ZEociS/50rH3pRy7sXaMuuZOGiYP61i+9Zp+XdC8oeX3TiwdrWny5cIL/oxIML/y+O5aITD9bm7Qlt608Xiiz513MnSIMlz11w11olM65k3cXL52NZ3r2gcII1/PXiWIbHtbx7QeGCZPE2e/tTkqQtfcmSfbZ5e0KX3PusViw9oGS5idTbnyqccFaKebTXW1VvIqXN2xJl7/OOhK/N2xLqG/QrvheZrLRi6QG67DsvaHn3gkLhJL/MpQ+8oG396cLn4OC50wt5O3zZfI4u715Qtq2L7lmnLX1JbR1Ilb128T3rtHUgt397+iu/3tPi+78VBDV3t/QlNZD0tWlboqw9yeXzoCQra08vufdZmXk6adH+FXNb8pTJqqxtu/zBF7VpW0IXvO9dhX20pS+pC+5aqxVLDyiLIZ+7tRj+HlRqW4PwnjRDUPMXCKpaPnO9icrfyb2J2pdpxDomajsTFmsN+77SMfTFRd9HtRwv1bqdSucAtX7vNUst7wMmt6DmQFDjRmMFNQ+CGjcaJ6g5ENS40ViNzIOgFlrmSdpU9Hjz0HMVl3HOZSTtlDR7+IrMbJWZrTWztT09PRU3lspkCzu7sMHtCbUPDZuV8V3J6zPjEbVHQxV/Z7TXhj8evvzMeGTE36227vZoqOw5z6ovn1/fSNsrfm34ctV+L5XJSlLZPsu/HvKsZLmJVO19zscy2usTrZbc1f9j7+6D4zjvO8F/n+6eHswMIBMcAoxFMKKtkqhSeWkdgfKe7YtXiTc6bZRKdkPasVcw87a0STkvm8vJVu62kmySupLC8+bFOZESNnJMU+s4IePdlOX1OudE580mVzagc7gbrShZNmXCsglwCIbAYDA93c9zf8xMc166BzODnkY/g++nCkWgX6Z/0/Pt38x0s7tRXddBr3N9eNhrYQj4r0fY65m1zbbtoNvMNI5zPRlahyuVX2+n8RQuadkFustvpZaLTn3N65BfqcLHGQKhj1m/rFg9m429qXV615NdPd/W12CzHkm3JC2/3fZeoiTayufexm2um/fkKN7Xk7KcuGqNYt13U0c3y6nU3v/aHqfL972o9fK5l58Xd7YkZqCb/Caxbopf0nLA3kvdSmIG2HupW1HmQNcDLUFnprQ++26mgVLqaaXUjFJqZmJiInBhtmViajzTNGxqPIN1x4NVu0dK4/gbpeplboLm2Wxc69+t098oVTrOG/bY647XNkyq8Onrj9dpeY3jWqcLm8+2qgd8WtdZfbwnVdN0cQp7neu1bDY+bt1kF6iu66DXuT487LWQtfux1F/vsFy1bgfdZqZxnGUaoXVYtZ3em42ncEnLLtBdflO1XHTqa2aH/BoifJxUCH1Mr/ZmWs9mY29qnd4yu3sbbX0NNuuRdEvS8ttt7yVKoq187m3c5rp5T47ifT0py4mr1ijWfTd1dLOcVO39r+1xunzfi1ovn3v5eXFnS2IGuslvEuum+CUtB+y91K0kZoC9l7oVZQ50PdCyCGB/w99TAF4Pm0YIYQF4A4Dr/Swsn7Px9Aem/ZU+NV69lv/U7gx2ZQzsyhg4PXtr/IWFK9i/u3oPi8Z5njhyCBcWrmDytjROP3y4adzp2WlcWLjS9veZ51/F7lyqurzxDM48/6r/e2MtZ55/FVPjGezOpfCx9zQv98zsNKbGR5qGzR2bQdoSTY/dOH29lgsLV2rzt49vrKW1rgsLV/Bky3OcOzaDfM4GAEyOppvW2dR49d4J5+e/1TRdnPI5G3PHZkJr3mx8UuUzNqZ2Z9pe510ZA1O7MxgdMQJfC8sEzs9/Cx97z1txYeEKnjjSPP9vv/et2J1L+dvBq0s3/dy2TlvP6IWFK23LOjM7jcnRNPZk7bZxp2ensSdbXb8TueDxEwlf/0mga3YnR9PIpg3s351p6yfVPI8AUG399MmHD0Mpib948TuB2QYkLBNtve3U0UPYvzuDuS9/w19Hk6NpzB2bwfn5b7XVUM9uN1pfg6DeqsNrsh10zS+RrrrZ5vKZ4PfkfKb7aaJ4jLiWE1utXaz7oM/Qpxvej7r5vNTtcoK+A3T7vrddunkdaLjpmgFd66Zo6ZoDXeum6OiaAV3rpmhFmQOhlH6nQ9UOnLwM4N0Avg3gqwD+uVLq7xqm+TCAf6CUOiGEeB+AH1NKvbfT487MzKj5+fnAcVIqLK+WUXY9GIZAyhAYTTcf2bpRql7mxjIEMraBilu9nJInFUxDwBCAUoAwANs0sFFpnn6jIuF61WmztoF1pzo+k6r+7zLHk5BSIW0Z8JTyp7UMgbIrkTINpCyBiiv9sxEsQyCdMqAU4HgKSinYlul/kbpRclBxJSpSQUqFlGlgT87GjQ0XjuvBtkyMZ1JYKVUC/87ULhtVcWX1d09hw5UwBZBLm3C86rj6MhtvXFypeFhaK/vrIG0ZUBBt08VJSoVC0fGfa2stm40PEMsT6ZRdoHpjp78vV/zX2bYMjNXyu1ZWGE2LpvymLQNSKVQ8BcMAlASEgJ8r0xAwDQEBYDQtUKydjHVbykKh5EDUsi6VgiEEUqaBjUp128nZBkoVBdeTsEwDk6Np/6aq5bKLa+uOX8eerI10+taNpxzHxXLx1viJnO3f2JU6S2p2gc75dV2Jkuug5FTz5LjS78HCAKAETANN/XTEMuB4Ep4Ccg29tJ7teoYBoOIpOJ6EWRuXMgWK5eZ1VF93AgplV1Z7a0t2u9H6GrT21u3sfUmX1Pxu1nvrDjz2XM+Pffnxh/opifSXiN7bzTa3seGiULr1npzP2G03i9xsmigeI67lxFVrN+u+9TP05GgaqdSts1G6+bzUzXJcV1aXE/CZLUQiem83rwMNtz4ykIjey+wS0HMOEpFdgPkl9l7SW1S9V8vkKKVcIcTPAvhPAEwAzyil/k4I8esA5pVSfwbgDwB8SgjxdVTPZHnfVpZpGAJ73zDScZpc59E9G89F+3hBdueC/1faRKr5kiwTY+mOf/cjlTKxbzy75ceJkmGIjs9ts/FJNTJihTaIem63kt/Gefd18YY0HjI8nbawLx0+v21b2McDK33RNbuWZWDMGsHYFvLZay/d1dKWolp3QY+j42uyHXTNL5GuutnmRkasTd/zN5smiseIazlx1drNut/sM3Q3n5e6WY5lGbh9V6bjNEnUzetAw03XDOhaN0VL1xzoWjdFR9cM6Fo3RSuqHGibJKXU5wF8vmXYrzT8vgHgPXHXRURERKQLnm1DREREREREtHW63qOFiIiIiIiIiIiIiIho2/FACxERERERERERERERUZ94oIWIiIiIiIiIiIiIiKhPPNBCRERERERERERERETUJ6GU2u4aEkMIsQzgtU0m2wPgWgzl6I7rqeqaUurBQS+ky+wCfF3CcL20iyW7wI7tvXw+g8Xe2z/WOhjd1pq03huVYXytkiBptbL3Js9OXwe69t6d/roBXAdAd+sgadkF+NoBXAfsvfriOthi7+WBlh4JIeaVUjPbXUfScT0lE1+XYFwvyTdsrxGfz86i0/phrYOhU62DoNPzZ63Dg+uH60DX569r3VHiOtB3Hehad5R2+jrQ9fnrWneUuA62vg546TAiIiIiIiIiIiIiIqI+8UALERERERERERERERFRn3igpXdPb3cBmuB6Sia+LsG4XpJv2F4jPp+dRaf1w1oHQ6daB0Gn589ahwfXD9eBrs9f17qjxHWg7zrQte4o7fR1oOvz17XuKHEdbHEd8B4tREREREREREREREREfeIZLURERERERERERERERH3igRYiIiIiIiIiIiIiIqI+8UALERERERERERERERFRn3ighYiIiIiIiIiIiIiIqE880EJERERERERERERERNQnHmghIiIiIiIiIiIiIiLqEw+0EBERERERERERERER9YkHWoiIiIiIiIiIiIiIiPrEAy1ERERERERERERERER94oEWIiIiIiIiIiIiIiKiPvFACxERERERERERERERUZ94oIWIiIiIiIiIiIiIiKhPPNBCRERERERERERERETUJx5oISIiIiIiIiIiIiIi6hMPtBAREREREREREREREfWJB1oaPPjggwoAf/gT5U8smF3+DOAnNswvfwbwEwtmlz8D+IkN88ufAfzEgtnlzwB+YsP88ifin9gwu/wZwE9smF/+RPwTigdaGly7dm27SyDqC7NLOmN+SVfMLumM+SVdMbukM+aXdMXsks6YX4oLD7QQERERERERERERERH1iQdaiIiIiIiIiIiIiIiI+sQDLURERERERERERERERH3igRYiIiIiIiIiIiIiIqI+8UALERERERERERERERFRn6ztLkAnUioUig4c14NtmcjnbBiG2HQcUZJsllVmmYZJFHnmNkH9cl2JpbUyKp5EyjQwOZqGZfH/uBC1OvDYcz3Pc/nxhwZQCQ0D9l4i0pmuPYzfmYgZIJ1F1Xt5oKVLUipcurqK42fnsbhSwtR4BnPHZnBw7xgAhI5jU6Ek6ZRjwxCbjidgcv9zAAAgAElEQVTSSRR55jZB/XJdiZeuruLEuQU/O2dmp3HP3jEtviwTEemIvZeIdKZrD+N3JmIGSGdR9t7kduqEKRQdv2EAwOJKCcfPzqNQdDqOI0qSzbLKLNMwiSLP3CaoX0trZf+DGlDNzolzC1haK29zZUREw4u9l4h0pmsP43cmYgZIZ1H2Xp7R0iXH9fwVXre4UoLjev7vYeOIkmKzHG82nkgnUeSZ2wT1q+LJwOy4ntymioiIhh97LxHpTNcexu9MxAyQzqLsvYk9o0UI8YwQYkkI8d8ahn1GCPG12s9lIcTXQua9LIT4r7Xp5qOox7ZMTI1nmoZNjWdgW2bHcURJsllWmWUaJlHkmdsE9StlGoHZsczEfvQiItIeey8R6UzXHsbvTMQMkM6i7L1J7tZ/CODBxgFKqR9XSt2nlLoPwAUAf9ph/u+vTTsTRTH5nI25YzP+iq9fbzCfszuOI0qSzbLKLNMwiSLP3CaoX5OjaZyZnW7KzpnZaUyOpre5MiKi4cXeS0Q607WH8TsTMQOksyh7b2IvHaaU+rIQ4kDQOCGEAPBeAD8QVz2GIXBw7xg++8g74bgebMtEPmf7N3XqNI4oKTbL8WbjiXQSRZ65TVC/LMvAPXvH8McfejtcT8IyDUyOphN9I1MiIt2x9xKRznTtYfzORMwA6SzK3pvYAy2b+D4AV5VSr4SMVwC+KIRQAJ5SSj0dxUINQ2BiLPhoVqdxREmyWVaZZRomUeSZ2wT1y7IM3L4rs/mEREQUGfZeItKZrj2M35mIGSCdRdV7k31YPNz7AXy6w/h3KqUOA/gnAD4shHhX2IRCiA8KIeaFEPPLy8tR10k0MMwu6Yz5JV0xu6Qz5pd0xeySzphf0hWzSzpjfmk7aHegRQhhAfgxAJ8Jm0Yp9Xrt3yUAnwXwtg7TPq2UmlFKzUxMTPRcj5QKy6tlfHtlHcurZUipen4Mon5sNbu9YtYpSnHnNwrcBgjoLbvMDCWNjr2XCGDvJb2x91IvktTD2HtJZ93ml9mlKOl46bB/DOAlpdRi0EghRA6AoZRarf3+AIBfH0QhUipcurqK42fnsbhS8m/2dHDvGK9DSEOFWaedjtsA9YqZISKKH3svEelM1x6ma91EzC5FLbFntAghPg3gbwAcFEIsCiF+pjbqfWi5bJgQ4nYhxOdrf+4F8FdCiL8F8BUAzymlvjCIGgtFx98YAWBxpYTjZ+dRKDqDWBzRtmHWaafjNkC9YmaIiOLH3ktEOtO1h+laNxGzS1FL7BktSqn3hwz/yYBhrwP4odrv3wDw1oEWV+O4nr8x1i2ulOC4XhyLJ4oNs047HbcB6hUzQ0QUP/ZeItKZrj1M17qJmF2KWmLPaNGBbZmYGs80DZsaz8C2zG2qiGgwmHXa6bgNUK+YGSKi+LH3EpHOdO1hutZNxOxS1HigZQvyORtzx2b8jbJ+Lb98zt7myoiixazTTsdtgHrFzBARxY+9l4h0pmsP07VuImaXopbYS4fpwDAEDu4dw2cfeScc14NtmcjnbN4wiYYOs047HbcB6hUzQ0QUP/ZeItKZrj1M17qJmF2KGg+0bJFhCEyMpbe7DKKBY9Zpp+M2QL1iZoiI4sfeS0Q607WH6Vo3EbNLUeKlw4iIiIiIiIiIiIiIiPrEM1p6IKVCoeh0PJ2scZpc2sS6I1HxJFKmgcnRNCyLx7Yoft1kt5v5xjMp3CxXUHI8eEphJGViTy7N0yopkYJyD6At0yulSiynCfe7HZK+HMfFctGBKxUsQ2AiZ8O2+dGLiGiQKhUPS2tlv/dOjqaRSvGmtjuJrp+5dK2boqVrD3NdiaW1Mvd/7WDMAOksqu/u/LbfJSkVLl1dxfGz81hcKfk3SDq4d8z/8NM4zTvenMfs2+/AI8++4E9/ZnYa9+wdY6OhWHWT3W7me+DeSXzkwXuwvFrGo+cv9vRYRHELy33aMnDsma809eXf+9LL+OKLSwPNc7/bIenLcVxcWi7i5LkF/zU/PTuNgxM5HmwhIhqQSsXDS0trbb33nslRLXZU0tbp+plL17opWrr2MNeVeOnqKk401M39XzsLM0A6i/K7O9PepULR8T/0AMDiSgnHz86jUHQCpzn+rjf7B1nq0584t4CltfK21E87VzfZ7Wa+I9P7ceV6yT/I0stjEcUtLPevFdbb+vKR6f1N0wwiz/1uh6Sv5aLjf1ADqq/5yXMLWOZrTkQ0MEtr5cDey+9gO4eun7l0rZuipWsPW1or+zvYAe7/2omYAdJZlN/d+V8qu+S4nr/C6xZXSnBcL3Aa0xCB07ueHHyxRA26yW438+3KpPx5e30soriF5T5rm23D6tmu/z2IPPe7HZK+XKmCPwdItU0VERENP/Ze0vUzl651U7R07WEVT3L/1w7HDJDOouy9PKOlS7ZlYmo80zRsajwD2zIDp/GkCpzeMrnKKV7dZLeb+W6UKlh3vL4eiyhuYblfd7y2YTdKlaa/B5HnfrdD0pdliODPAbz8BxHRwLD3kq6fuXStm6Klaw9LmQb3f+1wzADpLMrey8R3KZ+zMXdsxl/x9Wum1m+u3DrN3Je/gScfPtw0/ZnZaUyOprelftq5usluN/NdWLiC/bszOHX0UM+PRRS3sNzfkc+29eULC1eaphlEnvvdDklfEzkbp2enm17z07PTmOBrTkQ0MJOj6cDey+9gO4eun7l0rZuipWsPmxxN40xL3dz/tbMwA6SzKL+7C6WSfQpinGZmZtT8/HzoeCkVCkUHjuvBtkzkc3bbjekap8mlTaw7Eq4nYZkGJkfTvAnUzhPLfz2JIrvdzDeeSeFmuYKS48FTwEjKwJ5cmjdoHE6xvaib5bdfQbkH0JbplVKl520jqnq47QxMInqv47hYLjpwpYJlCEzk7J5vpkc7jva9tx8HHnuu53kuP/7QACqhLUpE761UPCytlf3eOzmaTvRNpCl6fXzmSkTv5WdFAnruYYnILlC9GfrSWpn7v3awPjKQmPwS9fjdPTS7/LbfA8MQmBjrfDS2dZpd2UFXRbS5brLb7Xy7rTSQi6oyosEJy33rsH62jSjroeFl2xb28cAKEVGsUikT+8b5JWwn0/Uzl651U7R07WGWZeD2XZnNJ6ShxQyQzqL67s7Dy0RERERERERERERERH1K9H+zFEI8A+CHASwppd5SG/ZrAI4DWK5N9r8ppT4fMO+DAH4XgAng3yqlHt9KLUGXUGq83Mx4JoXrJQcbFQ+mEMjYJnZleKovJcdmGQ66rFKUp6vzVHiKSzdZr2evn1wyy9QtXr6G2C+I4sfLNhKRznTtYfXLRlU8iRQvHbYj6ZoBfl4nILrv7knv1n8I4PcBnG0Z/ttKqf8zbCYhhAng/wLwgwAWAXxVCPFnSqkX+ylCSoVLV1dx/Ow8FldK/k2dfu9LL+OLLy7hgXsn8fPvvhsnzi34408dPYS9t43gQD7HDZS23WYZnhrP4OxPvw1lVzZNM3dsBgf3jm05w0HLj+qxiRp1k/V69gD0nEtmmbpVqXh4aWkNJxs+G5yencY9k6M82LJDsF8Qxc9xXFxaLrb13oMTOS12VBLRzqZrD3NdiZeurjbtEzszO4179o5psaOdtk7XDPDzOgHRfndPbtoBKKW+DOB6H7O+DcDXlVLfUEo5AP4IwI/2W0eh6PgbHQAsrpRw4twCjkzvBwAcmd7vN5P6+EfPX8RrhXUUik6/iyWKzGYZXlwp4bXCets0x8/OR5LhoOVH9dhEjbrJej17/eSSWaZuLa2V/Q9qQDUrJ88tYGmtvM2VUVzYL4jit1x0AnvvMrc7ItKArj1saa3ctk/sBD/37ii6ZoCf1wmI9rt7og+0dPCzQoiLQohnhBDjAeP3AbjS8PdibVgbIcQHhRDzQoj55eXloEnguJ6/sv0HXClhVyYFANiVSQWOz9omHNfr9jkR9aSb7NZtlmEAyNpm4DRRZDhs+dw+dq5e8tuLbrJez14/uWSWqdvsulIFZsWVatAlUkIksV8MqvcSDRp7L+mMvZe6lbQe1m12K54MrtuTgy6REiKJGdjK/l5+v99Zouy9Oh5oOQ3gTgD3AfgOgI8FTBN0flfg2lFKPa2UmlFKzUxMTAQu0LZMTI1nmoZNjWdwo1QBANwoVQLHrzvV6/sRDUI32a3bLMMAsO54gdNEkeGw5XP72Ll6yW8vusl6PXv95JJZpm6zaxkiMCsWT0HfMZLYLwbVe4kGjb2XdMbeS91KWg/rNrsp0wiu29RxlyP1I4kZ2Mr+Xn6/31mi7L3adT2l1FWllKeUkgDmUL1MWKtFAPsb/p4C8Hq/y8znbMwdm/FXev1agxcWqifNXFi4gjOz003jTx09hDvyWf8G40TbabMMT41ncEc+2zbN3LGZSDIctPyoHpuoUTdZr2evn1wyy9StydE0Trd8Njg9O43J0fQ2V0ZxYb8git9Ezg7svRPc7ohIA7r2sMnRdNs+sTP83Luj6JoBfl4nINrv7kKpZJ9GLYQ4AOBzSqm31P5+o1LqO7XffxHAP1RKva9lHgvAywDeDeDbAL4K4J8rpf6u07JmZmbU/Px84DgpFQpFB45bPUtlPJPCSqnS9Pf1koONioQpgIxtYlfG5s2TKJYAdMpu3WYZrr+RNE6Tz0WX4dblR/nYNBCxvTjd5LcX3WS9nr1+csksayERvbdS8bC0VoYrFSxDYHI03fPN9EhvffQLbXvvVhx47Lme57n8+EMDqIS2KBG913FcLBcdv/dO5OxE30SaEmFH9l5Kph57WGKy67qy+rnXk7BMA5Oj6UTfBJ2i10cGEpFffr8noOfv7qEBSfQnTiHEpwHcD2CPEGIRwK8CuF8IcR+qlwK7DOBDtWlvB/BvlVI/pJRyhRA/C+A/ATABPLPZQZbNGIbAxFjzkazWvyfHRrayCKKB6ibDYcMGtXyiQeg262HT9vP4REFSKRP7xrPbXQZtI/YLovjZtoV9PLBCRJrStYdZloHbd2U2n5CGlq4Z4Od1AqL77p7o7q2Uen/A4D8ImfZ1AD/U8PfnAXx+QKUREREREREREREREREl+0BL0tRPg6t4EimeCkkakVLhWrGMjYoHUwhe2o6GmpQKN0oOSo4HTymMpEzsyaWZd4qdTqeh61QrEVEn/M5GRDpjDyNdMbuks6jyywMtXXJdiZeuruLEuQUsrpT8Gzvds3eMjYMSTUqFS1dXcfzsvJ/dU0cPYe9tIziQz3FHGg0VKRUuF4q4enMDj56/6Gd+7tgMDu4dY94pNkG9N6k51KlWIqJO+J2NiHTGHka6YnZJZ1Hml2nv0tJa2V/hALC4UsKJcwtYWitvc2VEnRWKjr/zDKhm99HzF/FaYR2ForPN1RFFq1B08Fph3T/IAlQzf/zsPPNOsQrqvUnNoU61EhF1wu9sRKQz9jDSFbNLOosyvzzQ0qWKJ/0VXre4UoLryW2qiKg7jusFZjdrm3Bcb5uqIhoMx/WQtc3AzDPvFKew3pvEHOpUKxFRJ/zORkQ6Yw8jXTG7pLMo88sDLV1KmQamxjNNw6bGM7BMrkJKNtsyA7O77lSvw080TGzLxLrjBWaeeac4hfXeJOZQp1qJiDrhdzYi0hl7GOmK2SWdRZlfJr5Lk6NpnJmd9ld8/Xptk6Ppba6MqLN8zsbcsZmm7J46egh35LPI5+xtro4oWvmcjTvyWZw6eqgp83PHZph3ilVQ701qDnWqlYioE35nIyKdsYeRrphd0lmU+bWiLm5YWZaBe/aO4Y8/9Ha4noRlGpgcTfOmTpR4hiFwcO8Y/vSRd2CjImEKIGOb2JWxeZNjGjqGIXAgn8OubAqf+eD/CE8BIykDe3Jp5p1iVe+9n33knXDc6hmE+Vwy+65OtRIRdcLvbESkM/Yw0hWzSzqLMr880NIDyzJw+67M5hMSJYxhCEyOjWx3GUSxMAyB3bk0kNvuSminMwyBiTE9/heXTrUSEXXC72xEpDP2MNIVs0s6iyq/PLRIRERERERERERERETUJ57R0oNy2cW1dQeuVLAMgT1ZG+m0BSkVCkUn9HIbm40nGjTXlVguluG4EqYhkDIEdmdtpFLNNzoeRFaZf9qqsAx1M9wQAoYAyp7ESMpsuoQYs6kPXV+rjQ0XhdKtzw35jI2RkWR+9NJ1HRMRtdKp9xIRtdK1h7muxNJaGRVPIsXLRu1IYftMk65S8bC0VvbrnhxNt+0ro+HnOC6Wi7fyO5GzYdu95zf5iU+IctnFy9eKOHluAYsrJUyNZ3B6dhp35XP45so6jp+d94fPHZvBwb1j/g6/S1dXQ8cTDZrrSly6uooPNWT31NFDuDnm4sB41n8DGURWmX/aqrAM3TUxileW17oafuroIfzWFy5hea3s5w8As6kJXfvIxoaLVwrBnxuS9mVZ13VMRNRKp95LRNRK1x7muhIvXV3FiYa6z8xO4569YzzYskOE7TO9e08u0QdbKhUPLy2ttdV9z+QoD7bsII7j4tJye34PTuR6PtjCjtela+uOv8IBYHGlhJPnFlAoOf6Oifrw42fnUSg6AIBCsfN4okFbWiv7B1mAagYfPX8Ri9dLWFor+9MNIqvMP21VWIaW1spdD3/0/EWcuP/Opvwxm/rQ9bUqlMI/NySNruuYiKiVTr2XiKiVrj1saa3sH2QBqnWfOLfQtL+BhlvYPtNr68nPblDdzO7OslwMzu9yH9+Hk3tYMWFcqfwVXre4Ugod7rgeAMBxvY7jiQat4snADGZtE65U/rBBZJX5p60Ky5AbkuuwvO/KpPzf6/ljNvWgax/p9LkhaXRdx0RErXTqvURErXTtYWHfwVxPblNFFDdds6tr3RStKHOQ2DNahBDPCCGWhBD/rWHYKSHES0KIi0KIzwohdoXMe1kI8V+FEF8TQsxHUY9lCEyNZ5qGTY1nQofbVvUUM9syO44nGrSUaQRmcN3xYDVcEmYQWWX+aavCMmSF5Dos7zdKFf932zKZTY3o+lp1+tyQNLquYyKiVjr1XiKiVrr2sLDvYJaZ2F2OFDFds6tr3RStKHOQ5K73hwAebBn25wDeopQ6BOBlAL/cYf7vV0rdp5SaiaKYPVkbp2en/RVfv15bPmNj7thM0/C5YzPI52wAQD7XeTzRoE2OpvFUS3ZPHT2Eqd0ZTI6m/ekGkVXmn7YqLEOTo+muh586eghnnn+1KX/Mpj50fa3ymfDPDUmj6zomImqlU+8lImqlaw+bHE3jTEvdZ2anm/Y30HAL22e6J5v87AbVzezuLBO54PxO9PF9WCiV3NOhhBAHAHxOKfWWgHH/DMBRpdTDAeMuA5hRSl3rZXkzMzNqfj78BJhy2cW1dQeuVLAMgT1ZG+m0BSkVCkUHjuvBtkzkc3bTzWM3G09DLZYXerPsuq7EcrGMiithGAIpQ2B31m67udcgssr8ayu2F2mz/IZlqJvhhhAwBFD2FEZSBvbk0n7+mE199PFaJaL3bmy4KJRufW7IZ+zE3siU20NiJKb3xunAY8/1PM/lxx8aQCW0Rey9pKsd2XspmXrsYYnJrutKLK2V4XoSlmlgcjQNy0ry/+2mqIXtM+0gEfmtVLxqdmt1T46m2/aV0fBzHBfLxVv5ncjZsO3ee6/Onzh/GsBnQsYpAF8UQigATymlno5igem0hX0BTcIwBCbGwo92bjaeaNAsy8Ab35DZdLpBZJX5p60Ky1Cvw/udjrafrq/VyIiFfZrs3NN1HRMRtdKp9xIRtdK1h1mWgdt3bb7PgYZX2D7TpEulTOwbz253GbTNbNvCvvADK10b+OFlIYQphDgX8WP+7wBcAM+GTPJOpdRhAP8EwIeFEO/q8FgfFELMCyHml5eXoyyTaKCYXdIZ80u6YnZJZ8wv6YrZJZ0xv6QrZpd0xvzSdhj4oUallCeEmBBC2EopZ6uPJ4T4CQA/DODdKuS6Z0qp12v/LgkhPgvgbQC+HDLt0wCeBqqnknVTQ9DlNQD4wzK2CVcqKKngSgVPKhiGQMY2MJ5J81IcFImostvpMnfjmRRulisoOR48pTCSMv1LL222HfDSM9RJP/ndTKdMSin9fmwaAmnLgGEIuFKh4krmlbrWS3Z5+RpKmkH0XqI4sPeSzth7qRdJ6mG9ZLePy0bRkEnapYi7zW/S6qbtEVUPi6vrXQbwX4QQfwagWB+olPo3vTyIEOJBAB8F8I+UUush0+QAGEqp1drvDwD49X4LbyWlwqWrqzh+dh6LKyX/hrFpy8CxZ76CidE0PvLgQXziv3wTP/GON+GjFy760506egh7b3NxIJ/jRkuxC8vuwb1j/oGTxvEP3DuJjzx4D5ZXy3j0/MWmee6aGMUry2tNj3X2p9+GsitDH59okDr15sf/439v68fP/OQMVjdc/MIffY15pYHY2HDxSqGIk+cW/Iydnp3GXfkcd/gREQ0Iey8R6UzXHlYuu3j5Wnvdd+/J8WDLDrHZ/qak0rVuilaUPSyuO1O9DuBzteWNNfyEEkJ8GsDfADgohFgUQvwMgN+vzffnQoivCSHO1Ka9XQjx+dqsewH8lRDibwF8BcBzSqkvRPVECkXH3wABYHGlhONn5/FaYR2LKyWcuP9OPHr+Io5M7/d36tWne/T8RbxWWEehuOUTe4h6Fpbdeh5bxx+Z3o8r10v+QZbGeZbWym2P9VphvePjEw1Sp94c1I+/vbLhH2RpnJ55pagUSo7/QQ2oZuzkuQUUSswYEdGgsPcSkc507WHX1oPrvrae7LopOpvtb0oqXeumaEXZw2I5tKyU+td9zPP+gMF/EDLt6wB+qPb7NwC8tdfldctxPX/F1y2ulJC1TQDArkwKiysl/9+g6RzXG1R5RKHCslvPY+v4XZmUP03rPK4n24ZnbbPj4xMNUqfenEV7NplXGjRXquD+KXnFECKiQWHvJSKd6drDdK2borPZ/qak0rVuilaUPSyWM1pq92g5JYT4vBDiL+o/cSw7arZlYmo80zRsajyDdae6Ed4oVTA1nvH/DZrOtszY6iWqC8tuPY+t42+UKlh3vMB5LNNoGx42LfNOcejUm4P6MfNKg2YZIrh/8hR0IqKBYe8lIp3p2sN0rZuis9n+pqTStW6KVpQ9LK5Lhz0L4CUAbwLwr1G9Z8tXY1p2pPI5G3PHZvwXoH79vjvyWUyNZ3Dm+Vdx6ughXFi4gieOHGqa7tTRQ7gjn/Vv0EwUp7Ds1vPYOv7CwhXs313Nbes8k6Pptse6I5/t+PhEg9SpNwf1433jI/jd993HvNLA5DM2Ts9ON2Xs9Ow08hlmjIhoUNh7iUhnuvawPdnguvdkk103RWez/U1JpWvdFK0oe5hQavCn8gkhFpRS00KIi0qpQ7Vh/49S6h8NfOE9mJmZUfPz85tOJ6VCoejAcatnp9Q3wPqwjG3ClQpKKrhSwZMKhiGQsQ2MZ9K8odLOEsuLvZXsNuaxdfx4JoWb5QpKjgdPASMpA3ty1Qxvth0EPT5pJbYXrtv8bqZTJqWUfj82DYG0ZcAwBFypUHEl8zp8EtF7NzZcFEoOXKlgGQL5jJ3oG5lSImjXe6Nw4LHnep7n8uMPDaAS2iL2XtLVjuy9lEw99rDEZLdcdnFt/Vbde7J2zzeRJr1ttr8pQCLy20fdNIR67GGhAYmr61Vq/35HCPEQgNcBTMW07MgZhsDEWLpteNAwoiQJy26n8butNJDr/rG4HdB2YSYpaUZGLOzjzj0iolix9xKRznTtYem0hX08sLKjbba/Kal0rZuiFVUPi6sL/qYQ4g0AfgnAxwHcBuAXY1o2ERERERERERERERHRQMRyoEUp9bnar38P4PvjWOYgVCoeltbK/mlEWdvAWLp6StmNklO7vJJCyjCQTgmUnOqlalKmgcnRNCzL8E9Jk1LCU4BSqqdT07Y6P22NrqcUuq7E0loZFU/Cql026ba0hb8ve4GXCXOlQsYy4ClA9pCx+voRUCi7t/I/kbNxY8PVbr0NE12zG0ZKhWvFMjYqHtKmASEEKp6EJxUs0wCgYAgBQwg4teG2aWBitPo/VerbQ2N/3o7nMEyvCbXT6fI1zCMRDQudei8NhuO4WC7eysBEzoZtJz8DutZN0dK1h+laN0VH18vHNe4v2879A7S9ouphsSReCHE3gNMA9iql3iKEOATgR5RSvxnH8qNQqXh4aWkNJ88tYHGldOvGOKMSAHD52joePX8RiyslPHDvJH7u3Xc3TXtmdhoHJ0fx9WtF/PafX8JPvONN+OiFi/74uWMzOLh3rONODSkVLl1d7Xt+2pr6+j9+dl6r9e66Ei9dXcWJhjw++fBhFLMp/OWL38Wvfe4lPHDvJD7y4D1YXi3j0fMXMTGaxkcePOhnupvnWl8///6FK3jorfvwyLMvNG0rH//Sy/jii0varLdhomt2wzQ+n4nRNH7tR+7FuuM15fV3fvw+jI2YuF6sNA1/6gPTSFsGfvITX23qz/fsHYv1w9SwvSbUbmPDxSuFYtvnhrvyucR96WQeiWhY6NR7aTAcx8Wl5fYMHJzIJfqgha51U7R07WG61k3RKZddvHytPQN378kl+mBL0P6y7dg/QNsryh4WV2rmAPwyavdqUUpdBPC+mJYdiaW1sr/CAWBxpYST5xbgeoDrwd+RBwBHpve3TXvi3AKW1so4fnYeR6b3+wdJ6uOPn51Hoeh0rKFQdLY0P21Nff3rtt6X1sr+mwZQrfuRZ19AxVX4gXvfCKCa2SvXS36OT9x/Z1Omu3mu9fVzdOZ7/YMs9XlPnlvAken9XT8WRUvX7IZpfD4n7r+z6WAKUH1+//IzX4NpmG3DP/SpBVy5Xgrsz9v1HOp16PyaULtCyQn83FAoJe81Zh6JaFjo1HtpMJaLwRlYTvh7mq51U7R07WG61k3RubYenIFr68nOQND+su3YP0DbK8oeFtdhxaxS6itCNP2vSDemZUfClcpf4XWLKyVIpaBqv9ftyrNQCrQAACAASURBVKQCp60/Rth4x/U61uC43pbmp62pr/9GOqz3iicD6zZE9dJzQDWz9eH1v3t9rvX1YxoicN76Mrp5LIqWrtkN0/h8WrNbV8940PCsbbYNcz05wIrbDdtrQu3CPje4Um1TReGYRyIaFjr1XhoMXTOga90ULV1zoGvdFB1dMxC2vyzu/QO0vaLMb1xntFwTQtwJQAGAEOIogO/EtOxIWIbA1HimadjUeAaGEDBF87gbpUrgtPXHCBtvW807/1rZlrml+Wlr6uu/kQ7rPWUagXVLBdQPft4oVbDueP50/WSsvn48qQLnvVGqdP1YFC1dsxum8fm0ZreunvGg4euO1zasel+X+Azba0Ltwj43WAm8FBfzSETDQqfeS4OhawZ0rZuipWsOdK2boqNrBsL2l8W9f4C2V5T5jSs5HwbwFIB7hBDfBvAvAZyIadmRmBxN4/TstL/i69drs0zAMoFTRw/54y4sXGmb9szsNCZH05g7NoMLC1fwxJFDTePnjs0gn7M71pDP2Vuan7amvv51W++To2mcacnjkw8fRsoS+IsXq8c7Lyxcwf7dGT/HZ55/tSnT3TzX+vo5P/8tPPnw4bZt5cLCla4fi6Kla3bDND6fM8+/it25VFtef+fH74MnvbbhT31gGvt3ZwL783Y9h3odOr8m1C6fsQM/N+QzyXuNmUciGhY69V4ajIlccAYmEv6epmvdFC1de5iudVN09mSDM7Anm+wMBO0v2479A7S9ouxhon7poEESQphKKU8IkQNgKKVWB77QPszMzKj5+fnQ8ZWKh6W1MlypYBkCWdvAWNqGYQjcKDkoOR48pZAyDKRTAiVHwpMKlmlgcjQNyzIgpUKh6EBKCU9VL91kWybyOburG85udX7amvr6d1yv2/Uey4uyWXZdV2JprYyKJ2EZAmnLwG1pC39f9vznMp5J4Wa5Us2xVBixDHgKkD1krL5+BBTK7q38T+Rs3Nhwe1lvFLGkZhfYPL9BpFS4VixjoyKRNgWEEKh4tzInoCCEgCEEHE9CSoWUaWCi9oFpaa0M15NN/Tlufbwm1L1E9N6NDReFkuN/bshn7MTeEJR5TIxE995BOfDYcz3Pc/nxhwZQCW0Rey8lguO4WC7eysBEzt7shvKJ6L191E1DqMcelojsAuy9BJTLLq6t38rAnqyNdDr5vbe+v2y79w/Q9oqq98bV9b4uhDgP4Bml1H+PaZmRS6VM7BvPBo7bnUsDuZaBrX8DMAyBibH+j4xudX7aGl3Xv2UZuH1Xpm34RMsH991WQI570Gn9TKR4CZrtpGt2wxiGwOTYSN/zB20PcRu214TajYxY2KfJF0zmkYiGhU69lwbDti3s0/AAha51U7R07WG61k3RSact7Ot8YCWRwvaX0c4SVQ+L6xDdIQAvA/gDIcT/K4T4oBDitpiWTURERERERERERERENBCxHGqsXSpsDsCcEOJdAD4N4LdrZ7n8hlLq60HzCSGeAfDDAJaUUm+pDdsN4DMADgC4DOC9SqmVgHl/AsC/qv35m0qpT271eQRdfskwAE8K/zrmq2UHaxuef6pR2jIwmrJw03GxUfFgGgJCAJZhYM9ompfloFhIqbC8VvYzmDIEMmkBAYGbpea8Fh0PliGqf6cMOJ5CxZVIWQYsQ6DkeBBCwBSAYRi8vAzFovXSjXuyNq6XKtV+bBowBbDhVntzyhSQqvo/CRypIKVCLm3CU0DFlX5+RS3nJYeXSqLB0OkSCrx0GBENC516Lw2Gru9pjfsbUrx8zY6law/TtW6Kjq4Z0PU9g6IVVX5jSbwQwgTwEICfQvUAyccAPAvg+wB8HsDdIbP+IYDfB3C2YdhjAL6klHpcCPFY7e+PtixvN4BfBTADQAFYEEL8WdABmW65rsRLV1dx4twCFldK/g3F35BN4S9f/C7+4Z0TyI+mcPWmg5MN0zzzkzP4rltumu+JI4fwyb/+Jn7xHx/Ewe8Z4wZMAyWlwqXv3sTxT93K4Kmjh3DnZA5Xb5ab8vrkw4dx7m9ew19/o4CnZg9DKuDksy80zfdbX7iE5bXyrRz/4EEc3Msc0+BUKh5eWlrzs/rAvZP4+Xff3dRXG7N5enYamZTA8qqDR89fxMRoGh958CAePX+xrQ//1Dvf5M83d2yGWabIbGy4eKVQbOqxp2encVc+l7gvHFIqXLq6iuNn5/1auT0QkY506r00GLq+pwXtbzgzO4179o7xYMsOomsP07Vuio6uGdD1PYOiFWV+43rHfgXAjwI4pZT6H5RS/0YpdVUpdR7AF8JmUkp9GcD1lsE/CqB+dsonAfzTgFn/ZwB/rpS6Xju48ucAHtzKE1hau3WwBAAWV0p45NkXUHEVfuDeN+L42Xk4rvJflPo0317ZaJvvoxcu4sj0fhz/1DwKRWcrZRFtqlB0/IMsQDWDj56/GJjXR559Acff9WYsrpSwtOr4B1ka5ztx/53NOT7LHNNgLa2Vm7J6ZHp/W19tzObJcwsADP/Ayon77/R/r09fz2/jfMwyRalQctp67MlzCyiUkpexQtHxv1wA4PZAW3Lgsed6/iGKik69lwZD1/e0oP0NJ84tYGmtvM2VUZx07WG61k3R0TUDur5nULSizG9s92hRSv2MUuqvW0copX5eCPHLPTzWXqXUd2rzfgfAZMA0+wBcafh7sTasTe1+MfNCiPnl5eXQhVY86a9w/0FXSjAEoJTC4koJnlRt02RtM3C+XZkUFldKcFwvdJlEnXSbXcf1AjMYlNfFlRLM2lH7Ttlt/J05pn50m18AcFuyWs9do9ZsGgL+NJ2mb52PWabNdJvd1twC1Yy5Ug26xJ6FvU9wexg+vfReoiQZxt5Lg5HE97Ru8hu2v8H1ZBwlUkIkrYex91K3kpiBbvKbxPcMil+U+Y3lQItSam2TSd4T8SKDzu8KXDtKqaeVUjNKqZmJiYnQB0yZBqbGM03DpsYzkAoQQmBqPAPTEG3TrDte4Hw3ShVMjWdgW2aXT4moWbfZtS0zMINBeZ0az8CrNZJO2W38nTmmfnSbXwCwWrJaz12j1mxKBX+aTtO3zscs02a6zW5rboFqxqwEnoIe9j7B7WH49NJ7iZJkGHsvDUYS39O6yW/Y/gbL5GXDdpKk9TD2XupWEjPQTX6T+J5B8Ysyv0l51+6l8qtCiDcCQO3fpYBpFgHsb/h7CsDr/ZcHTI6mcWZ22l/x9ftZpCyBv3jxO5g7NgPbEjjdMs2+8ZG2+Z44cggXFq5g7gMzyOfsrZRFtKl8zsbcB5ozeOroocC8PvnwYcx9+RuYGs9gcszG6YcPt8135vlXm3N8jDmmwZocTTdl9cLClba+2pjN07PTACROHT1Uvb7186/6v9enr+e3cT5mmaKUz9htPfb07DTymeRlLJ+zMXdspqlWbg9EpCOdei8Nhq7vaUH7G87MTmNyNL3NlVGcdO1hutZN0dE1A7q+Z1C0osyvUGr7T+UTQryglDocMu4AgM8ppd5S+/sUgIJS6nEhxGMAdiulPtIyz24ACwDqj/kCgGmlVOv9XprMzMyo+fn50PGuK7G0VkbFk7AMgbRlwDAATwp/I1wtO1jb8OBK5U8zmrJw03Gx4XowhYAhANMwsGc0zZsrDb9YXuDNsiulwvJaGeWKB8MQSBkCmbSAgMDNUnNe1x0PpiGqf6cMOJ5CxZVIWQYsQ6DkeBBCwBSAYRjI52zmeDjF9qJull8AqFQ8LK2V/azuydq4XqpU+7FpwBTAhlvtzSlLQMrq/yRwpIKUCrm0CU8BFVf6+RW1nJccD7ZlMsvDJRG9d2PDRaHk+LnNZ+zE3gxSSoVC0YHjcnvYZonqvf2I654rlx9/KJblUE/YeykR+nhPS0Tvre9vcGufbydH07CspPzfWIpLjz0sEdkF2HuprwwkIr/8HkRAdL03KV0vsEAhxKcB3A9gjxBiEcCvAngcwB8LIX4GwLdQu+yYEGIGwAml1L9QSl0XQvwGgK/WHurXNzvI0g3LMnD7rkzHad6QSeMNAZPwDYa2k2EI7L1tJHDcWPDgcLmt10PUq1TKxL7xbNOwN6Yj6qvMNA3IyIiFfZq8/xuGwMQY/9csEelPp95Lg6Hre1o3+xto+Onaw3Stm6KjawZ0fc+gaEWV36RsAX8SNFAp9f6Q6d8dMO08gH/R8PczAJ6JpDoiIiIiIiIiIiIiIqIAsRxoEUJMAfg4gP8JgATwVwB+QSm1CABKqf8jjjq2KujSYaYJrJclcmnTv8RSxjZR8RQ2Kh6s2qVpKlLBNg2YBlDxFDyp/NORLEPAUwqAiP30YCkVrhXL2KhUL2uWsU3syvA0uWETlF3LBIQQKFcUHE9CSgXTEBACAAR2j6SaTpvbk7WRTlsdT6vc6imXjXWmeLo8Naj3qnLFgyEEUqaA61X7aNY24bgSlYZL4KVTwM2S9PObMgWAaq913Gq+JnI2bmy4fl7HMymslCo8ZZgio9MlFHjKPBENC516Lw2GrhnQtW6Klq450LVuio6uGeB+KAKiy29cif8EgH+H2mW+AMzWhv1gTMvfMteVeOnqKk6cW8DiSsm/cfgbsim8tryKXbkRPPLsC5gYTeMjDx7Eo+cv+tOdOnoIv/WFS1heK+P0w4dhCOBD515oGp+xTTz5l1/Hz7/7btyzdyyWjVpKhUtXV3H87HxTLXtvG8GBfI47WIZEWHa/5w1p/H2pgmur5aa8PnHkED7519/Ez737bnz8Sy/jiy8u+TeCuiufwzdX1psyM3dsBgf3jgFAW57q47rJUlCdZ2anY9seKLlae9UD907i537gLpx89gW84815zL79Djzy7K2e+omfnEHZVU1ZCuq9p2en8bmvLeKp/3zZz9vvNWS+l/wStdrYcPFKoYiTjTms9dGkfeEI+jzA/BORjnTqvTQYumZA17opWrrmQNe6KTq6ZoD7oQiINr9xpWZCKfUJpZRb+/lDABMxLTsSS2tlf8MDgMWVEh559gVUXIU7J2/zd/KduP9Of6d1fbpHz1/EifvvxOJKCSeffQFLq07b+JViBUem9+PEuQUsrZVjeU6FouPvVGms5bXCOgpFJ5YaaPDCsuu4CovXS215/eiFizgyvR8nzy3gyPR+f/jJcwsolNozc/zsPApFJzBP9XH91hnn9kDJ1ZqtI9P7cbLWc4+/681+/wWquVlc2WjLUlDvPXluAUdnvtf/+0RL5nvJL1GrQsnxP6gBzX00abbav4mIkkKn3kuDoWsGdK2boqVrDnStm6Kjawa4H4qAaPMb14GWa0KIWSGEWfuZBVCIadmRqHjSX+F1iyslGAJwpfLH7cqkAqfblUn5v2dts2181jb9eV1PDvCZ3OK4XmCt1cvweLHUQIMXll2vdsmlsLw25rY+vDHrjcMd1wvNU7dZCqszru2Bkqs1W4191jREW27Cch3Ue82G/60flHn2QupXWL90pdqmisJttX8TESWFTr2XBkPXDOhaN0VL1xzoWjdFR9cMcD8UAdHmN64DLT8N4L0AvgvgOwCO1oZpI2UamBrPNA2bGs9AKsAyhD/uRqkSON2NUsX/fd3x2savO54/r2XG87LYlhlY67pTvT47DYew7JqGwLrjhea1Mbf14Y1ZbxxuW2ZonrrNUlidcW0PlFyt2Wrss55UbbkJy3VQ7/Ua3jiDMs9eSP0K65dWAi/FtdX+TUSUFDr1XhoMXTOga90ULV1zoGvdFB1dM8D9UAREm99YkqOU+pZS6keUUhNKqUml1D9VSr0Wx7KjMjmaxpnZaX/F1+9zkbIEXl26iScfPly9lt/zr+LU0UNN0506eghnnn/Vv0/A5JjdNn48l8KFhSs4MzuNydF0LM8pn7Mxd2ymrZY78lnkc3YsNdDghWXXtgSmdmfa8vrEkUO4sHAFp2encWHhij/89Ow08pn2zMwdm0E+ZwfmqT6u3zrj3B4ouVqzdWHhCk7Xeu7cl7/h91+gmpup8ZG2LAX13tOz0zg//y3/7zMtme8lv0St8hkbp1tzWOujSbPV/k2kiwOPPdfzD+lFp95Lg6FrBnStm6Klaw50rZuio2sGuB+KgGjzK5Qa3GlcQohf6TBaKaV+Y2AL78PMzIyan58PHe+6EktrZVQ8CcsQSFsGTBNYL0vk0iYcT6HiSmRsExVPoVzxYBoCliFQkQq2acA0gIqn4MnqT328VAoKApOj6VhvuCSlwrViGRsVCVMAGdvErozNm99GJ5YV2U92LRMQQqBcUXA8CakUTCEgRLXs3SMpFEoOXKlgGQJ7sjbSaQtSKhSKDhy3euZTPncrL53GdaNep+tJWKYR+/ZATWJrApvlF7jVq8oVCUMAKVPA9RTc2iXwHFeiUstq2jKQTgE3S9LPb8oUAAQ8Ve3TlmlgImfjxobr53U8k8JKqdJ3filREtF7Nzbcpj6az9iJvRnkVvs3RSZRvbcfcR2cuPz4Qz3P009t/SxnB2PvpUToIwOJ6L3MLgE95yAR2QWYX9K393I/FAHR9d5Bd71iwLAcgJ8BkAeQqAMtm7EsA7fvyrQNH89uQzERMQyBybGR7S6DBiwsuwCAkMEAsC+gqRiGwMRY8NH9TuO60bFO2tH66VXdTD6Rar400lbyS9RqZMQK7KNJtNX+TUSUFDr1XhoMXTOga90ULV1zoGvdFB1dM8D9UAREl9+BbgFKqY/VfxdCjAH4BQA/BeCPAHwsbD4iIiIiIiIiIiIiIiIdDPxQoxBiN4D/BcDDAD4J4LBSamXQyx2EctnFtfVbpxGNjhjwJFBxFUZsA2Pp6rXbqpfi8pBNmSi7El7jJZkUkE4ZqNQueSOlqt1kSUEpYCRVfcyNhsuOGYYR6yU8ePmQ4ROUXaWAEcNCoeTAEIBU8MdnbQMZ0wo9bS4sI5WKVz3lsjbP5GgaqVT3N1Nm9iiMlAo3NxwUy17T5cBULbf1SzHWhwHV4W7DJRqN6nXxUPFkX/liPqlXOl1CgfkmomGhU++lwWj97lO/BHLS6Vo3RUvXHqZr3RQdXTOw1f1YNByiyu9AEy+EOAXgxwA8DeAfKKXWBrm8QSqXXbx8rYiT5xawuFLyb4xz+6401isubpaBdcdDyZE49sxX8I435zH79jvwyLMv+NM/ceQQvnzpKo7M7EdhzcGj5y/64z72nrfiD/7qG/ipd74JWdvEr/3Zi1heK+OJI4fwyb/+Jn7xBw/i4N6xge/0kFLh0tVVHD8779c2d2wmlmXTYIRld2o8jVevF/G7//fL+Il3vAkfvXArj099YBq2VcFPfeKrTfPclc/Bts3AjNyZz+LScvty7pkc7epNitmjMFIqfPvGOm6sV3CyoaeefvgwDAF86FzzsIxtYKVYwS/+8d/6w08dPYSsXc1hvb/2ki/mk3q1seHilUJ7T7wrn0vcFw7mm4iGhU69lwYj7LvP3XtyiT5ooWvdFC1de5iudVN0dM1ApeLhpaW1vvdj0XCIMr+DvrvPLwG4HcC/AvC6EOJm7WdVCHFzwMuO1LV1x1/hALC4UsLJcwvYcCQsw8Ti9RJcD3itsI7FlRKOv+vN/kGW+vQfvXARR2e+F99e2fAPstTH/dKf/C2OTO/Ho+cv4nqxghP33+nPc2R6P46fnUeh6Az8eRaKjr+jpV5bXMumwQjL7npZ4kOfWsCR6f3+QZb6+A99agGL10tt8xRKTmhGlovBy1laK3dVJ7NHYQpFB2VX+QdZgFq+nn0BS6tO2zDA8A+y1IfXe2tjf+0lX8wn9apQCu6JhVLyMsN8E9Gw0Kn30mCEffe5tp7sDOhaN0VL1x6ma90UHV0zsLRW3tJ+LBoOUeZ30PdoGfSBnNi4UvkrvG5xpQRXVq9Rk7VNSKX8/zFtGiJwetMQyNpm4LhdmRQWV0rI2iayMNuGO643qKfnc1wvsLY4lk2D0Sm7jflqHV/Pcus8CMnIZtvIZpg9CuO4HgyBrnO62bSN/bXbfDGf1Kut9sQ4Md9ENCx06r00GLpmQNe6KVq65kDXuik6umZA17opWlHmILnnb3UghDgI4DMNg94M4FeUUr/TMM39AP4DgG/WBv2pUurX+12mZQhMjWeaVvzUeAaWISBV9bJhhhBYd6o7JTypAqf3pMK64wWOu1GqYGo8g3XHg+PJtuG2NfjT1mzLDKwtjmXTYHTKbmO+WsfXs9w6T1hGOi2nG8wehbEtE6WK7DqnUqHjtI39tdt8MZ/Uq632xDgx3xTmwGPPbXcJRD3RqffSYOiaAV3rpmjpmgNd66bo6JoBXeumaEWZAy3POFFKXVJK3aeUug/ANIB1AJ8NmPQ/16fbykEWANiTtWv3tcgAgH+9thHbgCs9TO3OwDKBO/LZ6rXNv/wNPPnw4abpnzhyCOfnv4V94yM4dfRQ07iPveetuLBwBaeOHsLuXApnnn/Vn+fCwhXMHZtBPmdv5Sl0JZ+zMXdspqm2uJZNgxGW3WzawFMfmMaFhSt44khzHp/6wDSmdmfa5sln7NCMTOSClzM5mu6qTmaPwuRzNtKWwOmWnnr64cOYHLPbhgESv/3etzYNr/fWxv7aS76YT+pVPhPcE/OZ5GWG+SaiYaFT76XBCPvusyeb7AzoWjdFS9cepmvdFB1dMzA5mt7SfiwaDlHmVyil9+lQQogHAPyqUuqdLcPvB/C/KqV+uNvHmpmZUfPz86Hjy2UX19YduFLBMgRGRwx4Eqi4CiO2gbF09QW4VixjoyKRTRkouxKeUjCFgBAAFJBOGah4Cq5UkFLBMg0IKEgFjKSqj7lR8WAaApYhYBgG8jk7thvSSqlQKDpwXA+2Zca67CEUy4rrJ7tKASOGhULJgWEAUlbPxKpe3s5AxqyOq8+Tz9j+TaDCMlKpeFhaK/vzTI6me7qBGLOXKLGt+M3yC1SzcXPDQbHs+TlNmQJKVU/zbB0G3Bpu1HupqD6liif7yhfzqZVE9N6NDTe0jyYN850Yieq9ST6j5fLjD/U8Tz/Pp5/l7GDsvZQIrd999mTtzW4on4je20fdNIR67GGJyC7A3kt9ZSAR+d3qfiwaDlH13mHoeu8D8OmQcW8XQvwtgNdRPejyd1tZUDptYV8XH3Qmx0a2sphtZxgCE2M8ejtMOmV3X4c3vrBxYRlJpUzsG8/2V2SHxyUyDIFd2TR29R+vSGpgPqkXIyNWxx6bJMw3EQ0LnXovDUa339uTRte6KVq69jBd66bo6JqBre7HouEQVX61vHRYnRDCBvAjAP4kYPQLAO5QSr0VwMcB/PuQx/igEGJeCDG/vLw8uGKJIsbsks6YX9IVs0s6Y35JV8wu6Yz5JV0xu6Qz5pe2g9aXDhNC/CiADyulHuhi2ssAZpRS18Km2exUSCkVllfL2HCrl/VKGQKZtECprJCyDNyWTuFmuYKS48FTCiOWiXRKYG3DgysVUrXL12y4EpYpYAoBx5OwTQOuVP402bQJx1XV5QiBXNqE4ylU3M0vdxP3pT9alzeeSWGlVOGlR25JxCUUXFdiabWMipSwDIG0ZcC2gJsb1b9TpoBUqF7qrpbD3IiBYlmh4lWnyaYNrJclcmkT645ExZNImQaytoFiOZ7X23UlltbK/rInR9OwLK2PFydZIk7jrau/9gIK6ZSBkiP9UzrHMgZWS7f+NgSgFCAEoCBgmwKOpyBrl3E0RDXrpiFgGIBpGNiTS+/0XjVsEtF7dbqEAvtrYiSq9yb50mFx4aXDesLeS4mg6+VrmF0CeOkw0peuvddxXCwXb9U9kbNh28zuTsNLh1W9HyGXDRNCfA+Aq0opJYR4G6pn7xT6XZCUCi999yY++KkFLK6U/Jsr7xlLY1fGwpXr68ilLRTLLj787/4/LK6U8KHvO4Afvm8KJ881z/NbX7iE5bUyTh09hM++8G38s8P78Oj5i/40px8+jI//xSv44otLeODeSfzsD9yFR559wR8/d2wGB/eOte0UlFLh0tVVHD87v+m0UQha3pnZafzel17GF19cGvjyqTuuK/HS1VWcaMjhkw8fxhuyKRRulmCaJnL/P3t3HyXXXd95/vO9tx66uiVbcrvlCZKMgTUmnhwZ3B0gYZJ1SGANZkLOSmEgFh5IRo5MIBmSOJDsbDLLztkAPhmWJ1uxMgGMnLCMNcmywYFkCYSZELJ0G+wMBmFDbCRIrFZLsqXu6qq69/72j3pQVXdVd3Xp1sOv9X6d08d9n79176e+Xaqf61Y+o/lzpZYcHto/rX+Yf0Zv+8QjjVx+4/tP6wXPurwlj3ffeqOO/O2T+tJ3Fvp6vds9jkP7p/WCq7byZuAmV7/2H/jct/Sbr36BTi1WGn31ldfv0Nt+8vktffY9e/foY1/6B/3Cv3iu/uob/6TX3LBTdzRltrkP19d9+yuuo1chVcvLkR5bWGzJ5j37p3Xt5MTI/aOT/gpgs/Cp96I/fM2Ar3UjXb7mwNe6kR5fM1AuRzo2v7ru66YmGGy5hKSZX2//9Wxm45JeIem/NM07aGYHa5P7JP332ne0fEDS691FfHxnYbHcGGSRpBNnitU3pU8XVY6cTi9WdPx0UacXK4119s1c3bhIzdscvOl5jd8P/PhzG29u19e54/6HtHd6tyRp7/Tuxpva9eUH7pvVwmK5bY31QY/11k1Du+MdPDLXqL3fx0d3Tp4vNd48k6rX5S33P6RK5HTV5eON7K7M4cEjc3rRsycb03fc/5B+9NqpVXl8y/0P6cCPP7fv17vd4zh4ZE4nz5f6cjyMjvq13zu9W5kgbOmre6d3r+qz7zj6iPZO79av/eeHq314RWab+3B9XXoV0rZQLK/K5h1H5rRQHL2c0V8BbBY+9V70h68Z8LVupMvXHPhaN9LjawbmF9vXPc97A5eUNPPr7fCcc25J0uSKeYeafv+QpA+ldbxyFDdOeN2JM0WN50JFidN4Lly1TRhY2222FbKN39dbZ1sh23Z5OYq7rrHdumnodLx67f0+PrpTWVhozwAAIABJREFUiZO21ykwtWS33Tpx4lZNt1svrH0KoJ/Xu9PjiOKkL8fD6Khf+22FrGLXmsFOPbI+v5s+XF+XXoU0RR36ZZSM3i1b6a8ANgufei/6w9cM+Fo30uVrDnytG+nxNQO+1o10pZkDbz/RMmi5TKhd2wst83ZtL2ipHCsTmJbKceOnLk5c223OFiuN39db52yx0nZ5LrN6YKdTje3WTUOn49Vr7/fx0Z1sGLS9TolTS3bbrRM23UapPt1uvfqATD+vd6fHkQlpY5td/dqfLVYUWmsGO/XI+vxu+nB9XXoV0pTp0C8zI3h7OvorgM3Cp96L/vA1A77WjXT5mgNf60Z6fM2Ar3UjXWnmgH9Bd2lyIqd73zjdOPH1+/zvuqKgXMZ0xURWu68o6IqJbGOdB2a/q3v2r97m0Be+3fj98Be/U91P0zr33Hqjjs4dlyQdnTuuu2+9sWX54dtmNDmRa1vj4dtmulo3rXOy8niH9k83au/38dGdHVvyOrQih3ffeqOyGdNTTy81srsyh4f2T+urTy40pu+59UZ96bH5VXm8+9YbdfiL3+n79W73OA7tn9aOLfm+HA+jo37tj84dV5TELX316NzxVX32PXv36Ojccf3ez95Q7cMrMtvch+vr0quQtslCblU279k/rcnC6OWM/gpgs/Cp96I/fM2Ar3UjXb7mwNe6kR5fMzA10b7uKd4buKSkmV+7iK8t2XRmZmbc7Oxsx+VJ4jR/rqRSFCsITNnAVMibiiWnbCbQZfmsnilVVCzHip00lgmUz5rOL8eKEqdsYMoEpuUoUSY0hWYqx4lyYaAocYoTp0xgGs+HKkdOy1Gi0KSJfKhy7FSJEuUyoSYnch2/sDlJnBYWyypH8brrpmHl8bYXsjpTrAzs+B4YyINfL7tRlOjkuZIqSaJMYMpnAuUy0jPL1elsaEqcVIoSxbWsTowFWiw5VeKklstAS6VEE/lQS+VEUZwoEwYazwVaLA3mekdRopPnS41j79iS54ua+2dgT9z18itduPYmp3w2ULGcKKr1zK2FQOeK1eyGgSkIJJdIZpKTKReayrGTc06BmQKTSnGi0ExBYAoD05UT+Uu9V202I9F7l5cjLRTLjaxOFnIj+2WQ9NeRMVK995p3fnpA1YyuJ959y7BL8Am9FyOhhwyMRO8lu5A2nIORyK5EfuFv7y2XI80vXqh7aiKnXI7sXmrS6r0kZwOCwHTV5WOr5l/WNOuKTF6aaF1+eeunj/oqCExTWwf3f6C2O94gj4/uZDKBnrV9dRAvWyebK7O7fbz6323jrfNXTvdLJhPoWdsG+ITCyFh17Vf02ctWt2Zg6MbGMtrpyT8w6a8ANgufei/6w9cM+Fo30uVrDnytG+nxNQO5XEY7GVi55KWVX/5XRQAAAAAAAAAAgB4xZLcB9VuHLUexwtqtw8bzplJFymVNW3LVe7fVb6VlZgpNKuQDnSvGjY8fFXKBnJNKlUSV2q1ucrVbiZVipyhJNFa7nVglcSpkq1/QXI5rt3UKA105ntXTpXjVLbqSxOnUYknLlViBVWs0s+otc4JgpG7l1XybkrB2W7VRq3GzqFRizZ8vq5IktbwFqt5q0FQsO43npKeLF27FlA1NcSKNZa16m7Da/MsK1duJlaKk5TlQyORSucVMPROVOFG2za1rBn1rPIyGJHE6db6kYiXWWCZQ7NToG9nQFMXuQi8NTImqt8HLhYEm8qZzyxcynM8EcjKyg4Hw6RYK9FcAm4VPvRf94WsGfK0b6fI1B77WjfT4mgFf60a60soByelSkjh985+e0e0fn9OJM8XGFypfuTWvqS1ZnVmKVImdTj5T1oH7Zhvr3P9vXqyT58u648iF7Q7tn9ZYNtCbPvKVVfu66zPf1Py5sn7j5ut05wOPaGpLXv/hZ/65nlmOdOcDj7Ts4wOf+5b+4tGTjS8hv3Zqix6bP99y/Lv27dF4LpSTdPfnH9fbX3Gdrrtq69DfPImiRN986pwONp2X9+zdo4996R9GpsbNolKJdezk+ZZzfde+Pdq5vaDzy5HGMtJT59SS0btvvVGffvh7es0Ld+mDtZy98vod+pWfer5+sc1z4Mot0lZd3GBLu0wc2j+tF1y1VZlMoCRxOvbUuZZ8H75thqxscknidOyfzunAx2c1tSWv33r1C/T2Tz6sE2eKeuX1O/S2l1+rO+5/aFXP+/efelQvvmabXvPCXW2z/TM37iY76Kvl5UiPLSy25O+e/dO6dnJi5F64018BbBY+9V70h68Z8LVupMvXHPhaN9LjawZ8rRvpSjMH3DqsSwuL5cYgiySdOFOsDnycLmqxlKgSOS2Xk8abFPV1AgsaF6o+7+CROR0/XWy7r73Tu3Xwpuc1BlUO3vQ8nTxXbkw372Pv9O7G9IH7ZnXyfGnV8e984BGdXqzozGJFe6d368B9s1pYLA/03LVz8nyp8Ya6VK31HUcfGakaN4t25/rOBx5ROXK6/eNzymezqzL6lvsf0r6Zq3VHU872Tu9uDLI07+fE6aKWStVPoqRd58Ejc439LiyWV+WbrGx+C4tlHfj4bKMf1gdZpGom64MsUmvPO3jT8xoZbpdtsoN+WyiWV+XvjiNzWiiOXu7orwA2C596L/rD1wz4WjfS5WsOfK0b6fE1A77WjXSlmQOG57pUjuLGCa87caao8VyoKHEKTIoSt2qd2K2eV9+u3bxxhY1pSdpWyLZMN69fX1afjuJkzWONK9SJM0WVo3hDj70fKh1q3VbIjkyNm0W7XFYHAWu56bA8DKwlZ/Vrs3K9+nPA5C6qzk6ZiOJEUufnIFnZ3Jqv+8oMrpXJcYWNDK9cXp9PdtBPnXprlFxcr+wH+iuAzcKn3ov+8DUDvtaNdPmaA1/rRnp8zYCvdSNdaeaAT7R0KZcJtWt7oWXeru0FLZVjZQJT4qRMYKvWCW31vPp27eadLVZ0tlhpbHO2WNFSOW67j7PFSst0Jgw6Hqu+713bC8plWgd5hiHbodZRqnGzaJfLXdsLSlwtNx2Wx4lryVlzLpvXqz8HMuHFtZNOmajvt9NzkKxsbs3XfWUG18rk2WKlkeGVy+vzyQ76qVNvzYzgrbjorwA2C596L/rD1wz4WjfS5WsOfK0b6fE1A77WjXSlmQMGWro0OZHTvW+cbpz4+ncB7LqioIl8oGzGNJYLdPi2mZZ1Epfonv2t2x3aP63dVxTa7uvo3HEd+sK3q9PbCzr0hW9rx9ZcY7p5H0fnjjemD982ox1b8quOf9e+PbpiIqvtE1kdnTuuw7fNaHIiN9Bz186OLXkdWnFe3rN3z0jVuFm0O9d37dujXMZ07xunVapUVmX07ltv1AOz39U9TTk7Ondcv9/hOTCer35xfdp1Hto/3djv5ERuVb7JyuY3OZHT4TfONPrh+153QyMDR+eO655bb2zb8w594duNDLfLNtlBv00Wcqvyd8/+aU0WRi939FcAm4VPvRf94WsGfK0b6fI1B77WjfT4mgFf60a60syBOcfHoepmZmbc7Oxsx+VJ4jR/rqRSFCsITNnANJ43lSpSLmvakqtegIXFsspRLDNTaFIhH+hcMVaUOGUCUyEXyDmpVElUSZzCwJQLTaGZSrFTlCQaCwNFiVMlcSpkq/9HaTlOFCdO2TDQleNZPV2KVY5i5TKhJidyCgJTkjidWixpuRIrsGqNZibnnIIgaKw3CqKo+r0eUZwoDEyZwEauxhQM5IGsl91KJdb8+bIqSVLLW6BqvzAVy07jOenpYtLIaDY0xYk0ljUtlS/Mv6wQaLHkVI6SludAIZNTJnPx47bNmciE1cGb5v0miWs8v5pzj74Y2IntpveeOl/ta/lMoNip0TeyoSmKXfUWjoEpF5gSSeUoUTYMNJE3nVu+kOF8JpCTkZ3NbyR67/JypIViuZG/yUJuZL9Ukf46Mkam90rSNe/89ICqGV1PvPuWYZfgE3ovRkIPGRiJ3kt2IW04ByORXYn8gt4Lv6XVe0nOBgSB6arLx1bN37pi1tTW1f9n/2WrN7toU7nVly8ITDtWFjSiMplAz9pWWH9FXLRsNtSztrc/1/W4bOkQm+0T7dfvh/UyEQTW9vmFzS0ITDsuooleRpvBkIyNZbTTkxfp9FcAm4VPvRf94WsGfK0b6fI1B77WjfT4mgFf60a60soBtw4DAAAAAAAAAADokbdDdmb2hKRzkmJJkXNuZsVyk/R+Sa+WtCTpTc65hy7mmFGU6OS5kipJ0rgFzVhWWq5ImVCKYsnJdHk+1DOlSKWoeruabJtbIFUqsU4tllWu3f4mnwlUiRNFcfVWYhP5UOXIqVipfdF4YHKS4sQpMClxUuycxmpfVFusxMqFgXIZ02I5VmimQi7UtsKFW4qtvCWIVL3NWZIkip3knEv1diHchmR0rPwI3NZCoFCSU/WWYdnQVIld9dZ0mUCBpOWomvPxfKA4VkueMyYVa8svL4Qaz62+tp2uP7nARkRRonOlsipxtf/Ve2Y2MIWBKQykclS9zWKcuEYfrN+asV3/BQbFp4+h05sBbBY+9V70h68Z8LVupMvXHPhaN9LjawZ8rRvpSisHvifnJ5xzpzose5Wka2s/L5F0T+2/PYmiRN986pwOHpnTiTPFxpcqXz6e1bZCqLPFWGMZ058/8o/6iev/mZ5equgt9z/UWPfQ/mm94KqtymQCVSqxjp08v2pfH/qrx/QXj55sO/2+192gbCbQ3Z9/XP/6R5+jdxx9pLHtXfv26L2fOab586VVv1912Ziu3j6ux+bP68B9s41tDt82o3wm0Lv//Bur9nf4thldd9XWi3qDJUmcjj11btUxL3a/2Ljl5UiPLSzqjqa83bN/WtdM5vXEQkl/9rUTuuWGnS15bc7RR978wypVkpa8Ni+vfmGU0+Vj+ca17XT9r53a0jaL5ALtRFGi+cVlLZZinVuO9LY//mpLBq/cktPEWEZPnlrSnQ880tJvP/C5bzX6Z3P/BQalU++9dnJi5F648zcbwGbhU+9Ff/iaAV/rRrp8zYGvdSM9vmbA17qRrjRzsJnfdXqtpPtc1ZclbTOzH+h1ZyfPlxpvNEvSiTNFveX+h1SJnM4vJ6pETpVYevn1P6BK5BpvWtfXPXhkTifPl9bc197p3R2n3/7Jh3VmsaK907sbgyL1ZXc+8IgO3vS8tr8/ubCkk+dLjTdP6tscuG9WTy4std3fgftmtbBY7vVUSap+UqbdMS92v9i4hWK50Syk6rW448icnikmuuPInPbNXL0qr805OnG6uCqvzcvvODKnpVLScm07Xf9OWSQXaOfk+ZKiWDp+utgYZJEuZPDEmWXFsRqDLPVlB4/MtfTP5v4LDEqn3rtQHL1+x99sAJuFT70X/eFrBnytG+nyNQe+1o30+JoBX+tGutLMgc8DLU7SX5jZnJnd3mb5TknHm6ZP1Oa1MLPbzWzWzGbn5+c7HqwSJ40T3tjhmaICk6La7bzixClx1d/brRvFiaTq+u2Wbytk15wez4XaVsiuue3K38dzYcfa19pfOYo7notulKO4L/vFBd1mt1Pe6vPDwNbM1HguXDdzUeJarm2n698pi+Ti0tNNfitxoti5jhkcz4WKXXf9tN5/gYuVRu8dNfzNvnR0m19g1GzG3ov+GMUMdJPfUawbgzdqOaD3olujmAF6L7qVZg58Hmh5mXPuRlVvEfZLZvbjK5a3u9fFqjPknLvXOTfjnJuZmprqeLBsGGjX9kLLvF3bC0qclAlMiZPCwBRY9fd262bC6unOBNZ2+dliZc3ppXKss8XKmtuu/H2pHHesfa395Wrf/dKrXCbsy35xQbfZ7ZS3+vw4cWtmaqkcr5u5TGAt17bT9e+URXJx6ekmv9kwUGjWMYNLte+j6qaf1vsvcLHS6L2jhr/Zl45u8wuMms3Ye9Efo5iBbvI7inVj8EYtB/RedGsUM0DvRbfSzIG37zw5575f++9JSX8i6cUrVjkhaXfT9C5J3+/1eDu25HVo/3TjxNe/RyWbMW0ZC5TNmLKh9FeP/qOyGdPdt97Ysu6h/dPasSW/5r6Ozh3vOP2+192g7RNZHZ07rvfs3dOy7V379ujQF77d9vdnT45rx5a8Dt8207LN4dtm9OzJ8bb7O3zbjCYncr2eKknS5ESu7TEvdr/YuMlCrvY9KheuxT37p3VZIdA9+6f1wOx3V+W1OUe7riisymvz8nv2T2s8H7Rc207Xv1MWyQXa2bElr0wo7b6ioA++4UWrMrhr+5jCULXfW/ttc/9s7r/AoHTqvZOF0et3/M0GsFn41HvRH75mwNe6kS5fc+Br3UiPrxnwtW6kK80cmHP+fRzKzCYkBc65c7Xf/1LSu5xzn2la5xZJb5X0akkvkfQB59zKwZgWMzMzbnZ2tuPyKEp08lxJlSRRJjDlM4HGstJyRcqEUhRLTqbL86GeKUUqRYmixCkbBtU3DJu+iLlSiXVqsaxKnCio7asSO0VJotBME/lQ5chpuRIrDEyZwORUvT1ZYFLipMQ55Wv/t+lypfrJlVzGtFhOFJpUyIXaVsgpCExJ4rSwWFY5ipXLhI03TxYWy0qSRLGTnHONZWl8+W27Y16CX6o7kAe8XnaXlyMtFMuKEqdMYNpaCBSq+hGvp4uJsqGpEjvFiVM2EyiQtBxVcz6eDxTHaslzxqRibfnlhVDjudXXttP1JxfeGNhFWSu/UZToXKmsSlztf/WemQ1MYWAKA6kcOVUSp6SWz1zGVKpU85pp039xSRjJ3jtZyI3slyrSm0fGSPTeumve+ekBVTO6nnj3LcMuwSf0XoyEHjIwEr2X7ELacA5GIrsS+QW9F35Lq/f6mpyrJP2JmUnVx/BHzrnPmNlBSXLOHZL0oKqDLI9LWpL05os9aCYT6FkrPkokSVvGVq97ZW7tU5vNhvqBbav3lYbJNvOCwDS1dfX/0d1uXlo6HRODNzaW0c4ODaJdftPQ6fqTC2xEJhNoe6ZPIQX6bK3eO2rozQA2C596L/rD1wz4WjfS5WsOfK0b6fE1A77WjXSllQMvk+Sc+46kG9rMP9T0u5P0S4OsCwAAAAAAAAAAXFq8HGgZplIp0qmlCx8l2jIWyCSdW06UzwS6fCyrMAw63pIrSZxOni8pihOFgSkwKXbSWO3WYYmr3ropU7vF0srbj0nSyfMlVeKk7S3JpPRv/7Fyf9sLWZ0pVi76llCjeJuSUawpDW1za1Ig09PFWEEgJUn11kxhYCrkAi1XElXi6nQ2MG0by+qZcrzmuUkSp1OLpeot78wat6+T1DivhVyoKHGqRMmGz/FmvT5YW/0jnGaSyVSp9U+r3UYxFwbaNpbRqaXKmr0RGDQ+hg74r5fbp3G7seGi96JcjjS/eCEDUxM55da548Qo8LVupMvXHuZr3UiPrxnwtW6kK60ckJwNKJUifevUou44MqcTZ4qNL8d51ra8nnp6SZlMRouVWLnQ9Dv/99f1r3/0OXrH0Uca69738y/WUjnWwabt37N3j7547CndcsNOveX+hxrz3//6F2rrWEY//9HZxrw/OvASPVOMWrY/tH9aL7hqa+MNxSRxOvbUOR2478J2h2+b0XVXbe3pDel2+zu0f1of+Ny39BePnmzs/9qpLXps/nzXx027zjSMYk1p6JTbXdvzOn52We//f7+1Kqv37J/WB5uu8Yd/7kWaP19uyd7Kc9Pu/NW/pPx8KdaB+2Y1tSWv37j5Ot35wCMbPseb9fpgbcvLkR5bWNQHP/ct3f7jz9O//b++1tI/P/alf9CbX/YcXbk1r7s+881GZlf2RmDQ6tld2XuvnZzghTsA9Am9F+VypGPzqzNw3dTESA9a+Fo30uVrD/O1bqTH1wz4WjfSlWYOeAdqA04tlRsnXZJOnCnqjiNzWi4nuurycb3l/odUiZyiWNo7vbvxxnV93ScXlhpvVNfnvePoI9o3c3VjkKU+/1c+8TV978xyy7xy5FZtf/DInE6eLzVqXFgsN96Irq9z4L5ZLSyWe3rM7fZ38Mic9k7vbtn/yfOlDR037TrTMIo1paFTbpdKiX7x43Nts3rHimt8erGyKnsrz02783fnA4+oFLnG/IM3Pa8xyNJpP51s1uuDtS0Uy4081gdZpAv9c+/07mqmThdbMruyNwKDVs/uyt66UKRnAUC/0Hsxv9g+A/Mj/m8GX+tGunztYb7WjfT4mgFf60a60swBw3MbECWucdLrTpwpKkpc4/fApMQ5bStkV607ngvbbh8G1nb+eC5smReY2h8/ThrT5Shuu045ijfwSC/otL9thWzLdCVONnTctOtMwyjWlIa1clu/lutd407ZbT43nc5fc247Haubc7xZrw/W1k1O6/1yXGHLsubeCAzaeq8ZAGxe3G5seOi98DUDvtaNdPmaA1/rRnp8zYCvdSNdaeaAT7RsQCYw7dpeaJm3a3tBmcAayxInBWY6W6ysWnepHLfdPk5c2/lL5dY3kBOn9scPL1zGXCZsu04u0zpo061O+ztbrLRMZ8NgQ8dNu840jGJNaVgrt/Vrud417pTd5nPT6fw157bTsbo5x5v1+mBt3eS03i9X9qXm3ggM2lq9FwDQH/Re+JoBX+tGunzNga91Iz2+ZsDXupGuNHPAu1AbcOV4rvbdFtWTX79n21gu0FNPL+nuW29UNmPKhNLRueN6z949Les+e3Jch1Zs/569e/TA7Hd19603tsx//+tfqJ3bx1rm5TK2avtD+6e1Y0u+UePkRE6Hb5tpWefwbTOanMj19Jjb7e/Q/mkdnTvesv8dW/IbOm7adaZhFGtKQ6fcjucD/f4bp9tm9Z4V1/iKieyq7K08N+3O31379iifscb8Q1/4duN7Wzrtp5PNen2wtslCrpHH//NfvXBV/zw6d7yaqSsKLZld2RuBQatnd2VvnSzQswCgX+i9mJpon4GpEf83g691I12+9jBf60Z6fM2Ar3UjXWnmwJzj41B1MzMzbnZ2ds11SqVIp5bKihKnTGDaMhbIJJ1bTpTPBLp8LKswDLSwWFaSJIqd5JxTLhNqciKnJHE6eb6kKE4UBqYgkOJEGssEqsROiXPKZgJlAlOSOJWiRHHilAmDxpuG9e3r81Z+2XOSOC0sllWO4sZxL+bLwlfub3shqzPFyqr9b/S4adeZhj7UNJAHtF522+bWpECmp4tx4/rFiVMYmAq5QMuVRFHsFASmbGDaNpbVM+V4zXOTJE6nFktariQKTSrkQm2rNab6eS3kQkWJUyVKNnyORzEzm9jATux6+V1ejrRQLMtMMpkq9f5pUuykXBho21hGp5Yqa/ZGXFJGovfWs1vvvZOFHF+qiPWMTO+VersFFnqzSW4dRu/FSCiXI80vXsjA1ERuvS+UH4ne20Pd2IQ22MNGIrsSvRc9ZWAk8kt2IaXXe0nOBuXzGe3Mrz5tl7V+wkhTW9v/n9RBYHrWtkLbZd1ab/sgsI7H70W7/bXb/0aPm3adaRjFmtLQKbeStGWs+/1MddhHXRCYdmxtv8M0zutmvT5Y29hYRju7eKHzLP4hihHTbXYBAOmh9yKXy2inh68Lfa0b6fK1h/laN9LjawZ8rRvpSisH/O++AAAAAAAAAAAAPWLIzjPcOgmDQtYwKsgifEV2AQAYPF///vpaNyCRXwB+S6uHMdDikSRxOvbUOR24b1YnzhQbXwZ+3VVb+QOGVJE1jAqyCF+RXQD91st36GyS74IBOvL176+vdQMS+QXgtzR7GLcO88jCYrlx0SXpxJmiDtw3q4XF8pArw2ZD1jAqyCJ8RXYBABg8X//++lo3IJFfAH5Ls4cx0OKRchQ3LnrdiTNFlaN4SBVhsyJrGBVkEb4iuwAADJ6vf399rRuQyC8Av6XZw7wbaDGz3Wb2eTP7hpl93cx+pc06N5nZ02b2tdrPbw+j1rTlMqF2bS+0zNu1vaBcJhxSRdisyBpGBVmEr8guAACD5+vfX1/rBiTyC8BvafYw7wZaJEWSfs0594OSXirpl8zs+jbr/Vfn3AtrP+8abIn9MTmR0+HbZhoXv37PuMmJ3JArw2ZD1jAqyCJ8RXYBABg8X//++lo3IJFfAH5Ls4dl0i6u35xz/yjpH2u/nzOzb0jaKenRoRY2AEFguu6qrfqTt7xM5ShWLhNqciLHl4shdWQNo4IswldkFwCAwfP176+vdQMS+QXgtzR7mHcDLc3M7BpJL5L0d20W/4iZPSzp+5J+3Tn39QGW1jdBYJramh92GbgEkDWMCrIIX5FdAAAGz9e/v77WDUjkF4Df0uphPt46TJJkZlskHZX0b51zz6xY/JCkZzvnbpD0QUl/usZ+bjezWTObnZ+f71/BQMrILnxGfuErsgufkV/4iuzCZ+QXviK78Bn5xTCYc27YNWyYmWUl/Zmkzzrn/mMX6z8hacY5d2qt9WZmZtzs7Gw6RQJVA/msLNlFHwzsc97kF31A74WvRqr3XvPOTw+oGjzx7ls2vM2grs8GaqP3wlcj1XuBDSC78Bn5ha86Zte7W4eZmUn6T5K+0WmQxcz+maSnnHPOzF6s6id3FgZYJgAAAAB0hUEtAAAAwG/eDbRIepmkN0r6ezP7Wm3eb0m6WpKcc4ck7ZN0h5lFkoqSXu98/OgOAAAAAAAAAAAYad4NtDjn/pvW+XiZc+5Dkj40mIoAAAAAAAAAAMClysvvaOkXM5uX9OQ6q10pac3veoEkzlPdKefczf0+SJfZlbgunXBeVhtIdqVLtvfyePqL3ts7au2Pbmsdtd6bls14rUbBqNVK7x09l/o58LX3XurXTeIcSN2dg1HLrsS1kzgH9F5/cQ4usvcy0LJBZjbrnJsZdh2jjvM0mrgu7XFeRt9mu0Y8nkuLT+eHWvvDp1r7wafHT62bB+eHc+Dr4/e17jRxDvw9B77WnaZL/Rz4+vh9rTtNnIOLPwdBmsUAAAAAAAAAAABcShhoAQCsEQadAAAgAElEQVQAAAAAAAAA6BEDLRt377AL8ATnaTRxXdrjvIy+zXaNeDyXFp/OD7X2h0+19oNPj59aNw/OD+fA18fva91p4hz4ew58rTtNl/o58PXx+1p3mjgHF3kO+I4WAAAAAAAAAACAHvGJFgAAAAAAAAAAgB4x0AIAAAAAAAAAANAjBloAAAAAAAAAAAB6xEALAAAAAAAAAABAjxhoAQAAAAAAAAAA6BEDLQAAAAAAAAAAAD1ioAUAAAAAAAAAAKBHDLQAAAAAAAAAAAD0iIEWAAAAAAAAAACAHjHQAgAAAAAAAAAA0CMGWgAAAAAAAAAAAHrEQAsAAAAAAAAAAECPGGgBAAAAAAAAAADoEQMtAAAAAAAAAAAAPWKgBQAAAAAAAAAAoEcMtDS5+eabnSR++EnzZyDILj99+BkY8stPH34Gguzy04efgSG//PThZyDILj99+BkY8stPyj8DQ3b56cPPwJBfflL+6YiBlianTp0adglAT8gufEZ+4SuyC5+RX/iK7MJn5Be+IrvwGfnFoDDQAgAAAAAAAAAA0CMGWgAAAAAAAAAAAHrEQAsAAAAAAAAAAECPGGgBAAAAAAAAAADoEQMtAAAAAAAAAAAAPcoMu4BemNkfSnqNpJPOuR9qs9wkvV/SqyUtSXqTc+6hQdZYqcQ6eb6kKHEaywRKnFRJEmXDQNnAVIoSRYlTJjBlatNBYMqFgbKhVCwnqiROYWDakg9UqjhVEqc4cSpkQ0VJokpc3b6QC7WtkFMQmKIo0emlsspxojhxygamTBgoMKkcOznnlMuEmpyorp8kTmeKJRXL1fVzYaArJ3I6uxypHMUt69YlidPCYlnlKFYhFypKnCpRolwm1PZCVmeKlbbLVu6n+RxlAlM+E8jJVq03SM2Pbb3H3m65ryqVWPOLZVXiRGEtk1vzprPFpJHhoJbTuHa9wsBkkrIZUyVyCoJAkxM5SdIzy2UtlmJFiVM2DLRjS16ZTHVcN4oSnTxfUiVOVi0rlSKdWio3MnHleE75/IU2VS5Hml+8sHxqIqdczss2NnA+ZzdJnM4Wy6rU+mZc641mUuKk8Vyg5aaeWcgGKlWq043+G1d7bDYwxc7JOTUynMgpDAJdUcg1+lc/nv8+XwP0Znk50kLxQs+aLOQ0NjaaPYt8olk3eejmb/J6z4FuniPdrLPe64du9rHeY/bpNQjP56pr3vnpDW/zxLtv6UMlQHd8et0ArER+4evrD7ILKb0c+Jqcj0r6kKT7Oix/laRraz8vkXRP7b8DUanE+ubJ87rjyJymtuT1GzdfpzsfeEQnzhT1yut36G0vv1Z33P+QTpwpatf2gu7at0fv/cwxzZ8v6cM/9yKFQaCDR+Z04kxRv/hj12jfD1+tU+dKuvOBR1btr779VZeNafe2gp48s6T52rr15e9//Qu1dSyjn//obGPe4dtmdO3UFn33zJKeema5Zf1D+6f1gc99S3/x6MnGutddtbUxMHPsqXM6cN9s21rq286fK69a1ryf5nNUX373rTfq0w9/Tz9z4+7GeoPU/Nja1bzecl9VKrGOnTzfyNyu7QX9l7e8VN9ZKDcy/O9/+notleOW6/m+192gXCbQeD6jTCD97oPf1NtfcZ22jWc0f66stzRl/ND+ab3gqq2SpG8+da7lWPVlcZzoW6cWWzJxz/5pPf/KCeXzGZXLkY7Nr15+3dTEyL7RMSp8zm6SOD2xsKhzyxWVo0Rv/+TDjcfwnr179MVjT+k1L9y1qpd86K8e0/y5sn7r1S9o2eaufXtUyIW6+/OP68CPPVe5TCAn6e7PP65f/snnd9X7ejmHPl8D9GZ5OdJjC6t71rWTEyP3wp18olk3eejmb/J6z4FuniPdrFMqRWu+fuhmH+s9Zp9eg/B8Bvzk0+sGYCXyC19ff5BdSOnmwMtbhznnvijp9BqrvFbSfa7qy5K2mdkPDKY66eT5UuPiHLzpeY03pyVp7/TuxiCLJJ04U9SdDzyigzc9TyfOFHV6sdJ4E1qS9s1crROni419rNxfffsnF5Z08nxJx5vWrS//lU98Td87s9wy78B9szp5vqQnF5ZWrX/wyJz2Tu9uWXdhsSxJWlgsNxpnu1rq27Zb1ryf5nNUX/6W+x/SvpmrW9YbpObH1q7m9Zb76uT5UkvmTpwpqhKpJcOnFyurrufbP/mwTi9WdOJ0UZkg1N7p3Tpw36yiWI1Blvq6B4/M6eT5Uttj1ZedWiqvysQdR+Z0aql6fucX2y+f9/z8D4LP2V1YLOvJhSWdXqw0Bkyk6mN4x9FHtG/m6ra9pN6HVm5z5wOP6MxiRXundzcyXJ/utve1W97N4/D1GqA3C8X2PWuhOHrXnHyiWTd56OZv8nrPgW6eI92ss97rh66Os85j9uk1CM9nwE8+vW4AViK/8PX1B9mFlG4OvBxo6cJOScebpk/U5q1iZreb2ayZzc7Pz6dy8ChxjYuzrZBt/N5uWqpewG2FrCRpPBe2LA8Da5nXafvx2m26Vm7fvHzlvChOOq5fr6c+XY5iSVI5itetZVsh23FZfT/N56h5eRhYy3qD1PzYmmtq99jbLR+0tLLb7lqszPBauRrPhUqca1zz2LW/tlGcqBInHZd1ykSUuI51Ni9HZ6OWXan7/JajuJGztXrGyvlr9aHxXNhYVt93fbqb3tdu+XpG8RqgN91m16eeRT4vHd3kt5s8dJPvNP6uD+o46z1mns/D149/swGD0k1+feozuHRsxte96I9RfP1B70W30szBZh1oafe5tLZnxzl3r3Nuxjk3MzU1lcrBM4Fp1/aCJOlssdL4vd20JO3aXtDZYkWStFSOW5bHiWuZ12n7pXKsTGCrtm9evnJeJgw6rl+vpz6dy1QHanKZcN1azhYrHZfV99N8jpqXx4lrWW+Qmh9bc03tHnu75YOWVnbbXYuVGV4rV0vlWIFZ45qH1v7aZsJA2TDouKxTJjK1j5mutxydjVp2pe7zm8uEjZyt1TNWzl+rDy2V48ay+r7r0930vnbL1zOK1wC96Ta7PvUs8nnp6Ca/3eShm3yn8Xd9UMdZ7zHzfB6+fvybDRiUbvLrU5/BpWMzvu5Ff4zi6w96L7qVZg4260DLCUm7m6Z3Sfr+oA6+Y0te9+yfrn7/xBe+rbv27WlcsKNzx3XPrTc2puvfGXDoC9/Wru0FXTGR1aHatpL0wOx3teuKQmMfK/dX3/7Zk+PasSWv3U3r1pe///Uv1M7tYy3zDt82ox1b8nr25Piq9Q/tn9bRueMt69a/5HxyIqfDt810rKW+bbtlzftpPkf15XffeqMemP1uy3qD1PzY2tW83nJf7diSb8ncru0FZTNqyfAVE9lV1/N9r7tBV0xkteuKgqIk1tG54zp824wyoXT3iowf2j+tHVvybY9VX3bleG5VJu7ZP60rx6vnd2qi/fIpz8//IPic3cmJnJ49Oa4rJrJ63+tuaHkM79m7Rw/MfrdtL6n3oZXb3LVvj7ZPZHV07ngjw/Xpbntfu+XdPA5frwF6M1lo37MmC6N3zcknmnWTh27+Jq/3HOjmOdLNOuu9fujqOOs8Zp9eg/B8Bvzk0+sGYCXyC19ff5BdSOnmwJzz8+NQZnaNpD9zzv1Qm2W3SHqrpFdLeomkDzjnXrzePmdmZtzs7Gwq9VUqsU6eLylKnMYygRInVZJE2TBQNjCVokRx4hQGpkxtOghMuTBQNpSK5eqtlILAtCUfqFRxqiROSeI0lg0VJYmiuLp9IRdqWyGnIDBFUaLTS2WV40RJ4pQJTJkwUGBSOXZyzimXCTU5kWt8wfOZYknFcnX9bBjoyomczi5HKkdxy7p1SeK0sFhWOYpVqN2yrBIlymVCbS9kdaZYabts5X6az1EmMOUzgZxs1XqD1PzY1nvs7Za3MZAHcrHZrVRizS+WFcXVHGYC09a86WwxaWQ4qOU0qeU2DEwmKZsxVSKnIAgaf0SfWS5rsRQrqmVqx5a8MpnquG4UJdXrHifKrFhWKkU6tVRuZOLK8Zzy+QtfPFUuR9U6a8unJnIj9yW0o2pUsyutn98kcTpbLKsSVfNY752BSbGTxnOBlsuJKrX5hWygUqU63ei/tWxnA1PinBKnRoYTOYVBoCsKuUb/Sun5v+pxXMz22JCR6L3Ly5EWihd61mQhN7Jfqkg+R8ZI9N5u8tDN3+T1ngPdPEe6WWe91w/d7GO9x+zTa5AhPp9HovfWXfPOT29430+8+5ZeSoL/RqL3+vS6ASNjJLIrkV/4+54D2YW04Rx0zK6XyTGzP5Z0k6QrzeyEpN+RlJUk59whSQ+qOsjyuKQlSW8edI3ZbKid28d73n77RG/bZTKBdlw21vX6QWCanBiTVhxvKtv5431BYJramu+4fK1lzS72HPXDeo9tveW+ymZDPWtbYdX8ie6j1GLbeF7bOlzaTCZoeyxJyucz2pnv3JZyuYx2juibGqPO5+wGgemKiXVq77FnrtTP57/P1wC9GRvLaKcnL9LJJ5p1k4du/iav9xzo5jnSzTrrvX7oZh/rPWafXoPwfAb85NPrBmAl8gtfX3+QXUjp5cDLJDnn3rDOcifplwZUDgAAAAAAAAAAuERt1u9oAQAAAAAAAAAA6DsGWgAAAAAAAAAAAHrEQAsAAAAAAAAAAECPGGgBAAAAAAAAAADoEQMtAAAAAAAAAAAAPWKgBQAAAAAAAAAAoEcMtAAAAAAAAAAAAPSIgRYAAAAAAAAAAIAeMdACAAAAAAAAAADQIwZaAAAAAAAAAAAAesRACwAAAAAAAAAAQI8YaAEAAAAAAAAAAOgRAy0AAAAAAAAAAAA9YqAFAAAAAAAAAACgRwy0AAAAAAAAAAAA9IiBFgAAAAAAAAAAgB4x0AIAAAAAAAAAANAjBloAAAAAAAAAAAB65O1Ai5ndbGbHzOxxM3tnm+VXm9nnzeyrZvaImb16GHUCAAAAAAAAAIDNy8uBFjMLJX1Y0qskXS/pDWZ2/YrV/p2kTzrnXiTp9ZLuHmyVAAAAAAAAAABgs/NyoEXSiyU97pz7jnOuLOkTkl67Yh0n6bLa75dL+v4A6wMAAAAAAAAAAJcAXwdadko63jR9ojav2b+XtN/MTkh6UNLb2u3IzG43s1kzm52fn+9HrUBfkF34jPzCV2QXPiO/8BXZhc/IL3xFduEz8othGNpAi5n98lo/623eZp5bMf0GSR91zu2S9GpJHzezVY/XOXevc27GOTczNTXV24MBhoDswmfkF74iu/AZ+YWvyC58Rn7hK7ILn5FfDENmiMe+mJSfkLS7aXqXVt8a7Bck3SxJzrm/NbMxSVdKOnkRxwUAAAAAAAAAAGgY2kCLc+5/vYjNvyLpWjN7jqTvqfpl9z+3Yp3vSvpJSR81sx+UNCaJz4oBAAAAAAAAAIDUDP07WszsfzCzz5rZw7XpPWb2m2tt45yLJL1V0mclfUPSJ51zXzezd5nZT9dW+zVJB2r7/WNJb3LOrby9GAAAAAAAAAAAQM+Geeuwuj+Q9FuSPlyb/ntVB0Z+d62NnHMPqvol983zfrvp90clvSzVSgEAAAAAAAAAAJoM/RMtkiacc1+qT9Q+dVIZYj0AAAAAAAAAAABdGYWBloXad604STKzn5H0T8MtCQAAAAAAAAAAYH2jcOuwt0r6T5JeYGZPSvpHSW8YbkkAAAAAAAAAAADrG/pAi3PucUkvN7PLJZlz7uywawIAAAAAAAAAAOjG0G8dZmZvNbPLnHNPS3q3mf1/ZvaTw64LAAAAAAAAAABgPUMfaJF0u3PuGTN7paRdku6Q9N4h1wQAAAAAAAAAALCuURhocbX/vkrSR5xzcxqNugAAAAAAAAAAANY0CgMaD5vZg5L+paQ/N7MtujD4AgAAAAAAAAAAMLIywy5A0pslTUt63Dm3ZGZXSvqFIdcEAAAAAAAAAACwrqF/osU5F0t6rqrfzSJJBY1AXQAAAAAAAAAAAOsZ+oCGmX1I0k9I2l+btSjp0PAqAgAAAAAAAAAA6M4o3DrsR51zN5rZVyXJOXfazHLDLgoAAAAAAAAAAGA9Q/9Ei6SKmQWSnCSZ2aSkZLglAQAAAAAAAAAArG8UBlo+LOmopCkz+98k/TdJ7xluSQAAAAAAAAAAAOsb+q3DnHP3mdmcpJ+SZJJ+1jn334dcFgAAAAAAAAAAwLqGNtBiZhPOuUUzu0zScUkfaVp2mXPumWHVBgAAAAAAAAAA0I1hfqLlAUmvkvR1Vb+fxVb89+rhlQYAAAAAAAAAALC+oQ20OOdeVfvv7mHVAAAAAAAAAAAAcDGCYR7czEIze5WZvb328z+ZWdjFdjeb2TEze9zM3tlhndeZ2aNm9nUz+6P0qwcAAAAAAAAAAJe6YX5Hyw9I+itJC5K+quotw/ZKep+Zvdw5908dtgslfVjSKySdkPQVM/uUc+7RpnWulfSbkl7mnDtjZjv6+2gAAAAAAAAAAMClaJjf0fJ/SPoD59zvNc80s7dL+l1Jb+6w3YslPe6c+05t/U9Ieq2kR5vWOSDpw865M5LknDuZcu0AAAAAAAAAAABDvXXYj6wcZJEk59z7JP3IGtvtlHS8afpEbV6z50t6vpn9jZl92cxu7rQzM7vdzGbNbHZ+fn4D5QPDRXbhM/ILX5Fd+Iz8wldkFz4jv/AV2YXPyC+GYZgDLcUel1mbeW7FdEbStZJukvQGSX9gZtva7cw5d69zbsY5NzM1NbXGYYHRQnbhM/ILX5Fd+Iz8wldkFz4jv/AV2YXPyC+GYZi3DrvczH66zXyTdNka252QtLtpepek77dZ58vOuYqkfzCzY6oOvHzlIuoFAAAAAAAAAABoMcyBlr+R9LMdln1pje2+IulaM3uOpO9Jer2kn1uxzp+q+kmWj5rZlareSuw7F1cuAAAAAAAAAABAq6ENtDjn3tjNema23zl3pGm7yMzeKumzkkJJf+ic+7qZvUvSrHPuU7VlrzSzRyXFku50zi2k/ygAAAAAAAAAAMClbJifaOnWr0o60jzDOfegpAdXzPvtpt9dbbtfHUSBAAAAAAAAAADg0hQMu4Au2LALAAAAAAAAAAAAaMeHgRY37AIAAAAAAAAAAADa8WGghU+0AAAAAAAAAACAkeTDQMuXh10AAAAAAAAAAABAO0MfaDGzKTP7fTP7s9r09Wb2pvpy59wdQysOAAAAAAAAAABgDUMfaJH0UUl/LWl3bfoxSb82tGoAAAAAAAAAAAC6NAoDLTucc38kKZEk51xFUjzckgAAAAAAAAAAANY3CgMti2Z2hSQnSWb2w5LODbckAAAAAAAAAACA9WWGXYCkX5f0/0h6rpn9taSdkvYNtyQAAAAAAAAAAID1DX2gxTk3a2Y/IekHJZmkR51z5SGXBQAAAAAAAAAAsK6hD7SYWV7SL0r6F6rePuy/mtlh51xpuJUBAAAAAAAAAACsbegDLZI+Jqkk6XBt+g21ea8fWkUAAAAAAAAAAABdGIWBluudc3uapv/SzB4eWjUAAAAAAAAAAABdCoZdgKSvmdkP1yfMbFrS3w6xHgAAAAAAAAAAgK6MwidabpT0d2b2ndr0cyR93cy+Ksk5524cXmkAAAAAAAAAAACdjcJAy2uHXQAAAAAAAAAAAEAvRmGg5YCkjzjnjg27EAAAAAAAAAAAgI0Yhe9oeULSfWb2N2b2b8xs67ALAgAAAAAAAAAA6MbQB1qcc4eccy9R9ZMtL5D092Z2n5n92FrbmdnNZnbMzB43s3eusd4+M3NmNpNy6QAAAAAAAAAA4BI39IEWSTKzQNJzJF0j6YykY5J+y8yOdFg/lPRhSa+SdL2kN5jZ9W3W2yrplyX9XX8qBwAAAAAAAAAAl7Khf0eLmb1X0v8s6a8l/Ufn3JealnX63pYXS3rcOfed2nqfkPRaSY+uWO9/l/ReSb+edt0AAAAAAAAAAABD+0SLmV1d+/VxSS90zv1C8yBLzY902HynpONN0ydq85r3/yJJu51zf7ZOHbeb2ayZzc7Pz3f/AIAhI7vwGfmFr8gufEZ+4SuyC5+RX/iK7MJn5BfDMMxbh/2pJDnn7nXOnW+3gnPudIdtrd3qjYXVW5G9T9KvrVdE7fgzzrmZqamp9asGRgTZhc/IL3xFduEz8gtfkV34jPzCV2QXPiO/GIZhDrS0Gyzp1glJu5umd0n6ftP0Vkk/JOkLZvaEpJdK+pSZzVzEMQEAAAAAAAAAAFoM8ztadprZBzotdM798hrbfkXStWb2HEnfk/R6ST/XtO3Tkq6sT5vZFyT9unNu9mKLBgAAAAAAAAAAqBvmQEtR0lwvGzrnIjN7q6TPSgol/aFz7utm9i5Js865T6VYJwAAAAAAAAAAQFvDHGhZcM59rNeNnXMPSnpwxbzf7rDuTb0eBwAAAAAAAAAAoJNhfkdLuZuVzOyf97sQAAAAAAAAAACAXgxtoMU599IuV/14XwsBAAAAAAAAAADo0TA/0dItG3YBAAAAAAAAAAAA7fgw0OKGXQAAAAAAAAAAAEA7Pgy0AAAAAAAAAAAAjCQfBlrKwy4AAAAAAAAAAACgncywDmxmN6613Dn3UO2/Lx1MRQAAAAAAAAAAABsztIEWSb+3xjIn6eWDKgQAAAAAAAAAAKAXQxtocc79xLCODQAAAAAAAAAAkIahf0eLmY2b2b8zs3tr09ea2WuGXRcAAAAAAAAAAMB6hj7QIukjqn7h/Y/Wpk9I+g/DKwcAAAAAAAAAAKA7ozDQ8jzn3HslVSTJOVeUZMMtCQAAAAAAAAAAYH2jMNBSNrOCJCdJZvY8SaXhlgQAAAAAAAAAALC+zLALkPQ7kj4jabeZ3S/pZZLeNNSKAAAAAAAAAAAAujD0gRbn3F+a2UOSXqrqLcN+xTl3ashlAQAAAAAAAAAArGvoAy1m9uO1X8/V/nu9mck598Vh1QQAAAAAAAAAANCNoQ+0SLqz6fcxSS+WNCfp5cMpBwAAAAAAAAAAoDtDH2hxzv3L5mkz2y3pvUMqBwAAAAAAAAAAoGvBsAto44SkH1prBTO72cyOmdnjZvbONst/1cweNbNHzOxzZvbsvlULAAAAAAAAAAAuWUP/RIuZfVCSq00Gkl4o6eE11g8lfVjSK1QdlPmKmX3KOfdo02pflTTjnFsysztU/YTMv+pH/QAAAAAAAAAA4NI19IEWSbNNv0eS/tg59zdrrP9iSY87574jSWb2CUmvldQYaHHOfb5p/S9L2p9euQAAAAAAAAAAAFVDG2gxs6udc991zn1sg5vulHS8afqEpJessf4vSPrzNeq4XdLtknT11VdvsBRgeMgufEZ+4SuyC5+RX/iK7OKad356w9s88e5b+lDJxpFf+IrswmfkF8MwzO9o+dP6L2Z2dAPbWZt5rs08mdl+STOS7uq0M+fcvc65GefczNTU1AbKAIaL7MJn5Be+IrvwGfmFr8gufEZ+4SuyC5+RXwzDMG8d1jxg8twNbHdC0u6m6V2Svr9q52Y/Jel/kfQ/OudKPVUIAAAAAAAAAACwhmF+osV1+H09X5F0rZk9x8xykl4v6VPNK5jZiyT9vqSfds6dvOhKAQAAAAAAAAAA2hjmJ1puMLNnVP1kS6H2u2rTzjl3WbuNnHORmb1V0mclhZL+0Dn3dTN7l6RZ59ynVL1V2BZJ/9nMJOm7zrmf7vPjAQAAAAAAAAAAl5ihDbQ458KL2PZBSQ+umPfbTb//1EWUBgAAAAAAAAAA0JVh3joMAAAAAAAAAADAawy0AAAAAAAAAAAA9IiBFgAAAAAAAAAAgB4x0AIAAAAAAAAA/z979x8l11nfef7zvfWrS92SJbVaziLJsUOMHQ9jg9VAlkwyJkBWgQyeEwkwWDhMGDs2kHAYhh8zm2Wy7O4ZDCfLIcQ/YhMCxg4MsTc5XvDg5GRhkg1D1i0Te44dG4yxrTaD1WpJltRdXVW37nf/qB+q6q7uurqqrqorvV/n1LFuPc996nvv/dRTZT2qKgBIiIUWAAAAAAAAAACAhFhoAQAAAAAAAAAASIiFFgAAAAAAAAAAgIRYaAEAAAAAAAAAAEiIhRYAAAAAAAAAAICEWGgBAAAAAAAAAABIiIUWAAAAAAAAAACAhFhoAQAAAAAAAAAASIiFFgAAAAAAAAAAgIRYaAEAAAAAAAAAAEiIhRYAAAAAAAAAAICEWGgBAAAAAAAAAABIiIUWAAAAAAAAAACAhFhoAQAAAAAAAAAASCg77AKSMrM9kj4rKSPp8+7+yWXtBUl3SdotaV7S2939maSPF0WuuRNlLYU1ZQJTLjBNFKyjz7FSpDByZQNTMR+oGrrCyFWLXJnAZCbJJQukfCbQUrWz/1I1UrVW396QD7RYqbePZQNFLlVr0alxJGXM5JJqjcfIZQLls6bFSk2BmYJAygSBto0XFATW9ZjmFyqqhDXlsxlNjucH0g+Dt7QU6sVyVdVGVgrZQBsb+T1Zdk0UrCO/hWygyF3VmisIpCiq5ywITBOFQAvlU303FwNVI9OmsbwqlZrmS5VW26ZioMWyr8hvNgi0baJ7LoF2YRhpKaxosVLPYKWRo1xgityVCer/XqBaq2cyE5jygSn0eu6K2UDlMFK1kclcxlStuXIZk2QdY+azgbYW88pmO/8NQnNui6JINZcyJtVccvczmuuYM+NL67laWgo75sTJYl5jY6P51itNtaZJWrMbR5zM9OrTjzEG9TiDqjUMIx06WVa1FimXCbR9orDidalSCTW3cGqMqfG88vlTY1SrNR06WW61b58oKJfLdIwRJ5txagHQPzznIKX3PVla60b/pDUDaa0b/dWvHKQyOWaWkXSLpDdKmpX0kJnd7+6Pt3V7j6Sj7v6zZnaNpJslvT3J40WR64mfHNcNXz6g2aMl7dxS1Kf3Xa5tGwt6yaacJOnp+bJuurve/iuXbddH9lyqowsVffBrj7T2uXnv5frSd36kDz51iPwAACAASURBVLzhZYoi1033PNxqu23/bn3ur7+vv3z8UMf23ImKPrLnEn343kdXjPO+1/2slqqRPvRnj3TU9alvPqm5k+VWvw++8RJdcv7Gjv95iiLXky+c0PV3zbT2vfO66XXvh8FbWgp18HhJh0+UO3L04Adeqx8fr2r7xlxHfnduKerWa6/UpmJWX/nus/qlS87XR+97dM2sXjRZ0EKlrGeWjXPb/t3aXMzqHXf+/Yr8fvANl+iSnyIfWF0YRlqoVjR3oqqFck3v+9OHO+a6iUJW+azpeCnsmGubbV9/5Hm9+Yodem/bXHvrtVfqG488r73Tu7RQrum3v/K9jv2Obyzowq3jrf+pbc5tn/mrJ/Ubr71IX/rOj/Qbr72o4zmRZK5jzowvredqaSnUD+YXVsyJF0+Oj9wb9zTVmiZpzW4ccTLTq08/xhjU4wyq1jCM9MQLJ3RjW/vt+3fr0vM3tl6XKpVQT86tHOOSqXHl81lVqzU9cejkivZLt0+0FlviZDNOLQD6h+ccpPS+J0tr3eiftGYgrXWjv/qZg7S+Yr9a0lPu/rS7VyR9VdLVy/pcLelLjT/fK+n1Zpbo/2rnFyqtRRZJmj1aqv+F9ZGSjpUiHStFrYshSXt379LBI6XWX/w19/nofY9q7+5dOnS83FpkabbddPcB7d29a8X2jVe9tPWX48vHObJQbS2ytNd141Uv7eh3/V0zml+orDim5v9cNfcdRD8M3nypotkjpRU5OlaKNHukpJNLnfmdPVrSe+95WGFN2jd9QesvlJtt3bL6YinS8dLKcW66+4Ak65rf679MPrC2QyfLOrkU6eCRUmuRRTo11x0+WVEmyKyYa5tt+6YvaC2yNNvee8/D2jd9gZ4/utRaZGnf7+CRkg6dLLdqaM5te3fvamV3+XMiyVzHnBlfWs/VfKnSdU6cL41e3WmqNU3Smt044mSmV59+jDGoxxlUrYdOllt/ydpsv/HuAx2vS3ML3ceYWzg1Rrf2bq9ta2UzTi0A+ofnHKT0vidLa93on7RmIK11o7/6mYO0LrTskHSwbXu2cV/XPu4eSnpR0uTygczsBjObMbOZubm5rg9WCWutk916wKMlbchnFEb1rwdrb99czGlDPtN1n15ty7c3F3OJx2n+efZoSZWwFuuY1rsf+idOdiUpjLxrVpr3L8+vVL92gUmZwGJltdvzoNkWuXfdn3yc2+Lkt/l1YKvNdRvyGQWmVdtWy28msDXHDGtR677m3NbM7Gpz8ulmmTkzvlE7V6cz93arO4x8lT2GJ021psmoZVeKn99e4mSmV59+jDGoxxlUrdVa1L297XWpH7XGyWacWgapX9kFhiHu+95Res5hOEbtPdnZ+L4X62MUMxAnv6NYNwavnzlI60JLt0+mLD/6OH3k7ne4+7S7T09NTXV9sHw2o51bih337dxS1GKlpmxgygbW0X6sVNVipdZ1n15ty7ePlaqJx2n+eeeWovLZzu9lXu2Y1rsf+idOdiUpG1jXrDTvX55fqX7tIq//JkacrHZ7HjTbgmUfJFsrlzh3xMlvLhOsmt/mHBy5Vm1bLb+1yNccM5s59dLYnNuamV1tTj7dLDNnxjdq5+p05t5udWdH8Cuj0lRrmoxadqX4+e0lTmZ69enHGIN6nEHVmssE3dvbXpf6UWucbMapZZD6lV1gGOK+7x2l5xyGY9Tek52N73uxPkYxA3HyO4p1Y/D6mYO0vmrPStrVtr1T0o9X62NmWUnnSTqS5MEmx/O64127Wye9+V3+O7cWtbkYaHMx0G37T7Xfd+Cgdm0t6jNvu6Jjn5v3Xq77DhzU9k0F3XbtlR1tt+3frfsOHFyxffu3f1h/rC7jbB3P6fffesWKum7/9g87+t153bQmx/MrjunO66Y79h1EPwzeZDGvnVuLK3K0uRho59aiJsY687tzS/13LLIZ6d6Z53Tz3st7ZvW8YqBNxZXj3LZ/tyTvmt8730U+sLbtEwVNjAXatbWoW9555Yq5bttEXrWotmKubbbdO/Ocbl0219567ZW6d+Y57dgyps+945Ur9tu1tajtE4VWDc257b4DB1vZXf6cSDLXMWfGl9ZzNVnMd50TJ4ujV3eaak2TtGY3jjiZ6dWnH2MM6nEGVev2iYJuX9Z++/7dHa9LU+Pdx5gaPzVGt/Zur21rZTNOLQD6h+ccpPS+J0tr3eiftGYgrXWjv/qZA3NP38ehGgsn35f0eknPS3pI0jvd/bG2Pu+T9E/d/UYzu0bSr7v729Yad3p62mdmZrq2RZFr7kRZ5bCmIDDlAtNEoXNl61ip/jU32cBUzAeqhvWvU6pFrkxgCkxylyyQ8plAS9XO/kvVSGHNG19rE2ixUm8fywaKvP5x4tY4kjJmctU/dVCLXLlMoHzWtFiJFJgUBKZMYNo2Xuj6o6tR5JpfqKgS1pTPZjQ5nh9Iv3PMQE7AWtmV6j/s9GK5qmrkiiJXPhtoYyO/J8uuiYJ15LeQDRS5q1pzBYEURfWcBYFpohBooXyq7+ZioGpk2jSWV6VS03yp0mrbVAy0WPZ6fqNIGbPGV5IF2jbRPZcYGQO7OGvlNwwjLYUVLVbqGazWotYcHMmVsfq/F6jWolZG84Gp5q6aS8VsoHIYqdrIZC5jqtZcuYxJMtUiV6Uxt+azgbYW8yt+cLQ5t0VRpJpLGZNqLrn7Gc11zJnxJThXIzP3ts+Jk8X8yP6oYppqTZNRza7UO7+9xMlMrz79GGNQjzOoWsMw0qGTZYW1SNlMoO0ThRWvS5VKqLmFU2NMjeeVz58ao1qt1cdotG+fKCiX6/wkVZxsxqllmZGYe5su/Ng3TnvsZz755iQlYQDW+XqOxNyb4DmHs9BpvicbiexKvJdEogyMRH7JLqT+zb2pTI67h2b2fkkPSspI+oK7P2Zmn5A04+73S/pjSV82s6dU/yTLNWfymEFgOv+8sTX7jK/dfNq2jCfbb8UP0awiCExTG3v/C5l+98PgjY1lV50gmrk9nfxu3rD64+xY9jgb+/y8wLklmw00kR3TxBBztF5zG3NmfGk9V93mxFGVplrTJK3ZjSNOZnr16ccYg3qcQdWazQZ6yebiqu2SlM9ntSO/+hi5XEY7tqzyZq0hTjbj1AKgf3jOQUrve7K01o3+SWsG0lo3+qtfOUhtktz9AUkPLLvv421/XpL01kHXBQAAAAAAAAAAzh18DhUAAAAAAAAAACAhFloAAAAAAAAAAAASYqEFAAAAAAAAAAAgIRZaAAAAAAAAAAAAEjJ3H3YNI8PM5iQ926PbNkmHB1BO2nGe6g67+571fpCY2ZW4LqvhvKw0kOxK5+zcy/GsL+be5Kh1fcStddTm3n45G6/VKBi1Wpl7R8+5fg7SOvee69dN4hxI8c7BqGVX4tpJnAPm3vTiHJzh3MtCy2kysxl3nx52HaOO8zSauC7dcV5G39l2jTiec0uazg+1ro801boe0nT81Hr24PxwDtJ6/Gmtu584B+k9B2mtu5/O9XOQ1uNPa939xDk483PAV4cBAAAAAAAAAAAkxEILAAAAAAAAAABAQiy0nL47hl1ASnCeRhPXpTvOy+g7264Rx3NuSdP5odb1kaZa10Oajp9azx6cH85BWo8/rXX3E+cgvecgrXX307l+DtJ6/Gmtu584B2d4DviNFgAAAAAAAAAAgIT4RAsAAAAAAAAAAEBCLLQAAAAAAAAAAAAkxEILAAAAAAAAAABAQiy0AAAAAAAAAAAAJMRCCwAAAAAAAAAAQEIstAAAAAAAAAAAACTEQgsAAAAAAAAAAEBCLLQAAAAAAAAAAAAkxEILAAAAAAAAAABAQiy0AAAAAAAAAAAAJMRCCwAAAAAAAAAAQEIstAAAAAAAAAAAACTEQgsAAAAAAAAAAEBCLLQAAAAAAAAAAAAkxEILAAAAAAAAAABAQiy0tNmzZ49L4satn7eBILvc1uE2MOSX2zrcBoLscluH28CQX27rcBsIssttHW4DQ3659fk2MGSX2zrcBob8cuvzbVUstLQ5fPjwsEsAEiG7SDPyi7Qiu0gz8ou0IrtIM/KLtCK7SDPyi0FhoQUAAAAAAAAAACAhFloAAAAAAAAAAAASYqEFAAAAAAAAAAAgIRZaAAAAAAAAAAAAEmKhBQAAAAAAAAAAIKHssAtIwsy+IOnXJB1y95d3aTdJn5X0JkmLkt7t7g+fyWNGkWvuRFlLYU2ZwJQLTBMF6+hzrBQpjFzZwFTMB6qGrjBy1SJXJjCZSXLJAimfCbRU7ey/VI1UrdW3N+QDLVbq7WPZQJFL1Vp0ahxJGTO5pFrjMXKZQPmsabFSU2CmIJAyQaBt4wUFgXU9pvmFiiphTflsRpPj+YH0w+AtLYV6sVxVtZGVQjbQxkZ+T5ZdEwXryG8hGyhyV7XmCgIpiuo5CwLTRCHQQvlU383FQNXItGksr0qlpvlSpdW2qRhosewr8psNAm2b6J5LoF0YRloKK1qs1DNYaeQoF5gid2WC+r8XqNbqmcwEpnxgCr2eu2I2UDmMVG1kMpcxVWuuXMYkWceY+WygrcW8stnOf4PQnNuiKFLNpYxJNZfc/YzmOubM+NJ6rpaWwo45cbKY19jYaL71SlOtaZLW7MYRJzO9+vRjjEE9zqBqDcNIh06WVa1FymUCbZ8orHhdqlRCzS2cGmNqPK98/tQY1WpNh06WW+3bJwrK5TIdY8TJZpxaRhHzGYBRc+HHvnHa+zzzyTevQyXrh7kXac1AWutGf/UrB2lNzhcl/aGku1Zp/1VJFzdur5F0W+O/iUSR64mfHNcNXz6g2aMl7dxS1Kf3Xa5tGwt6yaacJOnp+bJuurve/iuXbddH9lyqowsVffBrj7T2uXnv5frSd36kD7zhZYoi1033PNxqu23/bn3ur7+vv3z8UMf23ImKPrLnEn343kdXjPO+1/2slqqRPvRnj3TU9alvPqm5k+VWvw++8RJdcv7Gjv95iiLXky+c0PV3zbT2vfO66XXvh8FbWgp18HhJh0+UO3L04Adeqx8fr2r7xlxHfnduKerWa6/UpmJWX/nus/qlS87XR+97dM2sXjRZ0EKlrGeWjXPb/t3aXMzqHXf+/Yr8fvANl+iSnyIfWF0YRlqoVjR3oqqFck3v+9OHO+a6iUJW+azpeCnsmGubbV9/5Hm9+Yodem/bXHvrtVfqG488r73Tu7RQrum3v/K9jv2Obyzowq3jrb9Ias5tn/mrJ/Ubr71IX/rOj/Qbr72o4zmRZK5jzowvredqaSnUD+YXVsyJF0+Oj9wb9zTVmiZpzW4ccTLTq08/xhjU4wyq1jCM9MQLJ3RjW/vt+3fr0vM3tl6XKpVQT86tHOOSqXHl81lVqzU9cejkivZLt0+0FlviZDNOLaOI+QwABo+5F2nNQFrrRn/1Mwej+y55De7+N5KOrNHlakl3ed13JW02s/8h6ePNL1RaiyySNHu0VP8L6yMlHStFOlaKWhdDkvbu3qWDR0qtv/hr7vPR+x7V3t27dOh4ubXI0my76e4D2rt714rtG696aesvx5ePc2Sh2lpkaa/rxqte2tHv+rtmNL9QWXFMzf+5au47iH4YvPlSRbNHSitydKwUafZISSeXOvM7e7Sk997zsMKatG/6gtZfKDfbumX1xVKk46WV49x09wFJ1jW/13+ZfGBth06WdXIp0sEjpdYii3Rqrjt8sqJMkFkx1zbb9k1f0Fpkaba9956HtW/6Aj1/dKm1yNK+38EjJR06WW7V0Jzb9u7e1cru8udEkrmOOTO+tJ6r+VKl65w4Xxq9utNUa5qkNbtxxMlMrz79GGNQjzOoWg+dLLcWNprtN959oON1aW6h+xhzC6fG6Nbe7bVtrWzGqWUUMZ8BwOAx9yKtGUhr3eivfuYglQstMeyQdLBte7Zx3wpmdoOZzZjZzNzcXNfBKmGtdbJbAx4taUM+ozCqfz1Ye/vmYk4b8pmu+/RqW769uZhLPE7zz7NHS6qEtVjHtN790D9xsitJYeRds9K8f3l+pfq1C0zKBBYrq92eB822yL3r/uTj3BYnv82vA1ttrtuQzygwrdq2Wn4zga05ZliLWvc157ZmZlebk083y8yZ8Y3auTqdubdb3WHkq+wxPGmqNU1GLbtS/Pz2Eiczvfr0Y4xBPc6gaq3Wou7tba9L/ag1Tjbj1DJIZ+Pci3NHv+ZeYNCYexHXKGYgTn5HsW4MXj9zcLYutHT7PoauZ8fd73D3aXefnpqa6jpYPpvRzi3Fjvt2bilqsVJTNjBlA+toP1aqarFS67pPr7bl28dK1cTjNP+8c0tR+Wzn9zKvdkzr3Q/9Eye7kpQNrGtWmvcvz69Uv3aR138TI05Wuz0Pmm2BWdf9yce5LU5+c5lg1fw25+DItWrbavmtRb7mmNnMqZfG5tzWzOxqc/LpZpk5M75RO1enM/d2qzs7gl8ZlaZa02TUsivFz28vcTLTq08/xhjU4wyq1lwm6N7e9rrUj1rjZDNOLYN0Ns69OHf0a+4FBo25F3GNYgbi5HcU68bg9TMHZ+tCy6ykXW3bOyX9OOlgk+N53fGu3a2T3vwu/51bi9pcDLS5GOi2/afa7ztwULu2FvWZt13Rsc/Ney/XfQcOavumgm679sqOttv279Z9Bw6u2L792z+sP1aXcbaO5/T7b71iRV23f/uHHf3uvG5ak+P5Fcd053XTHfsOoh8Gb7KY186txRU52lwMtHNrURNjnfnduaX+OxbZjHTvzHO6ee/lPbN6XjHQpuLKcW7bv1uSd83vne8iH1jb9omCJsYC7dpa1C3vvHLFXLdtIq9aVFsx1zbb7p15Trcum2tvvfZK3TvznHZsGdPn3vHKFfvt2lrU9olCq4bm3HbfgYOt7C5/TiSZ65gz40vruZos5rvOiZPF0as7TbWmSVqzG0eczPTq048xBvU4g6p1+0RBty9rv33/7o7Xpanx7mNMjZ8ao1t7t9e2tbIZp5ZRxHwGAIPH3Iu0ZiCtdaO/+pkDc0/nx6HM7EJJX3f3l3dpe7Ok90t6k6TXSPoDd391rzGnp6d9Zmama1sUueZOlFUOawoCUy4wTRQ6V7aOlepfc5MNTMV8oGpY/zqlWuTKBKbAJHfJAimfCbRU7ey/VI0U1rzxtTaBFiv19rFsoMjrH+FvjSMpYyZX/VMHtciVywTKZ02LlUiBSUFgygSmbeOFrj+6GkWu+YWKKmFN+WxGk+P5gfQ7xwzkBKyVXan+w04vlquqRq4ocuWzgTY28nuy7JooWEd+C9lAkbuqNVcQSFFUz1kQmCYKgRbKp/puLgaqRqZNY3lVKjXNlyqttk3FQItlr+c3ipQxa3wlWaBtE91ziZExsIuzVn7DMNJSWNFipZ7Bai1qzcGRXBmr/3uBai1qZTQfmGruqrlUzAYqh5GqjUzmMqZqzZXLmCRTLXJVGnNrPhtoazG/4kd+m3NbFEWquZQxqeaSu5/RXMecGV+CczUyc2/7nDhZzI/sjyqmqdY0GdXsSr3z20uczPTq048xBvU4g6o1DCMdOllWWIuUzQTaPlFY8bpUqYSaWzg1xtR4Xvn8qTGq1Vp9jEb79omCcrnOT1LFyWacWpZh7kVapWbuRTpd+LFvnPY+z3zyzXG6jUx2mXuRIAMjkV+yC+m0c7BqdlOZHDP7iqSrJG0zs1lJ/0FSTpLc/XZJD6i+yPKUpEVJ/+pMHzMITOefN7Zmn/G1m0/blvFk+03G7BcEpqmNvf9VWr/7YfDGxrKrThDN3J5OfjdvWP1xdix7nI19fl7g3JLNBprIjmliiDlar7mNOTO+tJ6rbnPiqEpTrWmS1uzGESczvfr0Y4xBPc6gas1mA71kc3HVdknK57PakV99jFwuox1bVnmz1hAnm3FqGUXMZwAweMy9SGsG0lo3+qtfOUhlktz9HT3aXdL7BlQOAAAAAAAAAAA4R52tv9ECAAAAAAAAAACw7lhoAQAAAAAAAAAASIiFFgAAAAAAAAAAgIRYaAEAAAAAAAAAAEiIhRYAAAAAAAAAAICEWGgBAAAAAAAAAABIiIUWAAAAAAAAAACAhFhoAQAAAAAAAAAASIiFFgAAAAAAAAAAgIRYaAEAAAAAAAAAAEiIhRYAAAAAAAAAAICEWGgBAAAAAAAAAABIiIUWAAAAAAAAAACAhFhoAQAAAAAAAAAASIiFFgAAAAAAAAAAgIRYaAEAAAAAAAAAAEiIhRYAAAAAAAAAAICEWGgBAAAAAAAAAABIKLULLWa2x8yeNLOnzOxjXdovMLNvmdn3zOxRM3vTMOoEAAAAAAAAAABnr1QutJhZRtItkn5V0mWS3mFmly3r9ruSvubur5R0jaRbB1slAAAAAAAAAAA426VyoUXSqyU95e5Pu3tF0lclXb2sj0va1PjzeZJ+PMD6AAAAAAAAAADAOSCtCy07JB1s255t3Nfu9yTtN7NZSQ9I+u1uA5nZDWY2Y2Yzc3Nz61ErsC7ILtKM/CKtyC7SjPwircgu0oz8Iq3ILtKM/GIYhrbQYma/s9at1+5d7vNl2++Q9EV33ynpTZK+bGYrjtfd73D3aXefnpqaSnYwwBCQXaQZ+UVakV2kGflFWpFdpBn5RVqRXaQZ+cUwZIf42GeS8llJu9q2d2rlV4O9R9IeSXL3/2pmY5K2STp0Bo8LAAAAAAAAAADQMrSFFnf/X85g94ckXWxmF0l6XvUfu3/nsj7PSXq9pC+a2c9JGpPEZ8UAAAAAAAAAAEDfDP03WszsJWb2Z2b23xu3/2RmL1lrH3cPJb1f0oOS/lHS19z9MTP7hJm9pdHtQ5KuN7NHJH1F0rvdffnXiwEAAAAAAAAAACQ2zK8Oa/oTSfdK2t/Yflfjvv9prZ3c/QHVf+S+/b6Pt/35cUm/0NdKAQAAAAAAAAAA2gz9Ey2Sznf3O9293Lh9XtL5wy4KAAAAAAAAAACgl1FYaDliZtfYKW+XdGTYRQEAAAAAAAAAAPQyCgstvynpOkmHVf+x+ndJes9QKwIAAAAAAAAAAIhhqL/RYmYZSW9x9zcNsw4AAAAAAAAAAIAkhvqJFnevSdo7zBoAAAAAAAAAAACSGuonWhr+1sw+K+mrkhaad7r7o8MrCQAAAAAAAAAAoLdRWGj5543/Xtl2n0v6pSHUAgAAAAAAAAAAENsoLLTsd/dn2+8ws58eVjEAAAAAAAAAAABxDfU3Whr+POZ9AAAAAAAAAAAAI2Von2gxs5dJ+jlJ55nZW9qaNkkaG05VAAAAAAAAAAAA8Q3zq8P+iaRfl7RZ0lvb7j8h6beGUhEAAAAAAAAAAMBpGNpCi7v/uaQ/N7N/5u7/77DqAAAAAAAAAAAASGoUfqPlJ2b2oJk9IklmdrmZ/bthFwUAAAAAAAAAANDLKCy0fF7S/yopamz/N0n7h1cOAAAAAAAAAABAPKOw0DLu7t9pbri7S6oOsR4AAAAAAAAAAIBYRmGhZd7MLpLkkmRm/1LST4ZbEgAAAAAAAAAAQG/ZYRcg6f2S/ljSpWb2rKT/Luma4ZYEAAAAAAAAAADQ29AXWtz9KUm/bGbnSTJ3PzbsmgAAAAAAAAAAAOIY2leHmdmrzOyAmR0zs7+V9FNxF1nMbI+ZPWlmT5nZx1bp8zYze9zMHjOzP+1r8QAAAAAAAAAAABruJ1pulfS7kv5G0lskfVbSnl47mVlG0i2S3ihpVtJDZna/uz/e1udiSf9O0i+4+1Ez274O9QMAAAAAAAAAgHPc0D7RIinj7v/Z3Rfc/SuS4i6GvFrSU+7+tLtXJH1V0tXL+lwv6RZ3PypJ7n6ob1UDAAAAAAAAAAA0DPMTLZvN7C2rbbv7/avst0PSwbbtWUmvWdbnZZJkZn8nKSPp99z9m90GM7MbJN0gSRdccMFpHQAwTGQXaUZ+kVZkF2lGfpFWZBdpRn6RVmQXaUZ+MQzD/ETL30l6a9utfXvfGvtZl/t82XZW0sWSrpL0DkmfN7PN3QZz9zvcfdrdp6empk7rAIBhIrtIM/KLtCK7SDPyi7Qiu0gz8ou0IrtIM/KLYRjaJ1rc/V1x+pnZfne/u+2uWUm72rZ3Svrxst1mJX3X3auSfmRmT6q+8PLQGZQMAAAAAAAAAADQYZifaInr3yzbfkjSxWZ2kZnlJV0jafnXjP2FpNdJkpltU/2rxJ5e70IBAAAAAAAAAMC5JQ0LLR1fFebuoaT3S3pQ0j9K+pq7P2Zmn2j7jZcHJc2b2eOSviXpw+4+P8iiAQAAAAAAAADA2W9oXx12Gpb//orc/QFJDyy77+Ntf3bVPwmz/NMwAAAAAAAAAAAAfZO6T7QAAAAAAAAAAACMijQstHx32AUAAAAAAAAAAAB0M/SFFjObMrM/MrOvN7YvM7N3N9vd/aahFQcAAAAAAAAAALCGoS+0SPqipP8iaVdj+weSPjS0agAAAAAAAAAAAGIahYWW7e7+p5IiSXL3qqTacEsCAAAAAAAAAADobRQWWhbMbKsklyQze5WkE8MtCQAAAAAAAAAAoLfssAuQ9G8l/d+SfsbM/oukHZL2DbckAAAAAAAAAACA3oa+0OLuM2b2Okk/J8kkPe7ulSGXBQAAAAAAAAAA0NPQF1rMrCDptyT9M9W/PuxvzexOdy8PtzIAAAAAAAAAAIC1DX2hRdKXJJUl3dnYfkfjvmuGVhEAAAAAAAAAAEAMo7DQcpm7X962/Vdm9sjQqgEAAAAAAAAAAIgpGHYBkv7BzF7V3DCz3ZL+6xDrAQAAAAAAAAAAiGUUPtFypaS/N7OnG9sXSXrMzL4nyd39yuGVBgAAAAAAAAAAsLpRWGi5etgFAAAAAAAAAAAAJDEKCy3XS/oTd39y2IUAAAAAAAAAAACcjlH4jZZnJN1lZn9nZv/azDYOuyAAAAAAAAAAAIA4hr7Q4u63u/trVP9ky6WS/puZ3WVmvzjk0gAAAAAAAAAAANY09IUWNVMi4gAAIABJREFUSTKzQNJFki6UdFTSk5L+vZndPcy6AAAAAAAAAAAA1jL0hRYz+5Sk70v6dUn/p7u/0t3/D3f/VUmvWmO/PWb2pJk9ZWYfW6PfPjNzM5vuf/UAAAAAAAAAAOBclh3WA5vZBe7+nKSnJL3C3U926fY/rrJvRtItkt4oaVbSQ2Z2v7s/vqzfRkm/I+nv+1o8AAAAAAAAAACAhvuJlr+QJHe/Y5VFFrn7kVX2fbWkp9z9aXevSPqqpKu79PvfJH1K0lIf6gUAAAAAAAAAAOgwzIUWO4N9d0g62LY927jv1OBmr5S0y92/vmYRZjeY2YyZzczNzZ1BScBgkV2kGflFWpFdpBn5RVqRXaQZ+UVakV2kGfnFMAxzoWWHmf3Barce+3ZbpPFWo1kg6TOSPtSriMYnaqbdfXpqaur0jgAYIrKLNCO/SCuyizQjv0grsos0I79IK7KLNCO/GIah/UaLpJKkAwn3nZW0q217p6Qft21vlPRySd82M0n6KUn3m9lb3H0m4WMCAAAAAAAAAAB0GOZCy7y7fynhvg9JutjMLpL0vKRrJL2z2ejuL0ra1tw2s29L+rcssgAAAAAAAAAAgH4a5leHVeJ0MrN/svw+dw8lvV/Sg5L+UdLX3P0xM/uEmb2lv2UCAAAAAAAAAAB0N7RPtLj7z8fs+mVJV3bZ/wFJDyy77+OrPNZVp1sfAAAAAAAAAABAL8P8REtc3X74HgAAAAAAAAAAYOjSsNDiwy4AAAAAAAAAAACgmzQstAAAAAAAAAAAAIykNCy0VIZdAAAAAAAAAAAAQDfZYT2wma34gft27v5w478/P5iKAAAAAAAAAAAATs/QFlok/f4abS7plwdVCAAAAAAAAAAAQBJDW2hx99cN67EBAAAAAAAAAAD6Yei/0WJmG8zsd83sjsb2xWb2a8OuCwAAAAAAAAAAoJehL7RI+hPVf/D+tY3tWUn/+/DKAQAAAAAAAAAAiGcUFlpe6u6fklSVJHcvSbLhlgQAAAAAAAAAANDbKCy0VMysKMklycxeKqk83JIAAAAAAAAAAAB6yw67AEn/QdI3Je0ys3sk/YKkdw+1IgAAAAAAAAAAgBiGvtDi7n9lZg9L+nnVvzLsA+5+eMhlAQAAAAAAAAAA9DT0hRYz+6XGH080/nuZmcnd/2ZYNQEAAAAAAAAAAMQx9IUWSR9u+/OYpFdLOiDpl4dTDgAAAAAAAAAAQDxDX2hx93/Rvm1muyR9akjlAAAAAAAAAAAAxBYMu4AuZiW9fNhFAAAAAAAAAAAA9DL0T7SY2eckeWMzkPQKSY8MryIAAAAAAAAAAIB4hr7QImmm7c+hpK+4+9+ttYOZ7ZH0WUkZSZ93908ua/83kv51Y7w5Sb/p7s/2tWoAAAAAAAAAAHDOG9pCi5ld4O7PufuXTnO/jKRbJL1R9a8Ze8jM7nf3x9u6fU/StLsvmtlNqv/my9v7VTsAAAAAAAAAAIA03E+0/IWkKyXJzO5z970x93u1pKfc/enGvl+VdLWk1kKLu3+rrf93Je3vS8UAAAAAAADr5MKPfeO093nmk29eh0oAAMDpCIb42Nb25585jf12SDrYtj3buG8175H0n1ctwuwGM5sxs5m5ubnTKAMYLrKLNCO/SCuyizQjv0grsos0I79IK7KLNCO/GIZhLrT4Kn/uxbrc13V/M9svaVrSp1ctwv0Od5929+mpqanTKAMYLrKLNCO/SCuyizQjv0grsos0I79IK7KLNCO/GIZhfnXYFWZ2XPWFk2Ljz2psu7tvWmW/WUm72rZ3Svrx8k5m9gZJ/7Okf+7u5f6VDQAAAAAAAAAAUDe0hRZ3zyTc9SFJF5vZRZKel3SNpHe2dzCzV0r6I0l73P3QGRUKAAAAAAAAAACwimF+dVgi7h5Ker+kByX9o6SvuftjZvYJM3tLo9unJU1I+jMz+wczu39I5QIAAAAAAAAAgLPYML86LDF3f0DSA8vu+3jbn98w8KIAAAAAAAAAAMA5J3WfaAEAAAAAAAAAABgVLLQAAAAAAAAAAAAkxEILAAAAAAAAAABAQiy0AAAAAAAAAAAAJMRCCwAAAAAAAAAAQEIstAAAAAAAAAAAACTEQgsAAAAAAAAAAEBCLLQAAAAAAAAAAAAkxEILAAAAAAAAAABAQiy0AAAAAAAAAAAAJMRCCwAAAAAAAAAAQEIstAAAAAAAAAAAACTEQgsAAAAAAAAAAEBCLLQAAAAAAAAAAAAkxEILAAAAAAAAAABAQiy0AAAAAAAAAAAAJMRCCwAAAAAAAAAAQEIstAAAAAAAAAAAACSUHXYBSZnZHkmflZSR9Hl3/+Sy9oKkuyTtljQv6e3u/swgaosi14ulshYrkcLINZYNFLlUjSLlMoFygakc1tuygSnb2A4CUz4TKJeRSpVI1ciVCUwThUDlqqsauWqRq5jLKIwiVWv1/Yv5jDYX8woCUxhGOrJYUaUWqRa5coEpmwkUmFSpudxd+WxGk+P1/lHkOloqq1Sp989nAm0bz+vYUqhKWOvo23588wsVVcKaivmMwshVDSPlsxltKeZ0tFTt2rZ8nGq1pkMny63zUMgGctmKfoPUfmy9jr1bexpFketEuaKFcqRqLVKmkcmNBdOx0qkMB42c1hrXKxOYTFIua6qGriAINDmelyQdX6pooVxTGLlymUDbJwrKZuvrumEY6dDJsqq1aEVbuRzq8GKllYltG/IqFE5NU5VKqLmFU+1T43nl86mdxgYqzdmNItexUkXVxrxZa8yNZlLk0oZ8oKW2ObOYC1Su1rdb82+tPsfmAlPNXe5qZTiSKxME2lrMt+av9Xj+p/kaIJmlpVDzpVNz1mQxr7Gx0ZyzyCfaxclDnNfkXs+BOM+ROH16vX+IM8Za70/iHu+oONefz72uJc5+aXr9Bc4WPO+Q1vcfZBdS/3KQyuSYWUbSLZLeKGlW0kNmdr+7P97W7T2Sjrr7z5rZNZJulvT29a4tilzPH1vUscWqbrrnYU1NFPSRPZfow/c+qtmjJf3KZdv12798sW6652HNHi1p55aiPr3vcn3qm09q7mRZt7zzlcoEgW68+4Bmj5b0W794ofa96gIdPlHWh+99dMV4zf3P3zSmXZuLevboouYafZvtn73mFdo4ltVvfnGmdd+d103r4qkJPXd0US8cX+rof/v+3fqDv/6+/vLxQ62+l5y/sbUw8+QLJ3T9XTNda2nuO3eisqKtfZxqtaYnDp3UTY3j3LmlqFuvvVLfeOR5/csrd7X6DVL7sXWruVd7GkWR64UTJc2frLYyt3NLUf/Xe39eT89XdNPdBzQ1UdDvveUyLVZqHdfzM2+7QvlsoA2FrLKB9B8feEIffOMl2rwhq7kTFb23LeO379+tS8/fKEl64oUTHY/VbKvVIn3/8EJHJm7bv1sv2zauQiGrSiXUk3Mr2y+ZGh/Zv+gYFWnObhS5nplf0ImlqiphpA9+7ZHWMdy893L9zZMv6NdesXPFXPKH/88PNHeion//pks79vn0vstVzGd067ee0vW/+DPKZwO5pFu/9ZR+5/UvizX3JTmHab4GSGZpKdQP5lfOWRdPjo/cG3fyiXZx8hDnNbnXcyDOcyROn3I5XPP9Q5wxwjBa9f1JNhuk6j3Iuf587nUtcfZL0+svcLbgeYe0vv8gu5D6m4O0vtt8taSn3P1pd69I+qqkq5f1uVrSlxp/vlfS681s3Z/d8wsVlUNvLaTceNVLW385LUl7d+9qtUnS7NGSPnzvo7rxqpdq9mhJRxZO/YW3JO2bvkCzR0qtMZaP19z/2flFHTpZ1sG2vs32D3z1H/T80aWO+66/a0aHTpb17Pziiv433n1Ae3fv6ug7v1BpHV9z4uxWS3Pfbm3t4xw6WW4FuNn+3nse1r7pCzr6DVL7sXWruVd7Gs0vVBTW1JG52aMlVUO1rs+NV71URxaqK67nB7/2iI4sVDV7pKRskNHe3bt0/V0zCmtqLbI0+9549wEdOlnWoZPlFY/VbDu8WFmRiZvuPqDDi/XzO7fQvX0uxed/UNKc3fmFip6dX9SRhWprwUSqH8NH73tU+6Yv6DqXNOeh5ft8+N5HdXShqr27d7Uy3NyOO/d1a49zHGm9BkhmvtR9zpovjd41J59oFycPcV6Tez0H4jxH4vTp9f4hzhhrvT+Je7yj4lx/Pve6ljj7pen1Fzhb8LxDWt9/kF1I/c1BWhdadkg62LY927ivax93DyW9KGly+UBmdoOZzZjZzNzc3BkXVglrCkyti7O5mGv9udu2VO+7uZiTJG3IZzraM4F13Lfa/hsaX9O1fP/29uX3hbVo1f7NeprblbDWOr5etWwu5lZta44TRt61PRNYR79Baj+29pq6HXu39kHrR3YrYU01X3kt2q/P5mJuzVxtyGcUubeuebfxmnmr1qJV21bLRBj5ipq6tWN1o5ZdKX5+K2GtlbO15ozl9681D23IZ1ptzbGb23Hmvm7tvYziNUAycbObpjmLfJ474uQ3Th7i5Lsfr+uDepy13p/EHWNUnK3P57hzb69ribPfKD5f+/13DsCgnI3ve7E+RvH9R5z8kl1I/c1BWhdaun0yZfnRx+kjd7/D3afdfXpqauqMC8tnM4pc2rmlKEk6Vqq2/txtW6r3PVaqSpIWK7WO9lrkHfettv9ipaZsYCv2b29ffl82E6zav1lPczufzbSOr1ctx0rVVdua42QD69pei7yj3yC1H1t7Td2OvVv7oPUju/lsRhlbeS3ar8+xUnXNXC1WagrMWte823jNvOUywaptq2Ui2/iYaa92rG7UsivFz28+m2nlbK05Y/n9a81Di5Vaq605dnM7ztzXrb2XUbwGSCZudtM0Z5HPc0ec/MbJQ5x89+N1fVCPs9b7k7hjjIqz9fkcd+7tdS1x9hvF52u//84BGJSz8X0v1scovv+Ik1+yC6m/OUjrO85ZSbvatndK+vFqfcwsK+k8SUfWu7DJ8bwKWdNt115Z/07gb/9Qn953eeuC3XfgYKtNUus3A27/9g+1c0tRW8dzun3/7lb7vTPPaefWYmuM5eM19//pyQ3aPlHQrra+zfbPXvMK7dgy1nHfnddNa/tEQT89uWFF/9v379Z9Bw529G3+yPnkeF53Xje9ai3Nfbu1tY+zfaKg29qOc+eW+u8q3DvzXEe/QWo/tm4192pPo8nxvLIZdWRu55aiclm1rs/t3/6hto7nVlzPz7ztCm0dz2nn1qLCqKb7DhzUnddNK5uRbl2W8dv379b2iYK2TxRWPFazbduG/IpM3LZ/t7ZtqJ/fqfHu7VMpPv+DkubsTo7n9dOTG7R1PKfPvO2KjmO4ee/lunfmua5zSXMeWr7Pp/ddri3jOd134GArw83tuHNft/Y4x5HWa4BkJovd56zJ4uhdc/KJdnHyEOc1uddzIM5zJE6fXu8f4oyx1vuTuMc7Ks7153Ova4mzX5pef4GzBc87pPX9B9mF1N8cmHv6Pg7VWDj5vqTXS3pe0kOS3unuj7X1eZ+kf+ruN5rZNZJ+3d3ftta409PTPjMzc8b1RZHrxVJZi5X61yGNZQNFLlWjSLlMoFxgKoeRapErE5iyje0gMOUzgXIZqdTYNwhME4VA5aqrGrmiyDWWyyiMIoW1+v7FfEabi3kFgSkMIx1ZrKhSixRFrmxgymYCBSZVai53Vz6b0eR4vvUDz0dLZZUq9f65TKBt43kdWwpVCWsdfduPb36hokpYU7HxlWXVMFI+m9GWYk5HS9WubcvHqVZrOnSyrLBRZyEbyGUr+g1S+7H1OvZu7V0M5EDOJLtR5DpRrmihHCms1XOYDUwbC6ZjpVMZDho5jRq5zQQmk5TLmqqhKwiC1ovo8aWKFso1hY1MbZ8otH6ANAyj+nWvRcouayuXQx1erLQysW1DXoXCqR+eqlRCzS2cap8az4/cj9COqlHNrtQ7v1HkOlaqqBrW89icOwOTai5tyAdaqkSqNu4v5gKVq/Xt1vzbyHYuMEXuilytDEdyZYJAW4v51vzVp+f/iuM4k/1xWkZi7l1aCjVfOjVnTRbzI/ujiuRzZIzE3BsnD3Fek3s9B+I8R+L06fX+Ic4Ya70/iXu8o2KIz+eRmHt7XUuc/RK8/o7E3Nt04ce+cdrjPvPJNyctCQOwjtd0ZLKbpve9WB9p/TsHsgvptHOwanZTmRx3D83s/ZIelJSR9AV3f8zMPiFpxt3vl/THkr5sZk+p/kmWawZVXxCYtoyPact48jGS7pvNBtq+aSx2/yAwTY6PScsebyq3+sf7gsA0tXH1fxW2Vlu7XC6jHVs2xOo7KL2OrVd7GgWB6bxiQecVV7aNx49Sh80bCtq8yqXNZgO9ZHOXB5NUKGS1o7D6tJTPZ7VjRP9SY9SlObtBYNo63qP2M5hv263n8z/N1wDJjI1ltSMlb9LJJ9rFyUOc1+Rez4E4z5E4fXq9f4gzxlrvT6R0vQc515/Pva4lzn5pev0FzhY875DW9x9kF1L/cpDaJLn7A5IeWHbfx9v+vCTprYOuCwAAAAAAAAAAnDv4DDUAAAAAAAAAAEBCLLQAAAAAAAAAAAAkxEILAAAAAAAAAABAQiy0AAAAAAAAAAAAJGTuPuwaRoaZzUl6tke3bZIOD6CctOM81R129z3r/SAxsytxXVbDeVlpINmVztm5l+NZX8y9yVHr+ohb66jNvf1yNl6rUTBqtTL3jp5z/Rykde4916+bxDmQ4p2DUcuuxLWTOAfMvenFOTjDuZeFltNkZjPuPj3sOkYd52k0cV2647yMvrPtGnE855Y0nR9qXR9pqnU9pOn4qfXswfnhHKT1+NNadz9xDtJ7DtJadz+d6+cgrcef1rr7iXNw5ueArw4DAAAAAAAAAABIiIUWAAAAAAAAAACAhFhoOX13DLuAlOA8jSauS3ecl9F3tl0jjufckqbzQ63rI021roc0HT+1nj04P5yDtB5/WuvuJ85Bes9BWuvup3P9HKT1+NNadz9xDs7wHPAbLQAAAAAAAAAAAAnxiRYAAAAAAAAAAICEWGgBAAAAAAAAAABIiIUWAAAAAAAAAACAhFhoAQAAAAAAAAAASIiFFgAAAAAAAAAAgIRYaAEAAAAAAAAAAEiIhRYAAAAAAAAAAICEWGgBAAAAAAAAAABIiIUWAAAAAAAAAACAhFhoAQAAAAAAAAAASIiFFgAAAAAAAAAAgIRYaAEAAAAAAAAAAEiIhRYAAAAAAAAAAICEWGgBAAAAAAAAAABIiIUWAAAAAAAAAACAhFhoabNnzx6XxI1bP28DQXa5rcNtYMgvt3W4DQTZ5bYOt4Ehv9zW4TYQZJfbOtwGhvxy6/NtYMgut3W4DQz55dbn26pYaGlz+PDhYZcAJEJ2kWbkF2lFdpFm5BdpRXaRZuQXaUV2kWbkF4PCQgsAAAAAAAAAAEBCLLQAAAAAAAAAAAAkxEILAAAAAAAAAABAQiy0AAAAAAAAAAAAJMRCCwAAAAAAAAAAQELZYReQhJl9QdKvSTrk7i/v0m6SPivpTZIWJb3b3R8+k8eMItfcibKWwpoygSkXmCYK1tlHUliTlsJIUSQV8xltLuYVBNZ90Ma48wsVVcKa8tmMJsfX7j8Io1gTzszSUqgXy1VVI1ctchWygTY28rsUSls2FCRpxXXvdl/SLMTJFdnDcmEY6US5osVKpDByZQPTeCHQYsWVDaRqzTWWC7RUPdW+qRhoseytvOcygSSXybRtPK9jS2ErY5vHsppbqKhai5TLBNo+UVA22/lvEJq5jKJINZcyJtVccvczyil5jy+t52ppKdR8qdLK5mQxr7Gx0XzrlaZa0ySt2Y0jTmZ69enHGIN6nHI51OHFU+3bNuRVKHSOEed69xonDCMdOlle83WpV584Y8SR1vwynyGt2U1r3eivtM9hF37sG6e9zzOffPM6VALEk/bnHPqjXzlIa3K+KOkPJd21SvuvSrq4cXuNpNsa/00kilxP/OS4bvjyAc0eLWnnlqI+ve9ybdtY0Es25Vr9AklBIC1Va/qPDzyhf/ULF+n8TWO6cHK86xukKHI9+cIJXX/XTGvcO6+b1iXnbxzaG6pRrAlnZmkp1MHjJR0+UdaH7320dV3/6F27deHWgvJZ6ZnDC5JJ133h/2u13/Wbr1Y5jPqShTi5IntYLgwjzS0s6fDJqm66uz7//spl/z979x4lx1nf+f/zre7pmZ4ZCd1GDmjkS7w2RIc1wZoYDpxwM3AcyOLfQcYYLAyEY68NBgIE8G5YksPvxy9cDj8SiLFjBzDGxl5jbX5xgglwzAK7ZM3xyGBvrGBjG4wGEzQaSZYl9fStvvtHX9Td0z1d09Mz1SW9X+f0mal6nnqeb1V9++nWPKqqzXrP+WfrH34yo9c+b4vu/8Wctp+xqV4+uT6rL7/993RkvqR33/bj+rq/fOPv6oYfPFbf9m/+xy/06m2b9e7zz27a9vqd2/WcU9bU/yBVy8vPfudhvfVFZ+gr//xzvfVFZ+jDux5cVp6S79El9VjNz5f0s7mjTfl13c7tOmvj2MB9cU9SrEmS1NyNIkrOdKvTjzZWq598vqRH9i8sP3vTWH2SJMr57tZOqRTqp795Wlcu8rnUrU6UNqJIav4yniGpuZvUuNFfjGHA6uI9B6m/eZDIW4e5+w8kHVikyoWSbvaKeyWtM7Nn9trf3NFCfZJFkmYO5ip/sD6Q06Fc2PQ6Mh8qHaS0Y/tWffDOB/XE3DHNHS10bLf2RarW7uU3T3esvxoGMSYsz1yuoJkDufoki1Q5r//xq7t1KBfqcC7UEweO6Ym5Y03lT8wd61suRMkrcg+t9h3Jq1RW/cNOknZs36orb9mti6ZO1TtvvV+v2PbMpvKZgznNHMjVJ1lq6/74v/6kadtaW63bXnnLbu07kq/HUMvLHdu36sO7Hqz/XG6eku/RJfVYzeUKC/Lrqlt2ay43eHEnKdYkSWruRhElZ7rV6Ucbq9XP/mPty/cfW9r3mG7t7DuSr0+Q1MpbP5e61YnSRhRJzV/GMyQ2dxMaN/qLMQxYXbznIPU3DxI50RLBFkl7G5ZnqusWMLMrzGzazKZnZ2fbNlYolesHu97gwZxGMymVQl/wCt21LjtUr1MolZfUbqf6q2EQY0J7UXJXkkqhazSTanteazk7mklpNJNqKu+0TS+5ECWvyL2TS5T8LZZDld2b8qI2tqYC08zBnMKWcqlz7jZu29hWa71SOawv1/KyVrfTNkvNU/I9ukE7VksZezuNu4MmSbEmyaDlrhQ9f7uJkjPd6vSjjdXqJ0obUc53t3aK5bDr51K3OlHaiGLQ8vdEHHuxMgYtd6Xl/c2B74Ynl0Ebw/r1vQGIQ5T8HbT3HOLRzzw4USda2l1b2/bouPsN7j7l7lMTExNtG8ukU5pcn21aN7k+q2OFstKBLXgFZjqUK9brZNKpJbXbqf5qGMSY0F6U3JWkdGA6Vii3Pa+1nD1WKOtYoflLfKdtesmFKHlF7p1couTvUCpQyqwpL2pjazl0Ta7PKmgplzrnbuO2jW211kunjn801vKyVrfTNkvNU/I9ukE7VksZezuNu4MmSbEmyaDlrhQ9f7uJkjPd6vSjjdXqJ0obUc53t3aGUkHXz6VudaK0EcWg5e+JOPZiZQxa7krL+5sD3w1PLoM2hvXrewMQhyj5O2jvOcSjn3lwok60zEja2rA8KenJXhvbOJbRDW/ZXj/otWe0TG7Ial02aHqNjwQqhWXt2r1Xn77oHJ22cbT+UPF27d542VRTuzdeNtWx/moYxJiwPBuzGU1uqOZsw3n9m7ds17psoLXZQKdtGNVpG0ebyk/bONq3XIiSV+QeWm0eH1Y6JV238/j4u2v3Xl2/c7vunP6lvnDpufrunl83lU+uz2pyQ1aff9Pzm9b95Rt/t2nbWlut216/c7s2jw/XY6jl5a7de/XJHefUfy43T8n36JJ6rDZmMwvy67qd27UxO3hxJynWJElq7kYRJWe61elHG6vVz6bR9uWbRpf2PaZbO5vHh3V9l8+lbnWitBFFUvOX8QyJzd2Exo3+YgwDVhfvOUj9zQNzT+blUGZ2uqR/dPfntil7raSrJb1G0gskfc7dz+vW5tTUlE9PT7ctC0PX7NN55UtlBYFpKDCNDzfPbIWSSmVpvuQKQ1c2k9K6bGbRh9eFoWvuaEGFUuXKl41ji9dfDYMYU4KtyoFbLHelyoOdnsoXVQwruZlJB1pTzd/5krR+tPKP79bz3m5dr7kQJa/IvYGyagd+sfwtlUI9nS/oWCFUKXSlA9PYcKBjBVc6kIpl18hQoPni8fK12UDH8l7P98r/4nWZTJvGMjo0X6rn2LqRtGaPFlQqh0qngsrkTsvDgmt5GYahyi6lTCq75O7LylPyPboejtXAjL1zuUI9NzdmMwP7UMUkxZokg5q7Uvf87SZKznSr0482VquffL6k/ceOl28azWh4uLmNKOe7WzulUlh9Rlnnz6VudaK0EcWg5u+JNPZiZQxq7krd/+bAd0MscQwbiNxtdPo131hy27/4xGt7CQnJNxD5y/cGSP0bexOZOWZ2m6SXSdpkZjOS/kzSkCS5+/WS7lZlkuVRScckvX25fQaB6ZRnjCy3mbbtTqxZ2v8wW2mDGBOWZ2Qk3XGAGGv4vd1571cuRMkrcg+t0ulA69MjWj/WvH7d6OLbrVlkuJ4Yar4Fw7PWZTvUrFipvCTfo0vqsRoZSWtLQr6kJynWJElq7kYRJWe61elHG6vVz/BwWluGF28jyvnu1k46HXT9XOpWJ0obUSQ1fxnPkNTcTWrc6C/GMGB18Z6D1L88SGQmufubupS7pHetUjgAAAAAAAAAAOAkdaI+owUAAAAAAAAAAGDFMdECAAAAAAAAAADQIyZaAAAAAAAAAAAAesRECwAAAAAAAAAAQI+YaAEAAAAAAAAAAOgREy19NuNeAAAgAElEQVQAAAAAAAAAAAA9YqIFAAAAAAAAAACgR0y0AAAAAAAAAAAA9IiJFgAAAAAAAAAAgB6l4+jUzP5Okncqd/fXr2I4AAAAAAAAAAAAPYllokXSX8fULwAAAAAAAAAAQN/EMtHi7vfE0S8AAAAAAAAAAEA/xXVFiyTJzM6U9HFJ2ySN1Na7+9mxBQUAAAAAAAAAABBREHP/N0n6siST9AeS7pB0e5wBAQAAAAAAAAAARBX3RMuou39Lktz9MXf/iKSXxxwTAAAAAAAAAABAJLHeOkxS3sxM0mNmdqWkX0naHHNMAAAAAAAAAAAAkcQ90fI+SeOS3qPKs1qeIemPYo0IAAAAAAAAAAAgolgnWtz9R9Vfn5b0ljhjAQAAAAAAAAAAWKpYJ1rM7DuSvHW9u786wrYXSPorSSlJf+vun2gpP1XSVyStq9a5xt3v7kfcAAAAAAAAAAAAUvy3DvtIw+8jknZIynfbyMxSkq6V9CpJM5LuM7O73H1PS9t3uPt1ZrZN0t2STu9X4AAAAAAAAAAAAINy67Ca75vZ9yNsep6kR939cUkys9slXSipcaLFJa2t/v4MSU8uM1wAAAAAAAAAAIAmQZydm9nahtc6Mztf0jMjbLpF0t6G5ZnqukZ/Lmmnmc2ocjXLuzvEcIWZTZvZ9Ozs7NJ3AogJuYskI3+RVOQukoz8RVKRu0gy8hdJRe4iychfxCHWiRZJD0n6l+rPH0v6U0mXR9jO2qxrfdbLmyTd5O6Tkl4j6atmtmB/3f0Gd59y96mJiYklBQ/EidxFkpG/SCpyF0lG/iKpyF0kGfmLpCJ3kWTkL+IQ963Dtva46Yykxm0ntfDWYO+QdEG1n/9lZiOSNkna12OfAAAAAAAAAAAATWKZaDGz1y1W7u53dWniPklnmdkZkn4l6RJJb26p80tJ50u6ycx+R9KIJK4VAwAAAAAAAAAAfRPXFS1vqP7cJOlFkr5XXX6ppO9LWnSixd1LZna1pG9JSkn6krs/ZGYfkzRdnaj5gKQbzex9qtxW7G3u3np7MQAAAAAAAAAAgJ7FMtHi7m+RJDO7S9I2d/9VdXmLpM9FbONuVR5y37juow2/75H04n7FDAAAAAAAAAAA0GrBw+FX2W/XJlmqnpT07LiCAQAAAAAAAAAAWIq4bh1W8wMz+4ak21S5vdclkn4Qb0gAAAAAAAAAAADRxD3R8i5Vntfy+9XlmyXdGV84AAAAAAAAAAAA0cU60VJ9OP0d1RcAAAAAAAAAAECixDLRYmbfd/eXmtlBVW4ZVi9SZf5lQxxxAQAAAAAAAAAALEVcV7S8vPpzU0z9AwAAAAAAAAAALFsQR6fuHlZ//ZSkc9293PiKIyYAAAAAAAAAAIClimWipcEeSR83s0fM7C/M7HdjjgcAAAAAAAAAACCyWCda3P2L7v5qSS+W9EtJf2lmP40zJgAAAAAAAAAAgKjivqKlZquk0yVtkfTzeEMBAAAAAAAAAACIJh1n52b2cUkXSdor6b9KeoG7H4gzJgAAAAAAAAAAgKhinWiR9GtJL3H338QcBwAAAAAAAAAAwJLFMtFiZme5+88k/UDSKWZ2SmO5uz8YR1wAAAAAAAAAAABLEdcVLddIeoeka9uUuaSXrG44AAAAAAAAAAAASxfLRIu7v6P68/fj6B8AAAAAAAAAAKAf4rp12OsWK3f3u1YrFgAAAAAAAAAAgF7FdeuwN1R/bpL0Iknfqy6/VNL3JTHRAgAAAAAAAAAABl5ctw57iySZ2V2Strn7r6rLWyR9Lo6YAAAAAAAAAAAAliqIuf/frk2yVD0p6dndNjKzC8zsYTN71Myu6VDnYjPbY2YPmdnX+hUwAAAAAAAAAABATVy3Dqv5gZl9Q9JtklzSJZJ+sNgGZpaSdK2kV0makXSfmd3l7nsa6pwl6T9JerG7HzSzzSu1AwAAAAAAAAAA4OQV90TLu1R5XsvvV5dvlnRnl23Ok/Souz8uSWZ2u6QLJe1pqHO5pGvd/aAkufu+fgYNAAAAAAAAAAAgxXzrMK+4w93fXX193d29y2ZbJO1tWJ6prmt0tqSzzeyHZnavmV3QqTEzu8LMps1senZ2trcdAWJA7iLJyF8kFbmLJCN/kVTkLpKM/EVSkbtIMvIXcYh1osXMLjSzfzWzp8zssJk9bWaHu23WZl3r5Exa0lmSXibpTZL+1szWtWvM3W9w9yl3n5qYmFjqLgCxIXeRZOQvkorcRZKRv0gqchdJRv4iqchdJBn5izjEOtEi6TOSLnb3Z7j7Wndf4+5ru2wzI2lrw/KkpCfb1Pl7dy+6+88lPazKxAsAAAAAAAAAAEDfxD3R8ht3/99L3OY+SWeZ2RlmlpF0iaS7Wur8/5JeLklmtkmVW4k9vtxgAQAAAAAAAAAAGqVj7v8+M7tVlYmRfG2lu7dOnKihrGRmV0v6lqSUpC+5+0Nm9jFJ09VtvyXp1Wa2R1JZ0gfdfW4ldwQAAAAAAAAAAJx84p5o2SgplPS6hnWuhVeoNHH3uyXd3bLuow2/u6T3V18AAAAAAAAAAAArItaJFnd/S5z9AwAAAAAAAAAALEcsEy1m9llVrlxpy925EgUAAAAAAAAAAAy8uK5o+ZeY+gUAAAAAAAAAAOibWCZa3P2LUeqZ2V+6+x+vdDwAAAAAAAAAAAC9COIOoIuXxB0AAAAAAAAAAABAJ3HdOgwAAAAAAAAAMIBOv+YbS97mF5947QpEAiTDoF/RAgAAAAAAAAAAMLAGfaLF4g4AAAAAAAAAAACgk4GYaDGz4Q5Ff72qgQAAAAAAAAAAACxBrBMtZnaemf1vST+rLj/PzD5fK3f3L8YWHAAAAAAAAAAAQBdxX9HyOUl/KGlOktz9AUkvjzUiAAAAAAAAAACAiOKeaAnc/YmWdeVYIgEAAAAAAAAAAFiidMz97zWz8yS5maUkvVvSIzHHBAAAAAAAAAAAEEncV7RcJen9kk6VtE/SC6vrAAAAAAAAAAAABl6sV7S4+z5Jl8QZAwAAAAAAAAAAQK9ivaLFzE43s78zs3+rvnaZ2elxxgQAAAAAAAAAABBV3LcOu03SXarcOuxUSf9QXQcAAAAAAAAAADDw4p5oCdz9y+5eqL5uGoCYAAAAAAAAAAAAIol7UuO7ZvYnZjZpZlvM7P2S/sHM1prZ2sU2NLMLzOxhM3vUzK5ZpN5FZuZmNtX36AEAAAAAAAAAwEktHXP/O6s/39uy/j9KclVuJ7aAmaUkXSvpVZJmJN1nZne5+56WemskvUfSj/oZNAAAAAAAAAAAgBTzRIu7b+1x0/MkPeruj0uSmd0u6UJJe1rq/d+SPiXpT3oOEgAAAAAAAAAAoINYbx1mZvea2RXVK0+WYoukvQ3LM9V1jW0/X9JWd//HLjFcYWbTZjY9Ozu7xDCA+JC7SDLyF0lF7iLJyF8kFbmLJCN/kVTkLpKM/EUc4n5Gy9sknSnpATO7xczOj7idtVnn9UKzQNJnJX2gW0PufoO7T7n71MTERMTugfiRu0gy8hdJRe4iychfJBW5iyQjf5FU5C6SjPxFHGKdaHH3n7r7hyWdJWmXpJvN7Odm9l/MbN0im85Iarzt2KSkJxuW10h6rqTvmdkvJL1Q0l1mNtXXHQAAAAAAAAAAACe1uK9okZltk/QJSX8h6e8l7ZRUkPTdRTa7T9JZZnaGmWUkXSLprlqhuz/l7pvc/XR3P13SvZJe5+7TK7QbAAAAAAAAAADgJJSOs3Mz+5GknKQvSfqou+eqRT80sxd32s7dS2Z2taRvSUpJ+pK7P2RmH5M07e53ddoWAAAAAAAAAACgX2KZaDGz17v7f5P0Fnd/pF0dd3/dYm24+92S7m5Z99EOdV/WY6gAAAAAAAAAAAAdxXXrsI9IUqdJFgAAAAAAAAAAgCSI/RktAAAAAAAAAAAASRXXM1qeY2YPtllvktzdz1ntgAAAAAAAAAAAAJYqromWn0v6DzH1DQAAAAAAAAAA0BdxTbQU3P2JmPoGAAAAAAAAAADoi7ie0fLDKJXM7K0rHQgAAAAAAAAAAECvYplocferI1Z974oGAgAAAAAAAAAAsAxxXdESlcUdAAAAAAAAAAAAQCeDPtHicQcAAAAAAAAAAADQyaBPtHBFCwAAAAAAAAAAGFixTbSYWWBmF3ep9sNVCQYAAAAAAAAAAKAHsU20uHso6eoudRYtBwAAAAAAAAAAiFPctw77jpn9iZltNbMNtVfMMQEAAAAAAAAAAESSjrn/P6r+fFfDOpf02zHEAgAAAAAAAAAAsCSxTrS4+xlx9g8AAAAAAAAAALAcsd46zMxGzewjZnZDdfksM/vDOGMCAAAAAAAAAACIKu5ntHxZUkHSi6rLM5L+n/jCAQAAAAAAAAAAiC7uiZYz3f1TkoqS5O45SRZvSAAAAAAAAAAAANHEPdFSMLOsJJckMztTUr7bRmZ2gZk9bGaPmtk1bcrfb2Z7zOxBM7vHzE7rf+gAAAAAAAAAAOBkF/dEy59J+idJW83sVkn3SPrQYhuYWUrStZL+QNI2SW8ys20t1X4sacrdz5F0p6RP9TtwAAAAAAAAAACAdJydu/t3zOx+SS9U5ZZh73X3/V02O0/So+7+uCSZ2e2SLpS0p6Hd/95Q/15JO/saOAAAAAAAAAAAgGK6osXMzq29JJ0m6deSnpR0anXdYrZI2tuwPFNd18k7JH1zkViuMLNpM5uenZ2NtgPAACB3kWTkL5KK3EWSkb9IKnIXSUb+IqnIXSQZ+Ys4xHVFy2cWKXNJr1ik3Dpss7Ci2U5JU5Je2rEz9xsk3SBJU1NTbdsBBhG5iyQjf5FU5C6SjPxFUpG7SDLyF0lF7iLJyF/EIZaJFnd/+TI2n5G0tWF5UpWrYZqY2Ssl/amkl7p7fhn9AQAAAAAAAAAAtBXLRIuZvX6xcnf/b4sU3yfpLDM7Q9KvJF0i6c0t7T9f0t9IusDd9y0zXAAAAAAAAAAAgLbiunXYf1ikzCV1nGhx95KZXS3pW5JSkr7k7g+Z2cckTbv7XZI+LWlc0tfNTJJ+6e6v61v0AAAAAAAAAAAAiu/WYW9f5vZ3S7q7Zd1HG35/5XLaBwAAAAAAAAAAiCKIs3MzO8XMvmhm36wubzOzd8QZEwAAAAAAAAAAQFSxTrRIukmVW4A9q7r8iKQ/ji0aAAAAAAAAAACAJYh7omWTu98hKZQqz1+RVI43JAAAAAAAAAAAgGjinmg5amYbJbkkmdkLJT0Vb0gAAAAAAAAAAADRpGPu//2S7pJ0ppn9UNKEpIviDQkAAAAAAAAAACCaWK5oMbPfM7Pfcvf7Jb1U0n+WlJf0bUkzccQEAAAAAAAAAACwVHHdOuxvJBWqv79I0p9KulbSQUk3xBQTAAAAAAAAAADAksR167CUux+o/v5GSTe4+y5Ju8zsJzHFBAAAAAAAAAAAsCRxXdGSMrPaJM/5kr7bUBb3c2MAAAAAAAAAAAAiiWtS4zZJ3zez/ZJykv6HJJnZv5P0VEwxAQAAAAAAAAAALEksEy3u/nEzu0fSMyV92929WhRIenccMQEAAAAAAAAAACxVbLfpcvd726x7JI5YAAAAAAAAAAAAehHXM1oAAAAAAAAAAAASj4kWAAAAAAAAAACAHjHRAgAAAAAAAAAA0CMmWgAAAAAAAAAAAHrERAsAAAAAAAAAAECPmGgBAAAAAAAAAADoUTruAHplZhdI+itJKUl/6+6faCkflnSzpO2S5iS90d1/0a/+w9C1/2he5TBUGEojQ4Hmi6FKoSsdmLKZQMWSqxS6yqErFZjMJLlkgZRJLaw/XwxVLFeWRzOBjhUq5dmhlCSpUA5VDl0j6UBld5XKlXbTgSlfCjWUCjSUNhVKodylcrXt4aFA7lKh7HJ3ZdIpbRzLSJIO5QoqlkIVq3FmUoEmxoeVTgdN+zp3tKBCqaxMOqX12SEdzBVVKJWVzaRUCl3FUlj5veyaL5WVMtPYcEqFcqWs1mcQWL3dYrGsfUfy9WMwnA7ksgX1VlPrvrbG0q08CRpzd+1woCN51/iw6VAubDoXobuKZVcQSB5KMtXzKhVYJacljQ+bjhZdkmntUFpzuYKsWjd0V2CmoVSg+WJZQWAaywTKFV3FciVnNzfkW6FQ0uzRQj2OibGMMpnjw1S3cnSW5Nydny/pcKGk0F35UqhUYBqqjakypQI1jacj6UD5cqjQpbGGsbSW241jcr5YGf/SgWnTaEaHC+UVe/8n+RygN/PzJc3ljo9ZG7MZjYwM5pjF+IpGUcarKPndrU4/2litfqK0kc+XtP/Y8TqbRjMaHm6uUyqF2nck3/Z7UFTd2ojSR5RznNTPrSSNvVgZSc2BpMaN/iIPgNXFew5S//IgkZljZilJ10p6laQZSfeZ2V3uvqeh2jskHXT3f2dml0j6pKQ39qP/MHQ9/Jun9dnvPKy3vugM/ezfntL2Mzbpqlt2a+ZgTq/etlkfuuA5Oni0oPfd8YBmDuY0uT6rT+44R1/555/rva88W2HouurW++tl1+3crs/f84i+vWdf0/Ls0wX9+eu26VihrA/e+aAmxof1oQuerQ/e+WB9209fdI4+9U8Pa/ZIXte++fmaL4b6wNeP93v9zu0aTpveftN0fd2Nl01pfDilA0cL9bYb6z/nlDVKp4P6vl5+83RT+eeqsdViaY3r1ds26+pXnKV3NuzjjZdN6dmnrFEQmIrFsn6670j9mE2uz+oLl56rbzzwK/1f526t11tN7fa1MeZu5UnQmLv/38X/Xk8eLmrzmiE9PpdfcC7WZtO67d4n9Irf+S198X8+rre+6Ax9eNfxPPnsxc9TJh1odDitZ60d0u4nDmn9eFafv+eRBXVrOTqxJqN3n392U1+1fAvDUA/PHm0qu27ndj17YkyZTFqFQmnRcnSW5Nydny9p5nBOxwrlpvHk0xedo03jGWUzKR08XGwaT79w6bnKDgX64c9mm8bmWtloJlA6FejIfFlXtuTTL2YP6923P9j393+SzwF6Mz9f0s/mFo5ZZ20cG7gv7oyvaBRlvIqS393q9KON1eonShv5fEmP7F9Y5+xNY/XJllIp1E9/83TTZ0/j9+4ourURpY8o5zipn1tJGnuxMpKaA0mNG/1FHgCri/ccpP7mQVJvHXaepEfd/XF3L0i6XdKFLXUulPSV6u93SjrfzPryr4K5owVdfvO0dmzfqg/velCv2PbM+smQpB3bt2rvgVx9kkWSZg7m9OFdD2rH9q3adzhf/6NgreyqW3Zrx/atC5avfNmZOnC0WJ/AuPJlZ9Z/r9X94J0P6sqXnamZgzkdOFqsT7LUyiv/0JpvWnf5zdPKl7yp7cb6+47km/a1tbwWW6e4dmzfWv+jaGOfc0cLkqR9R/JNx2zmYE7vvPV+XTR1alO91dRuXxtj6VaeBI25+1Qu1MyBnI7Mh23PRaksXTR1qj7w9Qfqud5Y5313PKADR4uaOZDToVyoMzevredta91aju7YvnVBX7V8mz1aWFB21S27NVs9vt3K0VmSc3cuV9DeA7kF40llvJmXZAvG03feer/MggVjc61MClQqq/5HqFrZVbfs1vNP21hf7uf7P8nnAL2Zy7Ufs+Zyg3fOGV/RKMp4FSW/u9XpRxur1U+UNvYfa19n/7HjdfYdyS/47Gn83h1Ftzai9BHpHCf0cytJYy9WRlJzIKlxo7/IA2B18Z6D1N88SOpEyxZJexuWZ6rr2tZx95KkpyRtbG3IzK4ws2kzm56dnY3UeaFU1szBnNZlhzRzMKfQvX4yJGlddkijmVTTOkn1bRYra11urV/rs9O2ndoezaQWrAusc/1SOWza13b9NcbSGlenOAulsiSpFHrb8lRgTfVWU6d9rcXSrXy1LTd3S6FrtHrrt3b7FZjq56PT+RzNpOpt1NpZLEc7lZXKYcc4SqFL6pwztXJ0Nmi5K0XP31qedsq/8iL52zo2N5YFprZl5YZ86uf7fxDPAXqzlNxNypiVpFixPFHyN8p4FSVn+vG5Pij99CvWYjlc9Ht3FN3aiNJHlHM8aJ9bJ+LYi5UxiDkQJX8HMW6svkHLg17+5gAMCsZeRNXPPEjqREu7K1Na9z5KHbn7De4+5e5TExMTkTrPpFOaXJ/VoVxRk+uzCsw0uT5bLz+UK+pYody0TlJ9m8XKWpdb69f67LRtp7aPFcoL1oXeuX46FTTta7v+GmNpjatTnJl0ZcInHVjb8nLoTfVWU6d9rcXSrXy1LTd304HpWKHc8VyE1eexNOZ6a51jhXK9jVo7i+Vop7J0KugYR7p6e4pu5ehs0HJXip6/tTztlH+pRfK3dWxuLAtdbctSDfnUz/f/IJ4D9GYpuZuUMStJsWJ5ouRvlPEqSs7043N9UPrpV6xDqWDR791RdGsjSh9RzvGgfW6diGMvVsYg5kCU/B3EuLH6Bi0PevmbAzAoGHsRVT/zIKkTLTOStjYsT0p6slMdM0tLeoakA/3ofONYRjdeNqVdu/fqkzvO0Xf3/FrX7dxePym7du/V1g2VZ1jU1k2urzyjZdfuvdq8dljXXXpuU9l1O7dr1+69C5av/95j2jA2pE9fdE7lHsvfe6z+e63upy86R9d/7zFNrs9qw9iQPvOG5n6v37ldk+tHmtbdeNmUhtPW1HZj/c3jw0372lpei61TXLt279UXWvbxxsumtHEsI0naPD7cdMwm11eenXDn9C+b6q2mdvvaGEu38iRozN1nZANNbshqfCRoey7SKenO6V/qM294Xj3XG+t89uLnacPYkCY3ZLUuG+ixfYfredtat5aju3bvXdBXLd8mxjILyq7buV0T1ePbrRydJTl3N2Yz2rohu2A8qYw3I5J8wXj6hUvPlXu4YGyulUmh0ilVx8bmfPrxE3P15X6+/5N8DtCbjdn2Y9bG7OCdc8ZXNIoyXkXJ7251+tHGavUTpY1No+3rbBo9Xmfz+PCCz57G791RdGsjSh+RznFCP7eSNPZiZSQ1B5IaN/qLPABWF+85SP3NA3NP3uVQ1YmTRySdL+lXku6T9GZ3f6ihzrsk/Xt3v9LMLpH0ene/eLF2p6amfHp6OlIMYejafzSvcugKQ9fIUKD5YuX2R+nAlM0EKpYqt1Mqh65UYApMcpcskDKphfXni6FK5Urd0UygY4VKeXao8j/HCuVQYegaTgcqu9frpgNTvhRqKBVoKG0qlsL61QjpwDQ8FMhdKpRd7q5MOlX/R9KhXEHFUqhidT+GUoEmxoebHsgZhq65owUVSmVl0imtzw7pYK6oQqmsbPW2UcVSWPm97JovhUqZNDacUqFcKav12fjwzGKxrH1H8vVjMJwO5LIF9VZT6762xtKtvI1V2ZHecjfU2uFAR/Ku8WHToVzYdC5CdxXLriCQPJTMVM+rVGBKBSaTND5sOlq9GGvtUFpzuYKsmuuhuwIzDaUCzRfLCgLTWCZQrugqlUOlU4E2N+RboVDS7NFCPY6JsUzTg5i7laOzQc1dqXv+zs+XdLhQUuiuQilUEJiGApMFktyUCtQ0no6kAxXKocoujTWMpbXcruWwmZQvVsa/dGDaNJrR4UK5n+//JsvdHksyEGPv/HxJc7njY9bGbGZgH6rI+DowBmLsjTJeRcnvbnX60cZq9ROljXy+pP3HjtfZNJrR8HBznVIprHz/bfM9KKpubUTpI8o5HtTvDifS2IuV0UMODMTYS+5CWnIeDETuNjr9mm8sue1ffOK1vYSEVbDC53Mg8pexF1L/xt5EZo67l8zsaknfkpSS9CV3f8jMPiZp2t3vkvRFSV81s0dVuZLlkn7GEASmzWtG+tnkAuvHVrR5SdKGse7/gy4ITBNrmuu1LvdiaCilLetHl91OP7Xb16WUJ0Fr7o6NNP/sReO2WyJ8IK3vsD6TSWvLIn/Y61aOzpKcuyMj6WV90VnKWDox3Lmf5R7DJJ8D9GZkJB1pTBwEjK9oFGW8ipLf3er0o43V6idKG8PDaW1Z5HNEktLpQM9al120Tjfd2ojSR5RznNTPrSSNvVgZSc2BpMaN/iIPgNXFew5S//IgsZnk7ndLurtl3Ucbfp+X9IbVjgsAAAAAAAAAAJw8kvqMFgAAAAAAAAAAgNgx0QIAAAAAAAAAANAjJloAAAAAAAAAAAB6xEQLAAAAAAAAAABAj8zd445hYJjZrKQnulTbJGn/KoSTdByniv3ufsFKdxIxdyXOSyccl4VWJXelk3bsZX9WFmNv74h1ZUSNddDG3n45Ec/VIBi0WBl7B8/JfgySOvae7OdN4hhI0Y7BoOWuxLmTOAaMvcnFMVjm2MtEyxKZ2bS7T8Udx6DjOA0mzkt7HJfBd6KdI/bn5JKk40OsKyNJsa6EJO0/sZ44OD4cg6Tuf1Lj7ieOQXKPQVLj7qeT/Rgkdf+TGnc/cQyWfwy4dRgAAAAAAAAAAECPmGgBAAAAAAAAAADoERMtS3dD3AEkBMdpMHFe2uO4DL4T7RyxPyeXJB0fYl0ZSYp1JSRp/4n1xMHx4Rgkdf+TGnc/cQySewySGnc/nezHIKn7n9S4+4ljsMxjwDNaAAAAAAAAAAAAesQVLQAAAAAAAAAAAD1iogUAAAAAAAAAAKBHTLQAAAAAAAAAAAD0iIkWAAAAAAAAAACAHjHRAgAAAAAAAAAA0CMmWgAAAAAAAAAAAHrERAsAAAAAAAAAAECPmGgBAAAAAAAAAADoERMtAAAAAAAAAAAAPWKiBQAAAAAAAAAAoEdMtAAAAAAAAAAAAPSIiRYAAAAAAAAAAIAeMdECAAAAAAAAAADQIyZaAAAAAAAAAAAAesRECwAAAAAAAAAAQI+YaGlwwQUXuCRevPr5WhXkLq8VeK0a8pfXCrxWBbnLawVeq4b85bUCr1VB7vJagdeqIX959fm1ashdXivwWjXkL68+vzpioqXB/v374w4B6Am5iyQjf5FU5C6SjPxFUj0j1boAACAASURBVJG7SDLyF0lF7iLJyF+sFiZaAAAAAAAAAAAAesRECwAAAAAAAAAAQI+YaAEAAAAAAAAAAOgREy0AAAAAAAAAAAA9YqIFAAAAAAAAAACgR+m4A+iFmX1J0h9K2ufuz21TbpL+StJrJB2T9DZ3v385fYaha/bpvOZLZaUC01BgGh+2pjqHcqFKoSsdmLKZQMWSqxS6yqErFZjMJLlkgZRJBZovHq8/mgl0rHB8eSQdKF8OVSy7xodTKpVdxWpbI+lAZXeVypV204EpXwqVTgXamB3Soflive5QKlA6MAUmFcoud1cmndLGsYwkae5oQWEYquxqKgsCa9r3uaMFFUrltuUnk6Qei/n5kp7KH8+L4XSgNdX8PZJ3jQ9bU/4OpwOF7iqWXUEgeSjJJHfV8zkVmEzS+LDp6bwrFQRaM5TSXK4gq9YN3WVWeT+szw4n4lidqJKau2HoOlLIa75Qyad8KayPwRZIcikVWNN4OjIUqFR2FcqhRodSmi8153YthyWpGLoK1TYzqUAbRjNKp4MFMfTj2LW2sz47pIO5YuLOCaKbny9pLleo59/GbEYjI4P51StJsWLlRRn3ouRMtzr9aGO1+onSRj5f0v5jx+tsGs1oeLi5TqFQ0uzR43UmxjLKZI7XKZVC7TuSV7EcaigVaPP48ILPpWKxrH1H8vU2No8Pa2goFbmPqKLEMogYz5DUHEhq3OivpOZBUuNG/5ADGDSnX/ONJW/zi0+8dll9JjXjb5L015Ju7lD+B5LOqr5eIOm66s+ehKHrp/92WFd8dbdmDuY0uT6rT190jjatGdaz1g5Jkh6fy+uqWyrlr962WR+64Dk6eLSg993xQH2bT+44R1/555/rva88W2HouurW++tl1+3crs/f84i+vWdfZfnSc/X57/5M67IZXf6SM7T/SEEfvPNBTYwP60MXPFsfvPPBplg+9U8Pa/ZIXl9+++/pcK6o997+k3r559/0fI0Np/RHN03X19142ZSG04E+8c1/1VtfdIY+vOvBprJnn7JGQWAKQ9fDv3lal9883bb8ZJLUYzE/X9LewzntfzrflDffeu+L9OThojavGWrK38n1WX3h0nO1NpvWbfc+oVf8zm/pi//z8QV58tmLn6dMOtDocFrPWjuk7/50n06fWKvP3/PIgrqfvugcnbK2pNM3jg30sTpRJTV3w9B1MJfXwaNFHSuU9c6GMfPTF52jTeMZZTMpHTxcbBpPv3DpuRrNBPrmg/+mlz1nc9uydCrQkfmyrryleVw/vGZYp28Yq/8hqV/HrrWdV2/brPecf3ZT/0k4J4hufr6kn80dbRpbr9u5XWdtHBu4f3AkKVasvCjjXpSc6VanH22sVj9R2sjnS3pk/8I6Z28aq0+2FAolPTy7sM6zJ8aUyaRVKoX66W+ebvpsuH7ndj3nlDX1z6Visayf7juyoI3nbB7X0FCqax9RRYllEDGeIak5kNS40V9JzYOkxo3+IQeAisH9lrwId/+BpAOLVLlQ0s1eca+kdWb2zF77mztaqE+ySNLMwVzlD9YHcjqUC3UoF9YHE0nasX2r9h7I1SdZatt8eNeD2rF9q/Ydztf/8Fcru+qW3dqxfevx5Vvv147tW3X5S35bMwfn638gv/JlZ9Z/b4zlypedqZmDOc0cyNUnWWrl777tx/rVwfmmdZffPK0n5o5px/at9T+IN5bNHS3U9732D+125SeTpB6LuVxBMwdyC/LmUC7UzIGcjsw35+/MwZzeeev9KpWli6ZO1Qe+/kDbPHnfHQ/owNFi/X3w/NM21vO4te4H73xQT8wdG/hjdaJKbO4eLWi+EGrvgVx9kkVqGIMPzkuyBePpO2+9X1KgC8+d7FhWKqv+x6PGNvceyGnfkXxTDP04dq3t7Ni+dUH/STgniG4uV1gwtl51y27N5QbvHCcpVqy8KONelJzpVqcfbaxWP1Ha2H+sfZ39x47XmT3avs5s9djuO5Jf8Nlw5S27mz6X9h3Jt22jVqdbH1FFiWUQMZ4hqTmQ1LjRX0nNg6TGjf4hB4CKRE60RLBF0t6G5ZnqugXM7Aozmzaz6dnZ2baNFUrl+mBRb/BgTqOZlEph5fZgjeXrskMazaTabtOtrHU5FVhT/XXZoUW37dT2aCbVdl2n9gql8qL7Xis/mQzasYiSu5JUCr1tXtTWt+avVNmvwCq3ZKrlV6e8qrVRrrazWN2TMW8GwaDlrhR97O2Uv7WcKi+Sv6F3LgtMncf1ctgUQz+OXWs73cZeDK6ljL3tznEp9JUOccmSFCuWZznfexvHpyg5061OP9pYrX5WK9ZiOWxf3vC51I9Yo4gSy2o6EcderIxBzIEo+TuIcWP1DVoeMPYiqkHMgaj5C/TTiTrR0u6+K23f3e5+g7tPufvUxMRE28Yy6ZQm12eb1k2uz+pYoax09RkpjeWHcpXb3LTbpltZ63I59Kb6h3LFRbft1PaxQrntuk7tZdKpRfe9Vn4yGbRjESV3JSkdWNu8qK1vzV+psl9h9XkstfzqlFe1NlLVdharezLmzSAYtNyVoo+9nfK3llOpRfI3sM5loavzuJ46/tHYr2PX2k63sReDayljb7tznB7AW8MlKVYsz3K+9zaOT1FypludfrSxWv2sVqxDqaB9ecPnUj9ijSJKLKvpRBx7sTIGMQei5O8gxo3VN2h5wNiLqAYxB6LmL9BPJ+pEy4ykrQ3Lk5Ke7LWxjWMZ3fCW7fVBo3Yv/8kNWa3LBlqXDXTdzuPlu3bv1dYNlWdYNG7zyR3naNfuvdq8dljXXXpuU9l1O7dr1+69x5cvPVe7du/VjT94XJPrRyr9rc/q+u89Vv+9MZbrv/eYJtdnNbkhq7+65Hebyj//pudry/qRpnU3Xjal0zaOatfuvfrkjnMWlG0cy9T3/cbLpjqWn0ySeiw2ZjOa3JBdkDfrsoEmN2Q1PtKcv5PrK8+xSKekO6d/qc+84Xlt8+SzFz9PG8aG6u+DHz8xV8/j1rqfvugcnbZxdOCP1Ykqsbk7ltFIJtDWDZWcXDAGrx+R5AvG0y9ceq6kUH9//0zHsnRKun7nwnF964asNo8PN8XQj2PX2s6u3XsX9J+Ec4LoNmYzC8bW63Zu18bs4J3jJMWKlRdl3IuSM93q9KON1eonShubRtvX2TR6vM7EWPs6E9Vju3l8eMFnw/U7tzd9Lm0eH27bRq1Otz6iihLLIGI8Q1JzIKlxo7+SmgdJjRv9Qw4AFeaezEv5zOx0Sf/o7s9tU/ZaSVdLeo2kF0j6nLuf163Nqakpn56eblsWhq7Zp/PKl8oKAtNQYBofbp6ZPZQLVQpd6cCUzQQqlrx+S6VUYApMcpcskDKpQPPF4/VHM4GOFcJ63ZF0oHw5VKnsGhtOqVR2FUNXGLqG04HK7iqVK3XTgSlfCpVOBdqYHdKh+WK9bjoVKF3tu1B2ubsy6VT9H8tzRwsKw1BlV1NZ48OYw9A1d7SgQqnctvxk0sOxWJUDtVjuSpUHkz2VP54XmXSgNdX8PZJ3jQ9bU/4OpwOF7iqWXUEgeSiZqX6VS6p6BYtJGh82Hcm7giDQmqGU5nIFWTXXQ3eZVd4P67PDJ23eDIJBzV2p+9h7pJDXfKGST4VSWB+DLZDklVvcNY6nI0OBSmVXoRxqdCil+VJzbtdyWJKKoatYbTOTCrRhNLPgIb/9GgNb21mfHdLBXJGxdWUMzNg7lyvU829jNjOwD4NMUqwnuIEZe7uNe1FypludfrSxWv1EaSOfL2n/seN1No1mNDzcXKdQKGn26PE6E2OZpofUl0qh9h3Jq1SufLffPD684HOpWCxX6lTb2Dw+rKGhVOQ+oooSSwvGXgyEHnJgIMZechfSkvNgIHJXIn+R3LEXJ67Tr/nGkrf5xSdeG6Vax9xN5KhnZrdJepmkTWY2I+nPJA1JkrtfL+luVSZZHpV0TNLbl9tnEJhOecbIonXGFi/uav3Y8ravOWU4+mmdWNP9f6UFgUWqdzJI6rEYGUl3/ICr5e1y8rdx2y18mRpISc3dIDCtHRnR2mWOr8uNoR/Hrl07STwniG5kJJ2YMTFJsWLlRRn3ouRMtzr9aGO1+onSxvBwWlu6fA/PZNLassikRzod6Fnrsh3LJWloKKUt60d77iOqKLEMIsYzJDUHkho3+iupeZDUuNE/5ACQ0IkWd39Tl3KX9K5VCgcAAAAAAAAAAJykTtRntAAAAAAAAAAAAKw4JloAAAAAAAAAAAB6xEQLAAAAAAAAAABAj5hoAQAAAAAAAAAA6BETLQAAAAAAAAAAAD1iogUAAAAAAAAAAKBHTLQAAAAAAAAAAAD0iIkWAAAAAAAAAACAHjHRAgAAAAAAAAAA0CMmWgAAAAAAAAAAAHqUjqNTM/s7Sd6p3N1fv4rhAAAAAAAAAAAA9CSWiRZJfx1TvwAAAAAAAAAAAH0Ty0SLu98TR78AAAAAAAAAAAD9FNcVLZIkMztT0sclbZM0Ulvv7mfHFhQAAAAAAAAAAEBEQcz93yTpy5JM0h9IukPS7XEGBAAAAAAAAAAAEFXcEy2j7v4tSXL3x9z9I5JeHnNMAAAAAAAAAAAAkcR66zBJeTMzSY+Z2ZWSfiVpc8wxAQAAAAAAAAAARBL3RMv7JI1Leo8qz2p5hqQ/ijUiAAAAAAAAAACAiGK9dZi7/8jdn3b3X7r7W9z9de7+wyjbmtkFZvawmT1qZte0KT/VzP67mf3YzB40s9f0fw8AAAAAAAAAAMDJLNYrWszsO5K8db27v7rLdilJ10p6laQZSfeZ2V3uvqeh2kck3eHu15nZNkl3Szq9X7EDAAAAAAAAAADEfeuwjzT8PiJph6R8hO3Ok/Souz8uSWZ2u6QLJTVOtLiktdXfnyHpyWVHCwAAAAAAAAAA0CDWiRZ3/1HLqu+b2fcjbLpF0t6G5RlJL2ip8+eSvm1m75Y0JumV7RoysyskXSFJp556aoSugcFA7iLJyF8kFbmLJCN/kVTkLpKM/EVSkbtIMvIXcYj1GS1mtrbhtc7Mzpf0zCibtlnXeguyN0m6yd0nJb1G0lfNbMH+uvsN7j7l7lMTExNL3gcgLuQukoz8RVKRu0gy8hdJRe4iychfJBW5iyQjfxGHuG8d9pAqEyQmqSTp55Iuj7DdjKStDcuTWnhrsHdIukCS3P1/mdmIpE2S9i0zZgAAAAAAAAAAAEnx3zpsa/dabd0n6SwzO0PSryRdIunNLXV+Kel8STeZ2e+o8gyY2V5jBQAAAAAAAAAAaBX3FS0ys/Mkna6GWNz9a4tt4+4lM7ta0rckpSR9yd0fMrOPSZp297skfUDSjWb2PlWumnmbu7feXgwAAAAAAAAAAKBnsU60mNlNkrZJ+omkcnW1S1p0okWS3P1uSXe3rPtow+97JL24X7ECAAAAAAAAAAC0ivuKlhdK2ubuYcxxAAAAAAAAAAAALFkQc/8PqfKAegAAAAAAAAAAgMSJ+4qWZ0j6VzO7V1K+ttLdXx9fSAAAAAAAAAAAANHEPdHyFzH3DwAAAAAAAAAA0LNYJ1rc/Z44+wcAAAAAAAAAAFiOWJ/RYma/Z2b3mtlTZjZvZnkzOxxnTAAAAAAAAAAAAFHFfeuwL0jaKel2SedJepukrXEGBAAAAAAAAAAAEFWsV7RICtz9YUlpdy+6+42SXhlzTAAAAAAAAAAAAJHEfUXLUTPLSHrAzP5fSb+WNB5zTAAAAAAAAAAAAJHEfUXL26oxXC2pLOksSRfFGRAAAAAAAAAAAEBUsV7R4u6PV3+dl/Rf4owFAAAAAAAAAABgqWKZaDGz+xcrd/dzVysWAAAAAAAAAACAXsV1RUtGUlHS1yR9Q1I+pjgAAAAAAAAAAAB6FsszWtz9uZLeImmdpFtVuW3YmZJ+7u6PxRETAAAAAAAAAADAUsUy0SJJ7v4v7v6n7v58Sd9U5eqWD8QVDwAAAAAAAAAAwFLFdeswmdlvSXqjpIskHZH0QUm74ooHAAAAAAAAAABgqWKZaDGze1S5bdjXJb1N0mxD2Vp3PxxHXAAAAAAAAAAAAEsR1xUtz5bkkt4l6Z0N6626/tQ4ggIAAAAAAAAAAFiKWJ7R4u6T7r61+jq14bXV3euTLGb2nHbbm9kFZvawmT1qZtd0qHOxme0xs4fM7GsrtS8AAAAAAAAAAODkFdszWiL6mqRzG1eYWUrStZJeJWlG0n1mdpe772moc5ak/yTpxe5+0Mw2/5/27jxOkro8/PjnmZmdPUFWWAwCCihgiCKyK8HboCJiEo2gouKRePzAK9FEY2JiiLk8omgURURUxCtAoogk4IXgwbFcK6Agl7JgZLlE9prr+f1R1TO9s93TPbM9W90zn/frNa/prvOp6qe/VV3f+n5rO8YsSZIkSZIkSZLmiUpatExDNBh2CHBTZt6SmUPAV4AXTJrm9cBJmXkfQGbeNbthSpIkSZIkSZKk+ajbK1qywbDdgdvr3q8th9XbD9gvIn4YEZdExBHNVhARb4iI1RGxet26ddsesbSdmLvqZeavepW5q15m/qpXmbvqZeavepW5q15m/qoK3V7R0kijVi6TK2QGgH2BZwIvA06NiJ0aLSwzT8nMVZm5asWKFR0NVJpN5q56mfmrXmXuqpeZv+pV5q56mfmrXmXuqpeZv6pCt1e0jDYYthbYs+79HsCdDab5emYOZ+atwA0UFS+SJEmSJEmSJEkdU3lFS0T8TkQcEhFPrv3VxmXmExvMcjmwb0TsHRGDwDHAOZOm+RrwB+Xyd6HoSuyW2dkCSZIkSZIkSZI0Xw1UufKI+FfgWOBnTLReSeDIZvNk5khEvBk4H+gHTsvM6yLivcDqzDynHHd4RFxfLvcdmXnPLG6KJEmSJEmSJEmahyqtaAGOAvbLzE3TmSkzzwPOmzTsPXWvE3h7+SdJkiRJkiRJkjQrqu467NYuiEGSJEmSJEmSJGlGqm7R8lvgqoj4NrC5NjAzbYkiSZIkSZIkSZK6XtUVLf9b/kmSJEmSJEmSJPWcSitaMvMzETEAPLocdFNmjlQZkyRJkiRJkiRJUrsqrWiJiKcBXwDuAAL4nYh4ZWb+sMq4JEmSJEmSJEmS2lF112EnAkdm5vUAEfG7FBUvqyqNSpIkSZIkSZIkqQ19Fa9/sFbJApCZPwUGK4xHkiRJkiRJkiSpbVW3aLkyIj5F0YoF4BXAVRXGI0mSJEmSJEmS1LaqK1qOA94KvJPiGS0XAR+rNCJJkiRJkiRJkqQ2VVrRkpmbgA+Uf5IkSZIkSZIkST2lkoqWiPhyZr4sIq4CcvL4zDy4grAkSZIkSZIkSZKmpaoWLe8o/x9d0folSZIkSZIkSZK2WV8VK83MteXLO4FbMvPm8v3+wC+qiEmSJEmSJEmSJGm6KqloqXMxsDgidgO+DxwPnFZtSJIkSZIkSZIkSe2puqKlLzM3AEcBH8/MPwIOrDgmSZIkSZIkSZKktlRe0RIRTwReDpxbDuuvMB5JkiRJkiRJkqS2VV3R8nbgH4FvZua1EbEPRXdikiRJkiRJkiRJXW+gypVn5neB7wJERAC/zsw3VhmTJEmSJEmSJElSuypt0RIRp0fEjhGxBLgOuDUi3t7mvEdExA0RcVNEvGuK6Y6OiIyIVZ2KW5IkSZIkSZIkCarvOuxxmfkA8ELgAmAP4DWtZoqIfuAk4HnAAcDLIuKABtPtALwVuLSDMUuSJEmSJEmSJAHVV7QMRsQA8ALga5k5BIy1Md8hwE2ZeUs5z1fKZUz2T8AHgE2dCliSJEmSJEmSJKmm6oqWU4FfAsuB70fEI4AH25hvd+D2uvdry2HjIuIJwJ6Zee5UC4qIN0TE6ohYvW7dumkFL1XJ3FUvM3/Vq8xd9TLzV73K3FUvM3/Vq8xd9TLzV1WotKIlM0/MzIdn5uGZmRSVJ4e1MWs0Wtz4yIg+4ETgL9uI4ZTMXJWZq1asWNFu6FLlzF31MvNXvcrcVS8zf9WrzF31MvNXvcrcVS8zf1WFgSpWGhEvy8wvR8Rbm0zyHy0WsRbYs+79HsCdde93AB4LXBgRAL8DnBMRf5yZq2cYtiRJkiRJkiRJ0hYqqWih6CoMYKZVipcD+0bE3sAdwDHAy2sjM/M3wC619xFxIfBXVrJIkiRJkiRJkqROqqSiJTM/Uf7/+xnOPxIRbwbOB/qB0zLzuoh4L7A6M8/pXLSSJEmSJEmSJEmNVdWiBYCIeATwZmCv+lgy80Wt5s3M84DzJg17T5Npn7ktcUqSJEmSJEmSJDVSaUULcA5wOvAtYKziWCRJkiRJkiRJkqal6oqWocz8cMUxSJIkSZIkSZIkzUjVFS0fi4i/o3jWyubawMxcU11IkiRJkiRJkiRJ7am6omU/4HXA85joOiyBp1cWkSRJkiRJkiRJUpuqrmh5CbBXZm5uOaUkSZIkSZIkSVKX6at4/WuAHSqOQZIkSZIkSZIkaUaqbtGyM/CziLiULZ/R8qLqQpIkSZIkSZIkSWpP1RUt/1Lx+iVJkiRJkiRJkmas6oqWHwGbMjMj4lHA/sAFFcckSZIkSZIkSZLUlqqf0XIxsDgidgO+DxwPnFZtSJIkSZIkSZIkSe2puqKlLzM3AEcBH8/MPwIOrDgmSZIkSZIkSZKktlRe0RIRTwReDpxbDuuvMB5JkiRJkiRJkqS2VV3R8nbgH4FvZua1EbEPRXdikiRJkiRJkiRJXW+gypVn5neB79a9vwV4Y3URSZIkSZIkSZIkta/SipaIeDRFq5a96mPJzMOrikmSJEmSJEmSJKldlVa0AGcBnwHOAEYrjkWSJEmSJEmSJGlaqq5oGcvMj1UcgyRJkiRJkiRJ0oz0Vbz+r0fEGyJiRUTsWPurOCZJkiRJkiRJkqS2VF3R8jrg74ErgevKv2tbzRQRR0TEDRFxU0S8q8H4t0fE9RGxJiK+ExGP7HjkkiRJkiRJkiRp3qu067DM3HO680REP3AS8BxgLXB5RJyTmdfXTXYVsCozN0TE8cAHgJd2ImZJkiRJkiRJkqSaqp/RQkQ8BjgAWFQblplfmmKWQ4CbMvOWcv6vAC8AxitaMvN7ddNfAhzbyZglSZIkSZIkSZKg4q7DIuLvgFOAk4HnAR8Bjm4x2+7A7XXv15bDmnkt8D9TxPCGiFgdEavXrVvXVtxSNzB31cvMX/Uqc1e9zPxVrzJ31cvMX/Uqc1e9zPxVFap+RstLgT8AfpWZrwQeT+tWNtFgWDacMOJYYBXwwWYLy8xTMnNVZq5asWJFe1FLXcDcVS8zf9WrzF31MvNXvcrcVS8zf9WrzF31MvNXVai667CNmTkaESMRsQPwf8A+LeZZC9Q/22UP4M7JE0XEs4F3A8/IzM2dCliSJEmSJEmSJKmm6oqWqyJiJ+A0YDXwAHBli3kuB/aNiL2BO4BjgJfXTxARTwA+BRyRmXd1PGpJkiRJkiRJkiQqrGiJiABOyMz7gZMi4nxgx8ycsqIlM0ci4s3A+UA/cFpmXhcR7wVWZ+Y5FF2FLQPOLFbDLzPzj2dzeyRJkiRJkiRJ0vxTWUVLZmZEnAusLN/fNI15zwPOmzTsPXWvn92pOCVJkiRJkiRJkprpq3j9l0XEwRXHIEmSJEmSJEmSNCOVtGiJiIHMHAGeCrw+Im4G1gNB0djFyhdJkiRJkiRJktT1quo67DLgYOCFFa1fkiRJkiRJkiRpm1VV0RIAmXlzReuXJEmSJEmSJEnaZlVVtKyIiLc3G5mZH96ewUiSJEmSJEmSJM1EVRUt/cAyypYtkiRJkiRJkiRJvaiqipZfZeZ7K1q3JEmSJEmSJElSR/RVtF5bskiSJEmSJEmSpJ5XVYuWZ1W0XkmSJEmSJEmSANjrXd+c9jy3ve/5sxCJelklLVoy894q1itJkiRJkiRJktRJVXUdJkmSJEmSJEmS1POsaJEkSZIkSZIkSZohK1okSZIkSZIkSZJmyIoWSZIkSZIkSZKkGbKiRZIkSZIkSZIkaYasaJEkSZIkSZIkSZohK1okSZIkSZIkSZJmyIoWSZIkSZIkSZKkGRqoOoCZiogjgI8C/cCpmfm+SeMXAqcDK4F7gJdm5m3bss7Nm0e4e8MQI2PJQF+wbFEfi/oGeGBolKGRURYP9jMylgyPjDE40M/yxQu4b+MwY2NjjCZEJGNj0NcHfQQJjIwlY2PJQH8fixb0sdPiQfr6guHhUdatH2J4dIz+vmDxgj6WL1lIX180jW9sLLln/RBDI6NEBP0BfX197Lx0sOl8Y2PJ3es3s2l4lP4IFg/2s+PCIu6hkVEGB/q3mr9+PfXbvHiwn5HRZNNIsaylC/sZGp3YH5OXMzw8yl0Pbh7fnwsH+khiynhnW/22NYq5V23aNMI9Gydyd+fFgyxaNPH1HxtLHtg0xObhMUbGkpGxpL8vWNAXjGaSCcsW9fHgpjH6+oAMhkfH6CunWTAwkbuT9+HyxQu4d8NQkWN9wYL+YHg0GS3zftdlCxkYKOp8J3/HdlkyyMKFE3EODY2wbv3E+BVLBxkc7NliTG0YG0t+s3EzG4aK3Fw62M/QyBjDZQ4sGewbHzfQFyxa0Mem4bHx/Foy2MeOiwYBxvNy6cJ+NgyNMdAHw6NFvi/o72PF0kHu3zTS9Ps/MjLGXQ9uBorvRAIL51A50c16tWxuVfZq7uvV3G1HO/ndapp2ltHOsX/yOeWuyxayYEH/+Pha+T08OsaCSeceNa0+q04so51Y29GJvJrvuam5rVdzoFfjVmf1ah70atzqHHNA6tGKlojoB04CngOsBS6PiHMy8/q6yV4L3JeZj46IY4D3Ay+d6To3bx7hxrvXc/wZV7D2vo3ssXwxnzx2JQ/fCS65eR2n/fCXvPOI/XnHWWvGx5987Eq+cfVanr7/w/j8j27l1U/em8//6Fbe+AePJoANQ6NbTP/RYw5i+ZJh9njIIm5ct57j6tb1waMP5GE7jLDXLksbcpx1YAAAIABJREFU/ggaG0tu+PVvef3pq8fnef9RB/L5H93K256zP/s/bIet5ms0z4kveTzLlw7yms9ePj7s069aNT5//Twrli0c3+b612vv28jhB+zKmw/blzd+8cqGyxkeHuVndz24xf78xCsO5pvX3MELD96zYbyzrdH+qI+5V23aNMLP79k6d/fdeSmLFg0wNpbccf8GNg6P8psNw7ztP6/ZIu8WD/bzie/dxFuetR/nXr2Ww373d/jLM7ecZslgP/cvGuYRy5fw83UPju/Dww/YlT9/1n78v3LdjfLi5GNX8piH7cDo6FjD79h+uyxl4cIBhoZGuGHd1uP3X7HUypY5qpab920Y5o1fvJIn77Mzxz7pkVvkzyePXcnHvnMjF1x/F4cfsCtvedZ+W+TIyceuZOdlo9y/YYTXn756fBnfvOYOnv/43bda1rlXr+VTF9+21fd/ZGSMn/36t/zHd27k1U/em78+e82cKie6Wa+Wza3KXs19vZq77Wgnv1tN084y2jn2Nzqn/OSxK3nMrstYsKB/vPw+btKx4TEP22G8oqTVZ9WJZbQTazs6kVfzPTc1t/VqDvRq3OqsXs2DXo1bnWMOSIVe7TrsEOCmzLwlM4eArwAvmDTNC4DPl6/PAp4VETP+5XD3hqHxAgNg7X0bOf6MK9g0NMYTHrkzxz3zUeOVDLXxx51xBUevegR/ffYajlq55/j/+9YPc+/64a2m//OvXM0v7tnAuvVD4z/kauPecdYafnHvBu5ZP9QwvnvWD43/WKrNU1vf609f3XC+RvO87T+v4fZ7N24xrH7++nnqt3ny9h+1cs/xC5iNlnPXg5u32p9v/OKVHL3qEU3jnW2N9kdVsXTSPRsb5+49Gyc+080jyR33bRqvZKlN946z1nDf+mGOWrknx5f5XKtkqZ/m3vXD/OKeDdz14OYt9uFRK/ccr2SpvZ+cF8edcQV3Pbi56Xfs7g1FnOvWNx6/rsc/HzVXy81azrz+6ftslT/Hn3EFR63cE2A8Tyfn18go43lZW8bRqx7RcFlHr3rE+PvJZdZx5bpqlSyNplPn9WrZ3Krs1dzXq7nbjnbyu+X5RxvLaOfY3+ic8vjy3KI2fvJ59XF146H1Z9WJZbQTa1v7vgN5Nd9zU3Nbr+ZAr8atzurVPOjVuNU55oBU6NWKlt2B2+very2HNZwmM0eA3wA7T15QRLwhIlZHxOp169Y1XeHIWI4XGOMrvW8jI2NFF0g7LV7QcHx/X7D2vo3j43davIAlg/0sGexvOP2SsiuuZuOGRkYbxjc0Mtpwntp6G83XbJ4lg/1bDavNXz9P/TZP3v5m+6O2nGbbWNtfzbZzNjXbH1XE0o5O5C4U290XTJmTtc+z9vk0mmbJYD8jo2NT5kGzvBgZHWsZZ6vx6i3t5G8tN2ufe7P822nxAqB5fo1lbrWMZsvqr7uTt/77P1zmdquyTZ3XbWVzp8pezX3dlrvQfv620k5+d+K43olphiedm4yPHx0bf9/qs+rEMtrdnlY6kVfdmJutWPaqXd2YA+3kbzfGre2v2/LAslft6sYc6NR5rzQdvVrR0qhlyuRvbzvTkJmnZOaqzFy1YsWKpisc6Av2WL54i2F7LF/MQF/Q3xfcv3G44fjRsWSP5YvHx9+/cZgNQ6NsGBptOP2GodGm69owVPSh3MjgQH/DeWrrbTRfs3k2DI1uNaw2f/089ds8efub7Y/acpptY21/NdvO2dRsf1QRSzs6kbtQbPdYMmVO1j7P2ufTaJoNQ6MM9PdNmQfN8mKgv69lnK3Gq7e0k7+13Kx97s3y7/6Nw0Dz/OqL2GoZzZY1WnciWP/9X1DmdquyTZ3XbWVzp8pezX3dlrvQfv620k5+d+K43olpFkw6Nxkf3z/xM6jVZ9WJZbS7Pa10Iq+6MTdbsexVu7oxB9rJ326MW9tft+WBZa/a1Y050KnzXmk6erWiZS2wZ937PYA7m00TEQPAQ4B7Z7rCXZYM8sljV44XHLX+BhcN9nHVL+7h5Atv5oNHH7jF+JOPXclZq3/J+486kLOvuH38//KlC3jo0gVbTf/RYw7ikTsvYcXSQU6etK4PHn0gj3zoEnZeOtgwvp2XDvLpV63aYp7a+j79qlUN52s0z4kveTx7PnTxFsPq56+fp36bJ2//2VfczidecXDT5ey6bOFW+/MTrziYs1b/smm8s63R/qgqlk7aeXHj3N158cRnunAg2H35Ik58yeO3yrvlSxdw9hW388kynz/04q2neejSBTxy5yXsumzhFvvw7Ctu51N1626UFycfu5Jdly1s+h3bZUkR54qljcev6PHPR83VcrOWM5++6Jat8ueTx67k7CuKBo61PJ2cXwP9jOdlbRlnrf5lw2WdtfqX4+8nl1knl+t6/1EHzrlyopv1atncquzV3NeruduOdvK75flHG8to59jf6Jzyk+W5RW385PPqk+vGQ+vPqhPLaCfWtvZ9B/Jqvuem5rZezYFejVud1at50Ktxq3PMAakQmb3XlK+sOLkReBZwB3A58PLMvK5umjcBj8vM4yLiGOBFmfmSqZa7atWqXL16ddPxmzePcPeGIUbGkoG+YNmiPhb1DfDA0ChDI6MsLrv9Gh4ZY3Cgn+WLF3DfxmHGxsYYTYgoHj7Z1xf0UTSvGRlLxsaSgf4+Fi3oY6fFg+MPi1+3fojh0TH6+4LFC/pYvmThlA+oHBtL7lk/xNDIKBFBf0BfXx87Lx1sOt/YWHL3+s1sGh6jP2DxYD87LiziHhopWtBMnr9+PfXbvHiwn5HRZNNIsaylC/sZGp3YH5OXMzw8yl0Pbh7fnwsH+khiynhnW/22NYp5BrbLhrTK3U2bRrhn40Tu7rx4cIsHko2NJQ9sGmLz8Nh4d3h9fcGCvmA0k0xYtqiPBzeNFfsjYXhsjL4oplkwMJG7k/fh8sULuHfDEJtGRumPYMFAMDxSrGOgv49dly0cf5Ds5O/YLksGWbhwIs6hoRHWrZ8Yv2Lp4PjDcNVx2+1LOFX+jo0lv9m4mQ1DRW4uHexnaGSM4TIHlgz2jY8b6AsWLehj0/DYeH4tGexjx0XFyV0tL5cu7GfD0BgDfTA8OpGLK5YOcv+mkabf/5GRMe56cDNBUmv40qFyQi3MoGzuibJXc1+35i60zt9W2snvVtO0s4x2jv2Tzyl3XbZwi4fL18rvkdGxrc49alp9Vp1YRjuxtqMT56uzcM4Llr3qEjPIga4oe81dwbTzoCtyF8xf9W7ZW7PXu7457eXe9r7nzzQkbQez+Jk2zd2eLPUycyQi3gycD/QDp2XmdRHxXmB1Zp4DfAb4QkTcRNGS5ZhtXe/ChQPsvnDrXbaiwbDxcTu0f4davQUL+nn4TotbT1inry+mvb6+vmDXHRZtNXyq5cxkPY0sWNDP7suXbPNyOqlT29ZtFi0aYPcpDnB9fcFOS1pv90PaSMlG+3DXHbfOsUaafcdqBgcH2N2KlXmlry9YvnQRy5c2n2aqcfXq83KnJkXPiikudg0M9E27XFZn9GrZ3Krs1dzXq7nbjnbyu9U07SyjnWN/q3PKdsrvVp9VJ5bRTqzt6ERezffc1NzWqznQq3Grs3o1D3o1bnWOOSD1aEULQGaeB5w3adh76l5vAl68veOSJEmSJEmSJEnzR68+o0WSJEmSJEmSJKlyVrRIkiRJkiRJkiTNkBUtkiRJkiRJkiRJM2RFiyRJkiRJkiRJ0gxFZlYdQ9eIiHXAL1pMtgtw93YIp9e5nwp3Z+YRs72SNnMX/Fyacb9sbbvkLszbstftmV2WvTNnrLOj3Vi7reztlLn4WXWDbovVsrf7zPd90Ktl73z/3MB9AO3tg27LXfCzA/eBZW/vch9sY9lrRcs0RcTqzFxVdRzdzv3UnfxcGnO/dL+59hm5PfNLL+0fY50dvRTrbOil7TfWucP94z7o1e3v1bg7yX3Qu/ugV+PupPm+D3p1+3s17k5yH2z7PrDrMEmSJEmSJEmSpBmyokWSJEmSJEmSJGmGrGiZvlOqDqBHuJ+6k59LY+6X7jfXPiO3Z37ppf1jrLOjl2KdDb20/cY6d7h/3Ae9uv29GncnuQ96dx/0atydNN/3Qa9uf6/G3Unug23cBz6jRZIkSZIkSZIkaYZs0SJJkiRJkiRJkjRDVrRIkiRJkiRJkiTNkBUt0xARR0TEDRFxU0S8q+p4ukVE7BkR34uIn0bEdRHx5+Xwh0bEtyLi5+X/5VXHOl+ZuxMi4raI+ElEXB0Rq8th5moX66b8nW55F4X/KGNfExEH1y3r1eX0P4+IV9cNX1nm6E3lvDHVOjq0Xf0RcVVEnFu+3zsiLi3X9dWIGCyHLyzf31SO36tuGX9TDr8hIp5bN7zh59dsHXNJN+VuKxFxWkTcFRHXVh1LK82+h90oIhZFxGURcU0Z6z9WHdP21OiY200a5X23nhM0ifWEiLij3L9XR8SRVcZYlVZl7VTHrrmgje1/TUSsq8uT11UR52xpdfya6lysavM9d8H8NX97l7lr7vYy83cW8zcz/WvjD+gHbgb2AQaBa4ADqo6rG/6A3YCDy9c7ADcCBwAfAN5VDn8X8P6qY52Pf+buVvvjNmCXScPM1S7967b8nW55BxwJ/A8QwKHApeXwhwK3lP+Xl6+Xl+MuA55UzvM/wPPK4bOWp8DbgS8B55bv/xM4pnx9MnB8+fqNwMnl62OAr5avDyg/m4XA3uVn1j/V59dsHXPlr9tyt414nw4cDFxbdSxtxNrwe1h1XE1iDWBZ+XoBcClwaNVxbcft3+qY201/jfK+W88JmsR6AvBXVcdW8X5pWdY2O3bNhb82t/81wMerjnUW98GUxy+anItV/Tffc3ca+8D8NX+77s/cNXd7+c/8nd38tUVL+w4BbsrMWzJzCPgK8IKKY+oKmfmrzLyyfP1b4KfA7hT75/PlZJ8HXlhNhPOeuduaudq9uip/Z1DevQA4PQuXADtFxG7Ac4FvZea9mXkf8C3giHLcjpn54yyO8KdPWlbH8zQi9gCeD5xavg/gMOCsJttTi+Es4Fnl9C8AvpKZmzPzVuAmis+u4efXYh1zRVflbiuZeRFwb9VxtGOK72HXKb/7D5ZvF5R/WWFIqtMk77vynKCXvqPbWTtlbbNj11zQU8ea2dDGd6PZuVjV5nvugvlr/vYuc9fc7WXm7yzmrxUt7dsduL3u/Vq69Ed9lcomdU+guGPzYZn5KyguigC7VhfZvGbubimBCyLiioh4QznMXO1eXZu/bZZ3zeKfavjaBsOZYh3b6iPAO4Gx8v3OwP2ZOdIghvG4y/G/Kaef7nZOtY65omtzdy6Z9D3sSlF0zXc1cBdFBWvXxjoLGh1zu12vnRO8uezS4LTokm7OtrN2ytpmx665oN1jzVFlnpwVEXtun9C6Rrcej+d77oL52w7ztzuZu62Zu93L/G1txvlrRUv7GtVeekdinYhYBpwN/EVmPlB1PBpn7m7pKZl5MPA84E0R8fSqA9KUujJ/p1HeNYt/usNnRUT8IXBXZl5RP3iKGDq1PV35uXbYfNjGSvXKeUdmjmbmQcAewCER8diqY9qOPObOrk8CjwIOAn4FfKjacCrRTlk7l8vjdrbtG8BemXkg8G0m7tKdL7r185/vuQvmbzu6NQfme/6au6116+c/33MXzN92zDgHrGhp31qgvgZvD+DOimLpOhGxgOJixxcz87/Kwb+uNa0q/99VVXzznLlbJzPvLP/fBfw3RbNJc7V7dV3+TrO8axb/VMP3aDB8qnVsi6cAfxwRt1E0GT6MooXLThEx0CCG8bjL8Q+haHI73e28e4p1zBVdl7tzSZPvYVfLzPuBC4EjKg5lu2lyzO12PXNOkJm/LivyxoBP0xv7t9PaKWubHbvmgpbbn5n3ZObm8u2ngZXbKbZu0a3H4/meu2D+tsP87U7mbmvmbvcyf1ubcf5a0dK+y4F9I2LviBikeCDSORXH1BXKvgo/A/w0Mz9cN+oc4NXl61cDX9/esQkwd8dFxNKI2KH2GjgcuBZztZt1Vf7OoLw7B3hVFA4FflN2RXM+cHhELC+7ejkcOL8c99uIOLRc16smLaujeZqZf5OZe2TmXhT79ruZ+Qrge8DRTbanFsPR5fRZDj8mIhZGxN7AvsBlNPn8ynmarWOu6KrcnUum+B52nYhYERE7la8XA88GflZtVNvHFMfcbtcz5wST+or+E3pj/3ZaO2Vts2PXXNBy+yflyR9TPNdqPml2Lla1+Z67YP62w/ztTuZua+Zu9zJ/W5t5/mamf23+AUcCNwI3A++uOp5u+QOeStGEag1wdfl3JEUfht8Bfl7+f2jVsc7XP3N3fD/sA1xT/l1X2xfmanf/dVP+Tre8o2hyelIZ+0+AVXXL+jOKh8bfBPxp3fBVFBfLbgY+DkQ5fFbzFHgmcG75eh+KipKbgDOBheXwReX7m8rx+9TN/+4y5huA57X6/JqtYy79dVPuthHrlym6HhqmuIPntVXHNEWsDb+HVcfVJNYDgavKWK8F3lN1TNtx2xsec7vpr1Hed+s5QZNYv1AeW9ZQ/CDcreo4K9o3W5W1wHuBPy5fNz12zYW/Nrb/38rv4DUUNzk8puqYO7z9jb4bxwHHleObnotV/Tffc7fNfWD+mr9d+Wfumru9/Gf+zl7+1i7eSJIkSZIkSZIkaZrsOkySJEmSJEmSJGmGrGiRJEmSJEmSJEmaIStaJEmSJEmSJEmSZsiKFkmSJEmSJEmSpBmyokWSJEmSJEmSJGmGrGiRJElSSxGxR0R8PSJ+HhE3R8RHI2Kw6rgkSZIkSaqaFS09LCLeHRHXRcSaiLg6In5/imk/FxFHl68vjIhV5evzImKnDsb0zIj4TURcFRE/jYh/aDLdwyPirE6tV70hIkbLXL02Is6MiCUVxLBTRLyxxTR7RcTGMtbrI+LkiGhYXkbEj2YnUnWziHiw7vWR5YXnR8zCej4XEbdGxDURcWNEnB4Ru08x/akRcUCn45AiIoD/Ar6WmfsC+wHLgH/ZDusemO11aG6JiIyID9W9/6uIOKHCkDSH1J3P1v72muFyxn+TNRh3abnsX0bEum1d1zRiOmPSecfnI+LhdePPj4gdOri+f46Iv+jU8tSeeZLDV0fEFVNdIymnf1FEPGYG6zF3t1Enrmdtw7pPqvutv7EuP4/eluW2sd7XRcRHpjnPGRHxwvL1ZyNi/ymm7Y+Ii1stZ7oi4tkR8bWZzDtXRcTOdXnzfxFxR937ym5Ei4g3RcQrpjnPnhHx1Q7HsTYivjdp2LURcXUn19Mihkry1h+uPSoingT8IXBwZm6OiF2AaX+ZM/PIjgcHF2fmH0bEUuDqiDg3M6+ojYyIgcy8E5jVg5i60sbMPAggIr4IHAd8uDayvJAXmTk2izHsBLwR+ESL6W7OzIPKC3zfBV5IcZERKE5iMnM0M588e6Gq20XEs4CPAYdn5i9naTXvyMyzyu/HXwDfi4jHZubQpFj6M/N1sxSDdBiwKTM/C5CZoxHxNuDWiFgJ/EVmromIq4D/zsz3RsQ/Ab8AbgJOAO4GHgtcARybmVnO+2GKSpu7gddk5q8i4kLgR8BTgHOADyG1bzPwooj4t8y8u+pg6pXnwSNVx6FtMn4+O1sy8/cBIuI1wKrMfPNsrm+St2Xm16K4yejtwHcj4nGZOZyZz92OcWj2zJccPhL4JHDwFNO+CBgDfjZ5hOX17OnU9aw219WfmaP1wzLzTeW4vYBzZ/v70CmZ+actxo8CT9tO4cxrmXkPULu2dQLwYGb+e/002+n61uS4TprBPLcDL52FcHaKiIdn5p0R8ThgXpSntmjpXbsBd2fmZoDMvLtM3pUR8f3y7o3zI2K3qRYSEbdFxC5R3MH/04j4dHlXwQURsbic5onlXQY/jogPRsS17QSYmespLqY8KiJeE0ULhm8AF5Tru7Zcfn9E/HtE/KRcz1vK4dPaFvWci4FH1+XeJ4ArgT0j4vAy364s82YZQES8r7zrZE1E/Hs5bEVEnB0Rl5d/TymHnxARp0Vxx8stEfHWcr3vo8jJqyPig62CLE+uf1TG+syI+F5EfAn4Sbme+pYN7yzz+JqIeF857FER8b9lHl8cM7hjSt0pIp4GfBp4fmbeXA77XER8ssyTWyLiGWUe/jQiPldO019Od22ZL29rZ31ZOBH4P+B55bIejIj3RsSlwJPKfF8VEcdHxAfqYn1NRHysfH1sRFxWfgc+FRH9dcv6lzJ/L4mIh3Vub2kO+D2KY/q4zHwA+CVwIfC0iNiR4gT6KeUkT6Uo6wGeQFFReACwD/CUiFhAUVF5dGauBE5jyxYyO2XmMzLTShZN1whwCrBV+RoRj4yI75TnEt+JJq0RI2KHKO6KXlC+37E8b17Q7NgeEX8UxV3cV0XEt2vlaHlOckpEXACcPmtbrcqUx9mP170/NyKeWb5ueF47w/X8v/rz19rxPiIeHcVvuC+U5xb/GVv+lqv9pvqfdo/vmTlWXjS6Fzi8XNbaKHtDiIhX151PfCIi+iJioC6Ga2vn3xGxbxS/566IiIsiYr+Z7gPNjrmYw8BFwKPLZWyVg1Gcyx8JnFjm8V4R8YPyfPgi4M0RsXcU5/VrIuJbEbHHTLddW+jU9axm1w1ui4j3RMQPgBe3G1RE7B8Rl9W9/93a+7L8e19Z7l0aEfuUwx8WEf8VEavLcYe2ua4zouiG90dR/G78k3J4X1mmXh/F9bNd6ub5QUQcFBFviYh/rRv+uog4sSyD729jOfVl+aER8e261z+O4jzmhxGxb7v7ToWyLLs2Ik6muL61WxTngKvLMu49ddOujeIc8aqyjNmvHH5YFL/Jry5ze2kUrTO+FxFnRdGbxj9HxKuiuAa2JsrWglHX2i4i3lZ+/tdExBlTLPvRUbY0iYjFUbRm/Uk5/unl8NeV6z6/XP+/tbE7zgReUr5+GfDlum1/VBTn0FdFXevDcju/U36nboiI0+vm6Ym8taKld11AcUH6xrLwfEa0vmDRyr7ASZn5e8D9wFHl8M8Cx2Xmk4DRZjNPFhE7A4cC15WDngS8OjMPmzTpG4C9gSdk5oHAFzuwLepiUbQSeR5lZQWwP3B6Zj4BWA/8HfDszDwYWA28PSIeCvwJ8HtlnvxzOe9HgRMz84kUOXtq3aoeAzwXOAT4hzKv3kXZWiUz39FGrEuAZ9XFegjw7sw8YNJ0z6No9fL7mfl4oHaR+xTgLWUe/xWtW9KoNywEvg68MDMn3wG3nOLu/7cB3wBOpLhI/biIOIjizpfdM/Oxmfk4ijJ2Oq6kyG2ApcC1mfn7mfmDumnOorhDr+alwFcj4nfL108p79waBV5Rt6xLyvy9CHj9NOPS3BZANhn+feDpFBUr3wSWlWXnXpl5QzndZZm5tryj62pgL4qy/7HAt8qT+78D6i9gdLQJu+adk4BXRMRDJg3/OMU5x4HAF4H/aDRzZv6WohLx+eWgY4CzM3OY5sf2HwCHluczXwHeWbfIlcALMvPl27phqtzimOge5L+nmjCKu7S3Oq/dhnV/iaK1Vq1nij8FPle+PoDit9zjgE3A/4uIhRTnykeV+XoG8E/TXGf9eQcAEfFYivPyJ5fnEwMU35GVwC6Z+bjMfCwTFYunAG8sY/gbiu+hqjNfcviPmPgNt1UOZubFwHkULWAOyszbyml3zMynZ+ZHKMr3U8tjxpnAtLp9UlPbfD2rjdzclJlPzcyvtBtUed66qSzjoMjP+t9q92XmIcCnmOiZ4z+AD2TmKoqLyvXXI1rZleIGpRcCtQvXR1NcH3sscDzQqAeNM9myh5iXsvV5czvLmeynwFPL85h/YuKai6bnAOAzmfmEzLwDeFeZH48HnhNbdvX963J/n8pE/r4DeEN5fH06RXlIOf+bgMcBr6P4rfVE4PNAo1aD7wQOKn/f18Y3W3bNW4Ghshx+JfCFmOgK7fEUeXUgcGzUdS3aRH2eHknxO7HmV8Bzym1/BVuejx9cbucBwO9G68rLrspbuw7rUZn5YBTdbTwN+AOKQvWfmbhgAdBPkbztujUza/3lXQHsVdYW7pCZtedQfImiiedUnhZF1yFjwPsy87qIeCLwrcy8t8H0zwZOrjXLzcx7ywPbtmyLutPimOiT8WLgM8DDgV9k5iXl8EMpCtQflp/9IPBj4AGKg8CpEfFN4Nxy+mcDB5TTAuwYE31Hf7O8S2ZzRNwFTOcO/UeVsSbw9cz8nyju6rosM29tMP2zgc9m5gYYz+NlFCc0Z9bFt3AaMah7DVO0dHot8OeTxn0jMzMifkJx4lRr/XQdxcXl7wP7RNHC5JsUPzSmI+pejwJnT54gM9dFcWfUocDPKS5o/5DihGUlcHmZk4uBu8rZhpj4Xl0BPGeacWluu46JGzCA4g5/YE/gKmAVcAvwLYo75l7Pli1gNte9HqU4Bw3guvJGjkbWdyRyzUuZ+UB5F9xbgY11o57EREX0F5i4MaKRUyl+pH6N4mLL61sc2/egqNTejeL8pf584ZzMrI9DvWs63S41O6+dkcz8bRR32j8vIm4BRjPz+oh4NMVvudr59BkUN7NdSHGzx7frflOtneZqo8GwZwNPBFbXnU/cDpwP7B8RH6W4gH1B+XvyUODsuu+M1yGqNddz+MQouvK5i6Lcnm4O1l+Y/30mrn+czvQrKtVAh65ntcrNmd6w8xngTyPirylawzyhblztjvwvUvSUAUV5uH9dbi2PiMVtHvO/lpkJrImJ53A+HfhyeXPS2ii6091CZv5feXf/KorW5XsDl1LsM9pdTgM7AadHxKPamFbN3ZyZl9e9f1lEvJai3Hk4Rd5eX46rdU9/BUVlBBS/2z8SRU8qZ5ffF4BLM/PXAGX5eX45/U8ozm8nuw44IyK+TnEuO9Wya54KfBCgvJZ7J2XLQODb5Y1IRMTPgEcAd06xH9YB6yPiGGANW1an1QcSAAAIB0lEQVTqLAQ+HhGPp2iJXp9zl2Tmr8r11G7Qu4TmuipvPcHpYVn0v3ghcGF5Qe9NTH3BopXJF0EW0/jEupWLM7NRZUyzCyaN7pJtdfFFvWmrk/qyUK/PjaColHvZ5Jkj4hCK1iXHUNTIH0bRMu9Jk09kyuU2urDXrpub/ACZTh73AfdP44eMescYxR1L346Iv83Mf60bt7lums2T5hnIzPvKE4rnUpTbLwH+bBrrfgLwnfL1ppzU53Cdr5bL/hnFMzMyii/G5zPzbxpMP1ye6MP0vy+a+74DvC8iXpWZp0fR5dyHgM+VF7Rvp8i3fwJWAP9e/k3lBmBFRDwpM39c3sm4X2Ze12I+qV0fobgbf6qWg41aahUjMn8YRVcyzwD6M/PasoKx2bH9Y8CHM/Oc8uaME+rGWXE4t42wZW8Ri8r/Tc9rt0Htrtfb2DK3J+dylutfk5nb0mf/QWx5Fyrlck/LzL+fPHFEHEjRcv2tFBX0f03RRZDnw91tLuXw2zJz/AHIEbGc6eWg5fV20IHrWa1yc6af45nA31JckP5xZt5fN65Z6+5DctLzM9tU/1ux/tpb03OTOrXferdRXDDPSRfMp1pO/fd9Ud3wfwHOz8xPlJWf/9tGHNraeO5F0Y3Vn1PkyP1RdOFVv89rOTD++zsz/zkizqFoVX15eU5ZPy1sea1hjMa/3Z8LPAN4AfB3UTzntdGy6/NkqmvAM7m+9lWKVubHThr+lxQ3aBwLLAAerBvXbD09kbd2Hdajoug7sr7fuYMomkutiOLBYkTRh/Tvbct6MvM+4Ld1TbWO2ZblNXEBcFyt+XAUXUSNX3wph23ztqhnXELRd3+tP90lUfShuwx4SGaeR9HPf+1E+QLqmklG0TXTVH4L7NBimpm4APizKLrLISIemsXzC26NiBeXw6K8wK45oGy99IcUXdO8tt35omjm3peZZwN/z9QP6KyfL6Lo63w32jt5+C+KZugvY+KOru8AR0fEruUyHxoRj2w3ds1fZSXcnwAvjoifAzdS3JX0t+UkF1O04NpQvt6DieezNFvmEEVz8vdHxDUUXYq1062B1JayJfV/UrQ+rPkRE+ezr6Do7msqp1PcwfrZcplTHdsfAtxRvn71Nm+AesltwEFR9Im/J0VXs9DkvHZbVpSZP6S48/PFbHnH9t5R9CIAxbH/BxR3zO5e3qxERAy2+5uqzO23ATtTtFas923gJeU5DRGxc0Q8IiJWUDz490zgHygedH0f8KvY8vkDng93n9uYYzlct76pcrDVb8NLmHjGwLEU3etqG3XoelbHcxPGf+N9l6KLw8k3atQeGP4yiooYKMrDN9UmaON6RCsXAceUebo7xYXyRmpdRR9D49Y7Uy3nNopeDmDLFuv15zGvmVH0mmxHinLmgShaPD+31QwR8ajMXJOZ/0bRc8D+011peVPcHpn5XYruwlYAS9pY9kWUXYtH0e34bsBN011/nbMpWo9PPo94CPCr8jfmq2nvJv/b6IG8taKldy0DPh/lg8Epmp69h9m5YPFa4JSI+DFF8v+mA8usdypFc8c1Zdwv9+LL/JWZ6ygKxy+XuX0JRb/QOwDnlsO+z8QDbt8KrIriAWDXA8e1WP49FM2Lr426BzF2IO7/Bc6h6ELhaoo+26E4SL22zOPrKO4m0BxRXsQ7guIOkXY/290p7ty6mqJP6katS+p9sMyfGym66fiDdu6YKn9UXg88MjMvK4ddT9GX8QXld+lbFCdPUkuZeXtm/lFm7puZj8rMt+TEQ0z/PjOfXL6+MzMjM68s319Y39I1M9+cmZ8rX1+dRT/oj8/M38vMT5fDn5mZq7f7Rmou+hB1D4ClOG/407IMfCVbd/842Rcpnr315bphzY7tJ1B0KXYxcPe2h64e8kOKruJ+QtGar1b+NTuv3VZnARdlZv3vsusouklaQ/HctVPKMvpo4MNlvl5F0RXSVE4sp72B4uLnYVk8m2hcFt2i/iNFy941FDccPYyiO8mLynOcTzNRGX8MxY11te9Mq66otf3NpRxupFkOfhn42yieV7NXg/neDLyhjOmlTPwG1bbZ5utZs5ibUBz7h5noRaBmSURcRvHMk78sh72JosKndj1iW59zeRbF9bFrKSp7Glbuldc1bgJ2q51zT2M5JwCfKM9X6n9Xvp/it+cPUadcSfGb/FqK42I7+/avyutVayienz3drsahaAXypXIZVwLvL7v9arXsj1F0+f8Tiu/Bq2bYWguAzPxNZr4/y0dF1Pk48LqIuAR4JFu2YmnmBHogb2OilxCpsYhYlpkPlq/fRVGQt/pRKkmSJPW0iDia4iH2r6w6FqkmIv4X+LfM/H75/tHAWXbPpV5hDqublde9FmbmP9YNWws8dlJXYpK0BftfVzueHxF/Q5Evv6ALmmJJkiRJsykiPkbxrIkjW00rbQ8RsTPFw56vqF2glnqJOaxuFxHfoGidd1jVsUjqPbZo0YxExHMpmmfVuzUz/6SKeKSZiIjHAV+YNHhzZs6kObo0YxFxEvCUSYM/mplTPcBZktQBEfFuimcF1DszM/+ling0v0TEpcDCSYNfWXbPNVvrPBk4dNLgD2fm6bO1Ts1d5rC6WRW/syLiddQ9R7Z0UWa+dbbWKVUhIlazdSOOl5ddls9LVrRIkiRJkiRJkiTNUF/VAUiSJEmSJEmSJPUqK1okSZIkSZIkSZJmyIoWSZIkSZIkSZKkGbKiRZIkSZIkSZIkaYb+P6v9gb1FdID4AAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 1620x1620 with 90 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sns.pairplot(final_df)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABCoAAATJCAYAAAARhffmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd5hU1fnA8e/ZWWCBpcPSQWmjCNhQsYu9a5Ro/GmMGjWxpZlobImxJ7YkajTYjSUqRiUKijUQBTtiHcGCoFKlSVt29/z+mKUsdTfszA4738/z7MPce8+dee+93CnvPee9IcaIJEmSJElSLiio6wAkSZIkSZKWM1EhSZIkSZJyhokKSZIkSZKUM0xUSJIkSZKknGGiQpIkSZIk5QwTFZIkSZIkKWcU1nUAm4i7gEOBGUC/Oo4lHxwI/AVIAHcA16y2vBtwL9Cyss1vgRFAg8r225H+v30fcHV2Qq4fkslklX2fSqWuWW15I9L7dXtgNnBsKpX6IplM7kf6ODUESoHfpFKpFyvXORa4qPI5n06lUudla3s2dclkMpA+HgcDi4CTUqnU22tptz1wD9CY9Lnw81QqFZPJ5DbAbUARUAacmUqlXk8mky2A+0mfS4XAdalU6u4sbFK9UJ3jkkwmmwCPAj2BcuDfqVTqt6u1GVLZZodUKvVmNmKvb6rxnnUScC3wVeWsm1Op1B2Vy8qB9yrnf5lKpQ7PStD12xrnBrDGexbwMtARWFw5vT/p71jLrTg3AM+N/83GHouTWO3cIf0dSzVUg8/yZ0gfi0JgDHBWKpUqTyaTDwPJymYtgbmpVGqbrAQv1SF7VFTPPaR/PCvzEsAtwEFAX+C4yn9XdTHwCLAt8APgb5Xzvw80AvqT/iH9E2CzjEdcTySTyTX2fTKZXH3f/xiYk0qlegE3An+snD8LOCyVSvUHfgT8o/I525D+orNPKpXaCmifTCb3yfjG1B8HAb0r/04Hbl1Hu1srly9vu/z96k/AHyq/0PyuchrgLODDVCq1NbAXcH0ymWyYiQ2op6p7XK5LpVJbkH6v2jWZTB60fEEymWwG/Ax4LcOx1lvVfM8CeDiVSm1T+bfqD63Fq8w3SVE7qntuABwPbFP5t2qSwnOjdtTGsXh4lfkmKf531T0Wx1R+LvcD2pH+XksqlTp2+XsV8Bjwr8yHLNU9ExXVMxr4tq6DyBM7ApOAz0hfmf8ncMRqbSLQvPJxC+DrVeY3JZ2Jbly5/vwMx1uf7AhMSqVSn6VSqXXt+yNI92YBGAbsk0wmQyqVeieVSi0/Dh8ARZW9L3oAn6RSqZmVy54Hjs7oVtQvRwD3pVKpmEqlxgEtk8lkx1UbVE43T6VSY1OpVCTd4+XIysXrO1eaVV7lKSb9/laW2U2pVzZ4XFKp1KJUKvVS5eNS0lcyu6zS5HLSiaMlWYq5PqrOe5ay6wjS70ERGEf66m/H9a6xJs+N2lEbx0K1Y4OfGQCpVGr5d9ZC0j1U46rLKz+zjwEeynC8Uk4wUaFc0xmYssr01Mp5q7oUOKFy2QjgnMr5w4CFwDfAl8B1mGCqiers+xVtUqlUGTAPaLNam6OBd1Kp1FLSSactksnkZslkspD0D+iuGYi9vqruMZm6jja/AK5NJpNTSJ8PF1TOvxnYknTi4j3SQ0Uqajf0eq06x2WFZDLZEjgMeKFyelugayqVeiqTQeaB6h6Ho5PJ5IRkMjksmUyu+v5TlEwm30wmk+OSyeSRa1lPNVeTc+NuYDxwCelhCpDufdQV8NzYeBt7LCD9eT6B9PcrP7v/d9U+Fslk8lnSvVoWkN7vq9odmJ5KpSZmIkgp11Q7URFCaB9CuDOEMLJyum8I4ceZC015KqxlXlxt+jjSw3G6kB7v9w/S/5d3JD0WvBOwOXAu6Sv6qp7q7Pv1tkkmk1uRHg7yE4BUKjUHOIN099ExwBd45b4mNvaYnAH8MpVKdQV+CdxZOf8A0l9KO5Hu0ntzMplsvsazaF2qc1wAqEzQPQT8NZVKfZZMJgtID5s6N4Px5YvqHId/A5ulUqkBpHt03bvKsm6pVGog8H/An5PJZM/MhJlXqntuHE96mObulX8/JP057rlRezbmWEDluQOs7dxRzVT7MyOVSh1AuudLI2Dv1RYfh70plEdCjGs9T9ZsmE5Q3A1cFGPcOoRQCLwTY+y/jvankx6HBXtsvj19S2on4jrSvXVHnjrrOvpffnxdh7JRWnRpUdchrNcOnbfkt7ufwNH/vAiAX+5yLAA3vvrwijZjTx/KkIcu4qsF6dEE48+8h33v+Tnn734Cb371MQ+//wIANx/6K57/9E2e+Gh0lreiemZd8Ou6DqGK8e98xi23jOD2O84G4PahzwJw2ukHrGhz2qk3c9ZZB7PNtj0oKytnz90v5L+vXkMIgWnT5nDKSX/liqtOYLvt1v59/5FH/suXk2fx69/k1sXLwgWz6jqEFR549HUeeeItAPr37cyggZtz6AHpt9kDhtzEP247iZK2zVa0nzFrASeecQ/PPJruWPTUs+/x+ttfcNkFh7H94Kt588XfEkIgxsj2e1/N2y9dyOm/fIDTT9yNgdt2B+DEM+7h12fvy4CtulDX4tTcvFD0wMgUjz73KQD9e7Vmp/4dOHT3zQA48Ozh3HfZfpS0brzGehfePJYmRQ24+NSBACxYWMp+Zw6nSVG6lvWsuYtpUdyIv12wJ/17rd45qe6dP3fqhhvVkW8nzePjJyezy7kDAPjk6S8B6HNIt7W2jxWREee8wiG37LbGsrfv/JgOW7eh08B2mQt4I/1hRG4ei8ROh1K4Q/pzomLqRCo+e5fyCf8BoNEvhrL0zvNhwZx1r7/tvhR06c2yUfdSdO6dxNL0iI9Q3AoWL2Dp/ZcRv8qt94VYXr3vztlWOOhQCndMlyiqmPoJ5Z++S/m76WNRdO7tLBl63vqPxfb7UtC5N8uGr1ZCIRTQ+PePsPjSIRmL/X9VtFtudvR44L9fMey1bwDo17UZg3q14pDt0r+FDrrmde49c2tKmjda5/pPvDGN96Ys4JKjegNQVh7Z67KxDPvl9nRoue716lrBoUPXlpSpN8IZg3Lz5N9I8dZxOXncajL0o22M8RGgAiDGWEb66vVaxRiHxhgHxhgHbupJCmXP21+n6Nm6M91btKdBQSFH992LkZ+Mq9Jm6vwZ7Ll5uthxnzZdaVTYkFmL5jF1/kz22Cw9v0mDRgzstAUTZ09Z4zW0dv36d+fLyTOZOnUWpaVljBjxNoMHD6jSZvDg/jz5ZLq+2ahn32GnQX0IITB//iLO+Olt/OJXh6+RpJg9ewEA8+Yt4p8PjWHIkJ2zs0GbqOO/vyNPPnAGTz5wBvvuuQVPjHiXGCPj35tCs+JGVZIUACVtm9G0SSPGvzeFGCNPjHiXffZIFwcvadeM19/+AoBxb3zOZl3TP4Q7tm/B2Dc+A2DW7O/4/MvZdOncKnsbuQk6/qAkT9xwME/ccDD77NiVJ1/+LH1cUrNo1qThWpMUf35wPAsWLePCU7ZfMa9Z04aMu3cIL/79SF78+5Fs3adtziYpcl3LzZuzcPpiFs5cTEVZBV+9NoMO21Tdj0vmLl3x+Jt3ZtOsYxMAShcuo3xZerTT0gXL+HbifIorl6lmyl97iqU3n8PSm8+h/KOxJLZN10sOXZOwdOGaP4wLCqBJZQeuggSJLXakYvpkWLqIJVcdx9LrTmbpdSdTMeXjnExS5LKycU+x5K9ns+SvZ1P2wVgKt0sfi4KuWxCXVOdY7EScPjk93WzlZ0Ki7yAqZvh9qiaO360zj587kMfPHcg+/dry5FvT0p8Zk+fTrKhwjSTFwqXlzJiffr8qK4/856Nv6VGy8j1p7MQ5bF7SJKeTFFJtq8ntSReGENpQ2VUphDCI9Pj0eu/BUy5jrz7b0ba4JVOuGs7vn7qdu179d12HVS+Vxwp+8+wtPHbcVSQKCrj/3VF8PGsyF+5xIu988wkjJ47j4ueH8peDf8GZOx5FJHLmv68D4I43h3PLYecy9vShBOCBCaP4YMbndbtBm5DCwgQXXXwMp596CxUVke8dNYhevTty01+fYqt+3dh77wEcPWQXfnv+fRx4wKW0aNGU664/GYAHHxjNlC9nctutz3Dbrc8AcPsdZ9OmTTOuvmoYqVT67mZnnHEgm23evs62cVOz5669+c+rE9nvqL/SuKgBV12ysk7gEcffypMPnAHApecfwgWXPcGSpWXssUsv9tglfQXm8gsP46obnqGsrIJGjQq57ILDADjzx3twwWVPcNhxfyPGyK/P3pfWLZtmfwM3UXtu34nRb3/F/mcOp6hRgqvOXpl8O/JXI3jihoOZNmsRtw37gB6dm3PUr0cCcPxBffj+fr3qKux6pyARGHBCL8be8B6xItJttw4079yUjx7/nJabNaPjtm357PmvmDZ+NqEg0LC4kG1/vAUA332ziPH3TiQEiBF6H9yV5p09BzZWReoNYp8daPSrO2HZUkr/deOKZY3OvomlN58DiQY0OulySBRCKKDi0/GUv/FMHUZdP1Wk3qBiix0o+s1dsGwJpY+uPBZFP7uZJX89GxINKDrlivSxKCigfNI7lL2ePhYNdjmCRN9BUFFOXLSA0kevr6tN2eTtuWVrRn/0LQdc/TpFDRJc9YPkimXfu/5NHj93IItLyznrrg8oLaugvCIyqFdLjt2504p2I96ZwSHbeuFX+aUmQz+2A24ifcuc90nfNmdIjHHCBtetp91kNkW5PvQjn+Ta0I98lktDP/Jdrg79yFe5PPQj3+Tq0I98lKtDP/JRrg79yFcO/dg05erQj2r3qIgxvh1C2BNIki4Kk4oxLstYZJIkSZIkKe9UO1ERQjgLeCDG+EHldKsQwnExxr9lLDpJkiRJkupYKMjJjgf1Vk2KaZ4WY5y7fCLGOAc4rfZDkiRJkiRJ+aomiYqCEMKKNFIIIQE0rP2QJEmSJElSvqrJXT+eBR4JIdxG+s4fPwUs0yxJkiRJkmpNTRIV5wM/Ac4gXUxzFHBHJoKSJEmSJClXWKMiu2py148K4NbKP0mSJEmSpFq3wURFCOGRGOMxIYT3SA/5qCLGOCAjkUmSJEmSpLxTnR4VP6/899BMBiJJkiRJkrTBREWM8ZvKO3zcGWPcNwsxSZIkSZKUM6xRkV3Vuj1pjLEcWBRCaJHheCRJkiRJUh6ryV0/lgDvhRCeAxYunxlj/FmtRyVJkiRJkvJSTRIVT1f+SZIkSZIkZUS1EhUhhG1J96L4IMb4UWZDkiRJkiQpd1ijIrs2WKMihPA74GHgaODpEMJpGY9KkiRJkiTlper0qDgW2CbGuCiE0AZ4Brg9s2FJkiRJkqR8VJ27fiyJMS4CiDHOruY6kiRJkiRJNVadHhU9QwjDKx+H1aaJMR6ekcgkSZIkSVLeqU6i4ojVpq/LRCCSJEmSJOWiECymmU0bTFTEGP9TnScKITwWYzx640OSJEmSJEn5qjbrTfSoxeeSJEmSJEl5qDYTFbEWn0uSJEmSJOWh6tSokCRJkiQpb4UCa1RkU232qPDISZIkSZKkjVKbiYrza/G5JEmSJElSHqr20I8QwnusWYdiHvAmcEWMcVRtBiZJkiRJkvJPTWpUjATKgQcrp39Q+e984B7gsNoLS5IkSZKk3GCNiuyqSaJi1xjjrqtMvxdCeCXGuGsI4YTaDkySJEmSJOWfmtSoKA4h7LR8IoSwI1BcOVlWq1FJkiRJkqS8VJMeFacCd4UQiknf4WM+cGoIoSlwdSaCkyRJkiRJ+aXaiYoY4xtA/xBCCyDEGOeusviRWo9MkiRJkqQcYI2K7KrJXT8aAUcDmwGFIaQPVIzxsoxEJkmSJEmS8k5Nhn48Sfp2pG8BSzMTjiRJkiRJymc1SVR0iTEemLFIJEmSJElS3qvJXT9eDSH0z1gkkiRJkiQp79WkR8VuwEkhhM9JD/0IQIwxDshIZJIkSZIk5QCLaWZXTRIVB2UsCkmSJEmSJKqRqAghNI8xzgcWZCEeSZIkSZKUx6rTo+JB4FDSd/uIpId8LBeBHhmIS5IkSZIk5aENJipijIdW/rt55sORJEmSJCm3WKMiu6oz9GO79S2PMb5de+FIkiRJkqR8Vp2hH9evZ1kE9q6lWCRJkiRJUp6rztCPwdkIRJIkSZIkqTpDP45a3/IY479qLxxJkiRJknKLNSqyqzpDPw5bz7IImKiQJEmSJEm1ojpDP07ORiCSJEmSJEkF1W0YQmgfQrgzhDCycrpvCOHHmQtNkiRJkiTlm+oM/VjuHuBu4KLK6U+Ah4E7azkmSZIkSZJyhjUqsqvaPSqAtjHGR4AKgBhjGVCekagkSZIkSVJeqkmiYmEIoQ3pApqEEAYB8zISlSRJkiRJyks1GfrxK2A40DOE8ArQDhiSkagkSZIkSVJe2mCPihDCDiGEDjHGt4E9gQuBpcAoYGqG45MkSZIkSXmkOkM//g6UVj7ehXQxzVuAOcDQDMUlSZIkSVJOCCHUy79cVZ2hH4kY47eVj48FhsYYHwMeCyGMz1xokiRJkiQp31SnR0UihLA8obEP8OIqy2pS40KSJEmSJGm9qpNoeAj4TwhhFrAYGAMQQuiFd/2QJEmSJEm1aIOJihjjlSGEF4COwKgYY6xcVACck8ngJEmSJEmqa6Egd+s51EfVGroRYxy3lnmf1H44kiRJkiQpn1WnRoUkSZIkSVJWmKiQJEmSJEk5w7t2SJIkSZK0HtaoyC57VEiSJEmSpJxhokKSJEmSJOWMrAz9aNGlRTZeRtUwb+q8ug5BlT6b/25dh6BKfVpsX9chqFLpFi3rOgStosv739R1CKqU6Fhc1yGoUsW8pXUdgpYrTNR1BJIyxBoVkiRJkiSthzUqssuhH5IkSZIkKWeYqJAkSZIkSTnDRIUkSZIkScoZJiokSZIkSVLOsJimJEmSJEnrYTHN7LJHhSRJkiRJyhkmKiRJkiRJUs4wUSFJkiRJknKGNSokSZIkSVoPa1Rklz0qJEmSJElSzjBRIUmSJEmScoaJCkmSJEmSlDOsUSFJkiRJ0npYoyK77FEhSZIkSZJyhokKSZIkSZKUM0xUSJIkSZKknGGNCkmSJEmS1sMaFdlljwpJkiRJkpQzTFRIkiRJkqScYaJCkiRJkiTlDBMVkiRJkiQpZ1hMU5IkSZKk9bCYZnbZo0KSJEmSJOUMExWSJEmSJClnmKiQJEmSJEk5wxoVkiRJkiStRwjWqMgme1RIkiRJkqScYaJCkiRJkiTlDBMVkiRJkiQpZ1ijQpIkSZKk9QgF1qjIJntUSJIkSZKknGGiQpIkSZIk5QwTFZIkSZIkKWdYo0KSJEmSpPWwRkV22aNCkiRJkiTlDBMVkiRJkiQpZ5iokCRJkiRJOcNEhSRJkiRJWqsQwoEhhFQIYVII4bdrWd4thPBSCOGdEMKEEMLBG/uaFtOUJEmSJGk98rWYZgghAdwC7AdMBd4IIQyPMX64SrOLgUdijLeGEPoCI4DNNuZ17VEhSZIkSZLWZkdgUozxsxhjKfBP4IjV2kSgeeXjFsDXG/ui9qiQJEmSJElr0xmYssr0VGCn1dpcCowKIZwDNAX23dgXtUeFJEmSJEl5KIRwegjhzVX+Tl+9yVpWi6tNHwfcE2PsAhwM/COEsFG5BntUSJIkSZK0HgX19BJ/jHEoMHQ9TaYCXVeZ7sKaQzt+DBxY+XxjQwhFQFtgxv8aVz3d3ZIkSZIkaSO9AfQOIWweQmgI/AAYvlqbL4F9AEIIWwJFwMyNeVETFZIkSZIkaQ0xxjLgbOBZ4CPSd/f4IIRwWQjh8Mpm5wKnhRDeBR4CTooxrj48pEYc+iFJkiRJktYqxjiC9C1HV533u1UefwjsWpuvaaJCkiRJkqT1SIS11ZRUpjj0Q5IkSZIk5QwTFZIkSZIkKWeYqJAkSZIkSTnDGhWSJEmSJK1HosAaFdlkjwpJkiRJkpQzTFRIkiRJkqScYaJCkiRJkiTlDBMVkiRJkiQpZ1hMU5IkSZKk9UgEi2lmkz0qJEmSJElSzjBRIUmSJEmScoaJCkmSJEmSlDOsUSFJkiRJ0nokvMSfVe5uSZIkSZKUM0xUSJIkSZKknOHQD2CfHgO5Zv+fkggJ7hs/kj+PfaTK8i7N23HrYb+hRVFTEqGAS1+6i+c+fYPCggQ3HfJLBnToRWFBgn++9zw3vvpwHW1FfrjzhxdxaP9dmbFgDv0vP76uw8krb42dwu03jKWiIrLf4Um+/6Ntqix/4sEJjHoyRaKwgOYti/j5xXtQ0rFZHUW76Ro95gOuvPIRKioq+P6QXTn99AOrLC8tXcZ559/DBx98ScuWTbnxhlPp0qUtAH//+zMMe+wVCgoKuPiiY9h9960AuOee53l02CuEEOjTuxNXX/0jGjVqwP33v8S9973Il1/OZOzY62jdqjjr27up+O+Yj/jj1f+iojxy1JBB/Pi0fassLy0t46Lf3s+HH0ylRcsmXHvDj+jcuc2K5d98PYcjD7uaM846kJNO2RuAf9z7Mv8aNg4C9O7Tkcuv/D8aNWqQ1e3a1E0eP5v/3j2RiopI3306sv2Rm6213aRxM3j2hvf5/tUDKenZnNSYabwz/MsVy2d/+R3H/HEH2m3me9bGiDFyzeivGTN5PkWFBVyxb1f6ljRZZ/tznvqcqfNKefz4JAC/HvkFX8xdCsCCpeU0a5Rg2HHJrMReHxXufxoFPbeHZUtZ9tRfiNM+W6NNwxOugOLWUJbe76UPXgqL5hG69qXB/qcSSjZj2ePXUfHxq1mOvv6IMXLVvyYy+sPZFDUo4Krj+7JV1zXfa067dTwz55dSVhEZ2KMFl3w/SaIgcPPIz3h07Ne0Lm4IwC8O6cGeW7XN9mZIWZf3iYqCUMB1B57FkQ9ewNfzZ/HSKTcxcuI4UrNWfoH59W7/x+Mfjeaut58i2bYbjx57OQNu+RFHbrkHDRMN2PX2n9K4sBGv/WQoj33wMl/Om16HW1S/3TP2aW5+eRj3nfS7ug4lr5SXV3Dbta9w+U0H06akKb866Ql22r073Xq0WtGmR5+23HBvX4qKChnx2IfcffPrnH/lPnUY9aanvLyCyy57iLvv+jnt27diyPevZu+9B9CrV6cVbR4d9grNmzfhuVGX8/TTb3Dd9Y/z5xtPY9Kkr3l6xBs8/dTvmD5jHief/GeefeYyZs2ax33/eIkRT/+eoqKG/PwXQ3n66Tc46qhd2G67nuy1V39OPPGGOtzq3FdeXsFVVwxj6B1n0L59S4479gb2GtyPnr06rGjzr8fG0bx5E55+9mJGjnibP1//b6694aQVy//0x8fZbfctV0xPnz6XB+4fzRP//i1FRQ359S/v4ZkRb3PE93bK5qZt0ioqIqPvTHH4xdtS3KYRj17wJpsPbEfrLk2rtCtdXMaEkVNo37v5innJ3TuQ3D19/GZ/+R0j/jTBJEUtGDN5AZPnLuXpH27BhOmLuOLlr3jwmN5rbfv8pLk0blC1Y+91B2224vG1Y76muJEdf/9XBT23J7TuSOmtPyV06kODA8+g9J7frLXtsidvIH4zqerM+bNY9u+/ULjT97IQbf02+sPZTJ65iGcuHsS7k+dz2aMpHv7VwDXa3XhyP4qLCokx8vO73ueZ8TM4ZLv2APxor26csne3bIeu1SRCqOsQ8krefwJs3ynJZ99+zeS501hWUcZjH77MwX12rtImxkizRukrAs0bNeWb775dMb9pwyISoYCiBg0pLS9j/tJFWd+GfDJm0ni+XTi/rsPIOxM/nEnHLs3p0Lk5DRok2GO/nrw2enKVNgMGdqKoKJ37TPYrYfaMhXUR6iZtwoQv6N6thK5d29GwYSGHHLwDL7wwoUqbF1+YwPeOTL9HHXDAdowd+zExRl54YQKHHLwDDRs2oGuXtnTvVsKECV8A6R/aS5Yso6ysnCWLl1FS0hKAvn27reiNoXV7/73JdOvWli5d29KgYSEHHrQtL734XpU2L7/4HocfuQMA++2/Na+Nm0iMEYAXn59Aly5tqiQ2IH1cli4/LktKaVfSIjsbVE/MmDSfFh2a0KJ9YxKFBfTepYTP35i5RrvXHv6M7Q7vTqLB2r/yfPLf6fTetX2mw80LL302j8O3bEUIga07NGXB0nJmLly2RrtFpeXcN34mP9lh7fs9xsizk+ZycJ9Wa12uDSvosyPlE14CIH79CRQ1heLq7884bwZxxmSIFZkKMW+8+P4sjtihAyEEttmsBfMXlzFj3tI12hVXfocqq4gsK6/An8TKd3mfqOjYrA1fLVj5xebr+bPo2KzqF/drxtzPMf325oNz7ufRYy/nvGdvAeDJj8ewsHQJqZ8/xPtn389Nrw1j7pIFWY1fyobZMxbStv3KYQFtSpoye+a6ExHPDU+x/c5dshFavTJ9+hw6dFz5RbJ9h5ZMnz6napsZc+lY2aawMEGzZo2ZM3fhOtdt374Vp5yyL4P3vpDddj+f4mZF7LZb3+xsUD0xffo82neoum9nzJi3zjaFhQmKmxUxd+5CFi1ayl13vsAZZ1YdwtO+fUt+dPJg9t/nD+yz5+8oLm7MLrtukfmNqUe++3YpxW0arZgubtOIhd9W/fI/8/MFfDdrKZttv+6E3KSxJipqy4yFy+hQvHL4UvviBsz4bs1ExU2vTeNH25ZQVLj2r6Fvfb2QNk0K6d6y0VqXa8NCszbE+bNWTMf5swjN2qy1bYNDz6HhqTeS2O2YbIWXV6bPXUqHlkUrpju0aLTWRAXAqbeOZ7eL/kvTRoUcsE3JivkPjJnKEde8xkUPfsS8RWueU1J9VO1ERQihTwjhhRDC+5XTA0IIF2cutOwIa8tXVl4FW25I3714aMJzbHXTCXz/4Uv4++HnEQhs3ylJeaxgi7/+H1vfciJn73Q03Vt2WPP5pE1cXMu8dfV+e2nkRCZ9NIujTtg6ozHVR2vfz1V3dIxrtgrrWXfevIW88MIEXnj+CsaM/iOLF5fy5PDXaiXevLGWnbvGZ8fa2oTA325+hh+euBdNmlb9wTV/3iJeevF9Rj73O55/+TIWL17KU8PfrMWg88AG3phiReS/905k1xN7rfMppk2cR2HDBG26WZ+lNtwO+JsAACAASURBVKzl7YnVT5WPZy5mytxS9um57h5EIz+Zy8G9W9ZucPlmbR/SazlApU/eQOntP6f0vgsp6NqXgv6DsxBcfqnJd6g7ztiG0ZfvSmlZBeM+SV+o+MGuXRh1yc48ft6OtGvekD89MWntK0v1TE1qVNwO/Ab4O0CMcUII4UHgirU1DiGcDpwO0PiIvjTcITevrn69YBadm7VbMd2peVu++W52lTYnbHMgQx66CIA3vvqIosKGtGnSnCFbDeaFT9+krKKcWYvm8drUD9m2Yx8mz52W1W2QMq1tSVNmTf9uxfTsGQtp3bbpGu3Gv/4Vj9wznqtvPZQGDRPZDLFe6NC+FdO+WdmDYvq0uSuGaaza5ptv5tChQyvKyspZsGAxLVs2Xee6r479mC5d2tC6dXr8/f77bcs773zKEYdbC6G62ndowfRpVfdtu5Lma23ToUNLysrK+W7BElq0aMJ7Eybz/Kjx3Hj9cBYsWEwIBTRq1IA2bZrRpXNrWrdO/0DeZ78BjB//OYcevua4Za1dcZtGfDd75VXJ72YvpWmrhiumS5eU8+2UhTzxh3cAWDS3lKf/NIFDzhtASc/08Zv0ygx7U2ykhybM4rEP0t+b+pU0YdoqPSimf7eMkqZVC8S+O20hH85cxAH3fEhZBXy7uIyT/zWJu49KJ5TKKiLPfzqPh3+w9toWWrfE9geT2HY/ACq+nkRo3nbFj+TQvC2xcuhyFQsq55UupuKD0RR06k3Fey9lJ+B67IExUxk29msA+nVrxrS5S1YsmzZvKe2ar7u3UKMGCfbu35YX35/Jrlu0pm3zle9r39+5Ez8dOmGd6yqzrFGRXTUZ+tEkxvj6avPK1tU4xjg0xjgwxjgwV5MUAG9/naJn6850b9GeBgWFHN13L0Z+Mq5Km6nzZ7Dn5uk7HPRp05VGhQ2ZtWgeU+fPZI/N0vObNGjEwE5bMHH2lKxvg5Rpvbdsx9dT5jPt6/ksW1bO6Oc+Zcc9qhZ1+jQ1i1uuGcMl1+5Py9aN6yjSTVv//t35YvIMpkydRWlpGU+PeIO99x5Qpc3eew/g8SfGAvDss28zaFCSEAJ77z2Ap0e8QWnpMqZMncUXk2cwYMBmdOrYmnff/ZzFi0uJMTJ27Mf07NGxLjZvk7VVv25MnjyLqVNns6y0jGdGvsNeg/tVabPX4H4Mf+INAJ4b9S477tSbEAL33v8znnn+9zzz/O85/od7curp+3Lc8bvToWNLJrw7ecVxeW3cRHr08AdzTZT0bMa8bxYxf8ZiyssqmPjqDDYbuHKIR6Mmhfz4zt058ZZdOPGWXWjfu3mVJEWsiEwaZ6JiYx03oC3Djksy7Lgke/dowfCP5hBj5N1pCyluWEC71RIVx/Zvy4unbMWzJ/XlviG92KxloxVJCoBxUxaweatGdChuuPpLaQPK3xpB6R2/pPSOX1LxyTgSA9K9I0KnPrB0IXxXdSghoQAaVxaRLUhQ0GsH4swv0cY7fvcuPH7ejjx+3o7s078dT74xjRgj47+YR7OiBCUtqiYqFi5dWbeirLyC/3w4mx4l6QtCqw4TeW7CTHp3XPNCkVQf1aRHxawQQk8qezCFEIYA32QkqiwqjxX85tlbeOy4q0gUFHD/u6P4eNZkLtzjRN755hNGThzHxc8P5S8H/4IzdzyKSOTMf18HwB1vDueWw85l7OlDCcADE0bxwYzP63aD6rkHT7mMvfpsR9vilky5aji/f+p27nr133UdVr2XKCzgp7/ehd//bCQVFZF9D0vSvUdr7v/7m/Tesh077dGdu296jSWLyrjmwucBaNehmEuuO6COI9+0FBYm+N0lx3Lqj/9KeUUFRx+9C717d+Ivfx1Ov37d2WfvrRkyZFd+c97d7Lf/JbRo0YQbbzgVgN69O3HQQdtz8CF/IJFI8Lvf/YBEooCtt96cA/bfju8ddSWFhQm23LIrxx67GwD33fcid9w5ilmz5nP44Zez5579uPKKH9blLshJhYUJLrzoaM447TbKKyo48ns70at3R265aQR9t+rG4L378b2jB3Hh+fdzyAFX0KJlE/503Ynrfc4BW2/GvvtvzbFDriORKGDLLbsw5JhdsrRF9UNBooDdT+nD8CvHEysiWw7uRJuuxbz28GeU9GzG5gPbrXf9rz+aS3GbRrRob2K1tuy+WTNGT57Pwfd9TFGDAq7Yp+uKZUMeSlXrVqMjP5nLwX0c9rGxKia9RUHPgTQ887bK25PetGJZw1NvpPSOX0JhAxoedykUFEJBARWfv0v5O6MACB170XDIBVBUTEHvHYh7HEfp0HPqaGs2bXv2bcPoD2dzwOVjKWqY4Kr/W3kHqO/96XUeP29HFi+t4KzbJ1BaVkF5hEG9W3Hsruk7fl03fBIff/UdAejcpjGXHuMte5UfwtrGO6+1YQg9gKHALsAc4HPghBjjFxtat+WVB1TvRZRx86bO23AjZUXq6iF1HYIq9WmxfV2HoEpLK5ZsuJGy5u/vD6/rEFTpp2Nmb7iRsqJiHYUQlX0Nt++04UbKmoIDb63XYyMG3HdMvfxNO+HER3LyuFW7R0WM8TNg3xBCU6AgxujtLSRJkiRJUq2qdqIihHAV8KcY49zK6VbAuTHGTf7OH5IkSZIkrUuiICc7HtRbNSmmedDyJAVAjHEOcHDthyRJkiRJkvJVTRIViRDCihK1IYTGwLrvrSNJkiRJklRDNbnrx/3ACyGEu0nf+eMU4N6MRCVJkiRJkvJSTYpp/imE8B6wDxCAy2OMz2YsMkmSJEmSckDCEhVZVZMeFcQYRwIjMxSLJEmSJEnKcxtMVIQQ/htj3C2EsID0kI8Vi4AYY2yesegkSZIkSVJe2WCiIsa4W+W/zTIfjiRJkiRJymfVGvoRQigAJsQY+2U4HkmSJEmSckqiwCIV2VSt25PGGCuAd0MI3TIcjyRJkiRJymM1KabZEfgghPA6sHD5zBjj4bUelSRJkiRJyks1SVT8IWNRSJIkSZIkUf0aFUcCvYD3YozPZjYkSZIkSZJyRyJYoyKbNlijIoTwN+CXQBvg8hDCJRmPSpIkSZIk5aXq9KjYA9g6xlgeQmgCjAEuz2xYkiRJkiQpH1Xnrh+lMcZygBjjIsA+L5IkSZIkKSOq06NiixDChMrHAehZOR2AGGMckLHoJEmSJElSXqlOomLLjEchSZIkSVKOShQ4sCCbNpioiDFOrs4ThRDGxhh33viQJEmSJElSvqpOjYrqKqrF55IkSZIkSXmoNhMVsRafS5IkSZIk5aHq1KiQJEmSJClvJSxRkVW12aPCQydJkiRJkjZKtRMVIYQ/bmDeD2slIkmSJEmSlLdq0qNiv7XMO2j5gxjj+xsfjiRJkiRJymcbrFERQjgDOBPoEUKYsMqiZsArmQpMkiRJkqRckCiw0kE2VaeY5oPASOBq4LerzF8QY/w2I1FJkiRJkqS8tMFERYxxHjAPOC6EkADaV65XHEIojjF+meEYJUmSJElSnqj27UlDCGcDlwLTgYrK2REYUPthSZIkSZKkfFTtRAXwCyAZY5ydqWAkSZIkSco1iWCNimyqyV0/ppAeAiJJkiRJkpQRNelR8RnwcgjhaWDp8pkxxhtqPSpJkiRJkpSXapKo+LLyr2HlnyRJkiRJUq2qdqIixvgHgBBC0xjjwsyFJEmSJEmS8lVN7vqxM3AnUAx0CyFsDfwkxnhmpoKTJEmSJKmuWUwzu2pSTPPPwAHAbIAY47vAHpkISpIkSZIk5aeaJCqIMU5ZbVZ5LcYiSZIkSZLyXE2KaU4JIewCxBBCQ+BnwEeZCUuSJEmSJOWjmiQqfgr8BegMTAVGAWdlIihJkiRJknJFokZjEbSxanLXj1nA8RmMRZIkSZIk5blq54VCCH8KITQPITQIIbwQQpgVQjghk8FJkiRJkqT8UpMOLPvHGOcDh5Ie+tEH+E1GopIkSZIkSXmpJjUqGlT+ezDwUIzx2+C9ZCVJkiRJ9VzC375ZVZNExb9DCB8Di4EzQwjtgCWZCUuSJEmSJOWjag/9iDH+FtgZGBhjXAYsAo7IVGCSJEmSJCn/1KSYZhPStyO9tXJWJ2BgJoKSJEmSJEn5qSZDP+4G3gJ2qZyeCjwKPFXbQUmSJEmSlCsSBdaoyKaa3PWjZ4zxT8AygBjjYsCjJUmSJEmSak1NEhWlIYTGQAQIIfQElmYkKkmSJEmSlJdqMvTj98AzQNcQwgPArsBJmQhKkiRJkiTlp2olKkIIAfgYOAoYRHrIx89jjLMyGJskSZIkScoz1UpUxBhjCOGJGOP2wNMZjkmSJEmSpJyRCJZnzKaa1KgYF0LYIWORSJIkSZKkvFeTGhWDgZ+GEL4AFpIe/hFjjAMyEZgkSZIkSco/NUlUHJSxKCRJkiRJkqhGoiKEUAT8FOgFvAfcGWMsy3RgkiRJkiTlgkRNiiZoo1Vnd98LDCSdpDgIuD6jEUmSJEmSpLxVnaEffWOM/QFCCHcCr2c2JEmSJEmSlK+q06Ni2fIHDvmQJEmSJEmZVJ0eFVuHEOZXPg5A48rp5Xf9aJ6x6CRJkiRJqmOJEOo6hLyywURFjDGRjUAkSZIkSZKsXSpJkiRJknJGdYZ+bLRZF/w6Gy+javhs/rt1HYIqJS8YVtchqNKcP3ev6xBU6c/jn6/rELSKk/tuXdchqFKD1qV1HYKWa9q6riPQcovn1nUEkjIkK4kKSZIkSZI2VYkCa1Rkk0M/JEmSJElSzjBRIUmSJEmScoaJCkmSJEmSlDNMVEiSJEmSpJxhMU1JkiRJktYjESymmU32qJAkSZIkSTnDRIUkSZIkScoZJiokSZIkSVLOsEaFJEmSJEnrkfASf1a5uyVJkiRJUs4wUSFJkiRJknKGiQpJkiRJkpQzrFEhSZIkSdJ6JEKo6xDyij0qJEmSJElSzjBRIUmSJEmScoaJCkmSJEmSlDOsUSFJkiRJ0nokLFGRVfaokCRJkiRJOcNEhSRJkiRJyhkmKiRJkiRJUs4wUSFJkiRJknKGxTQlSZIkSVqPgmA1zWyyR4UkSZIkScoZJiokSZIkSVLOMFEhSZIkSZJyhjUqJEmSJElaj4QlKrLKHhWSJEmSJClnmKiQJEmSJEk5w0SFJEmSJEnKGdaokCRJkiRpPQqsUZFV9qiQJEmSJEk5w0SFJEmSJEnKGSYqJEmSJElSzrBGhSRJkiRJ65GwRkVW2aNCkiRJkiTlDBMVkiRJkiQpZ5iokCRJkiRJOcNEhSRJkiRJyhkW05QkSZIkaT0KCqymmU32qJAkSZIkSTnDRIUkSZIkScoZJiokSZIkSVLOsEaFJEmSJEnrkbBERVbZo0KSJEmSJOUMExWSJEmSJClnmKiQJEmSJEk5wxoVkiRJkiStR4E1KrLKHhWSJEmSJClnmKiQJEmSJEk5w0SFJEmSJEnKGdaokCRJkiRpPRLWqMgqe1RIkiRJkqScYaJCkiRJkiTlDBMVkiRJkiQpZ5iokCRJkiRJOcNimpIkSZIkrUdBsJpmNtmjQpIkSZIk5QwTFZIkSZIkKWeYqJAkSZIkSTnDGhWSJEmSJK1HwhIVWWWPCkmSJEmSlDNMVEiSJEmSpJyRt0M/xoz5kGuuGkZ5RQVHD9mF007bv8ry0tJlXHD+P/jgwy9p2bIp199wCp07t+HVVz7ixhuGs2xZGQ0aFHLub45k0KAkACNHvMXQvz9LeXkFe+zZj1//5si62LR65a2xU7j9hrFUVET2OzzJ93+0TZXlTzw4gVFPpkgUFtC8ZRE/v3gPSjo2q6No88udP7yIQ/vvyowFc+h/+fF1HU69NPa/n3DDH0dQUVHB4Udtz49+vGeV5aWlZfzhomF8/OHXtGjRhCuuPZZOnVtRtqycKy99nNRH31BeXsFBh23DSaem1/3n/a/y5GNvEoEjjhrIcT/cpQ62bNP29YTZvH3/JGJFpOeeHel7WPcqyz8b8w3j//kZjVs1BKDPvp3puVcn5kxewBv3TGTZkjJCQWCrw7rTfVBJXWxCvfHGq19w63X/oaIicuCRW/GDk3aosnzC219x2/X/4bNJs7jwyoPYY9/eAIx/cwq33TB6RbspX8zhwqsOYte9emY1/vokxsiVt7zC6NcnU9SokKvP25uterdbo92Nd73Gk8+lmL9gKW8/ddqK+Vf/7RVee/crABYvKePbuYt548kfZy3++izGyJU3jmL0q59SVNSAqy85lK2SHddod+NtL/HkyPeYv2AJb794Xh1EWj/FGLny5jGMfm1yev+ftw9b9VnLuXHnOJ4clUrv/xE/qbJs5MsTufneNwhAsmdbrr94/zXWl+qbvExUlJdXcOXlj3D7nWfTvn1Ljj3mWgYP7k+vXivftB8bNpbmLRrzzLOXMuLpN7nhuie5/sZTaNWqmFtu/QklJS2Z+MnXnH7aLbz0nyuZO+c7rrvuCR4ddh6tWzfjgt/ex7ixKQbtnKzDLd20lZdXcNu1r3D5TQfTpqQpvzrpCXbavTvderRa0aZHn7bccG9fiooKGfHYh9x98+ucf+U+dRh1/rhn7NPc/PIw7jvpd3UdSr1UXl7BtVf9m5uGnkxJ++acdNxt7L7XlvToufKH7fB/vUWz5o157OlfMWrkBG7587Ncee0PeGHU+5QuK+fBf53DksWl/OB7f2X/gwaweFEpTz72Jnc/+FMKGyT4xRn3susefejWvW0dbummpaIi8tZ9Exl83tY0bt2IUb9/i87btaVF56ZV2nXbqR0DT+xTZV6iYYKdf7IFzTo0YdGcpTz7u7fo2L8VDZs2yOYm1Bvl5RXc/MeXueaW79G2fTHnnPhPdt6jB917tFnRpqRDM3596X4M+8fbVdbdZmBXbnswnWCdP28JJ3/vHrYf1C2r8dc3o1//kslfzeXZe/+Pdz+azh/+MppHbj56jXaDB3Xn+CP6ceCPHqwy/4Izd13x+B+Pv8dHk2ZlPOZ8MXrsp0ye8i3PPnoG737wNX/40zM8cufJa7QbvFsfjh8ykAOPubUOoqy/Rr82mclfzePZf5yQPjf+/DKP/O37a7QbvPNmHH9kfw784f1V5n8xdS5DH3ybB/96FC2aFTF7zqJsha7VFFijIqvycujHexO+oGu3tnTt2paGDQs5+ODteOnFCVXavPjiBI44YicA9j9gW8aNSxFjZMu+XSkpaQlAr94dWbp0GaWly5gydTabdS+hdev01fydd96CUaPGZ3fD6pmJH86kY5fmdOjcnAYNEuyxX09eGz25SpsBAztRVJTOtyX7lTB7xsK6CDUvjZk0nm8Xzq/rMOqtD9+fSpdubejcpTUNGhSy34H9Gf3SR1XajH75Iw45fFsA9t5vK9547TNijBBgyaJSysrKWbq0jMIGCZoWN+KLz2fSb0BXiho3pLAwwbYDN+c/L3y0tpfXOnz76XyKSxpTXNKYRGEB3QaVMPXt6v2gat6xCc06NAGgSatGFDVvwNIFyzIZbr2W+mA6nbq2oGOXFjRokGDP/fvw6n8+q9KmQ6fm9OjdjrCeb5djXpjIwF02o6jIhNHGeOHVLzhivyQhBLbp24H53y1lxuw1P5O36duBkjZN1/IMKz390kQO2btXpkLNOy+M/oQjDhqQPjb9OjP/uyXMmLVgjXbb9OtMSVt7pda2F179fLVzo7RG58ajT3/I/x3RnxbNigBo06pJxmOWckFeJiqmz5hHxw4rr8q3b9+K6dPnVWkzY/o8OnRMtyksTNCsWWPmzq36pjJq1Hi23LIrDRs2oFu3dnz++XS++mo2ZWXlvPDCu0ybNifzG1OPzZ6xkLbti1dMtylpyuyZ605EPDc8xfY7d8lGaFLGzZg+n/btW6yYLmnfnJkzqiaGZk6fT0llm8LCBMXFjZg3dxH77NePoiYNOWSfP3L4/tdy/I92o0WLJvToVcI7b3/BvLmLWLK4lFfHfLLGe5/Wb9GcpTRp02jFdJPWjVg8Z+ka7aa8MYsRF73Bf296n4Wzl6yxfPan86koixSXNM5ovPXZrBnf0a79yh9V7UqKmT3juxo/z8ujPmHwAX023FDrNX3WQjq2W/mZ3aFdMdNn1fziwVfTF/DVtAUM2qZzbYaX16bPXEDH9s1XTHdo15zpM9dMVCgzps9aSMeSVc+NpjU6N76YOpcvps7luHMe49izhjHm9ckbXkmqB6o99COE0A44Ddhs1fVijKfUflgZFuMas0JYvcla2qzyeNLEb7jx+icZesdZALRo0YRLfn8s5/7qLgpCYJttezB1it0WN8aaR2DN47TcSyMnMumjWVx926EZjUmqS2G1E2Dt50jgg/enkigIPP38+cyfv5ifnHQHOw7qyeY9Sjjx5N055/S7adykIb2THUgk8jJfXcuqHpfO27Sl+6D2JBoUMPHFrxg39GP2uWBlfZ3Fc5cy9u8fMej0LdZ7pV81t/o5siGzZy3ki0mzGbhz9w031vqt9btVzf9/j3hpEvvv3sP3plpVO8dG/6O1fFjXZPeXlVcweepc7rvxSKbPXMjxP/8X/77rOJoXN9rwytImrCY1Kp4ExgDPA+UbahxCOB04HeBvt/6c004/5H8KMBPat2/JN6v0dpg+fQ4lJS2qtunQkmnfzKFDh1aUlZWzYMFiWrRMd8eaNm0OPztnKFdd80O6dVtZDGfw4P4MHtwfgEce+S8FBX7Iboy2JU2ZNX3l1bHZMxbSuu2aXeLGv/4Vj9wznqtvPZQGDRPZDFHKmJL2zav0dpgxfT5t2zVbo82M6fNo36EFZWXlfPfdUpq3aMyzIyYwaNfeFDZI0LpNMQO27cZHH3xF5y6tOfyogRx+1EAA/vaXUSt6ZKh6mrRqxKLZK3tQLPp26Yqimcs1arZyCEHPvTrx7sMrhyMsW1zGf65/jwFDNqdtL/f9xmhbUszM6SuvCs+c8R2t261/SMHqRj/3CbsM7klhoZ8d/4sHnnyfR0d8CED/PiV8M3PlZ/a0md9R0qbmXdRHvDSJS362e63FmK8eGPYmjw5/B4D+W3bim+kre+RNmzmfkrbF61pVteCBJ97j0ac/AKB/sj3fzFj13Fi4weFPq+rQrpitt2zP/7N33+FRlGsfx3/PJoSaQoAklIBUgQAKooCUUBQBpahgQ8EGR4969NgpKqIUQbAdC/rasSFdepPeRXqx0SEJNaEEkuw+7x8bA4EQEkk2Q/L9XFcurt25Z/eeWXZm9p5n7ink76cKZYNUOTJEO/ccVd2a4TmeNzLnR4HPp7LzS7qYtfYFa+0Ya+24v/8uFGyt/dha29Ba29BJRQpJqlO3knbtPKA9ew4qKSlF06atUatW9dLFtGpVV5MmrZAkzZr5qxo1riFjjBISTurRRz7SU093UoMG6buDHzrkPWCKjz+p779bpK5dm/hmgfKp6rXKaN/uBMXsS1ByslsLZ/+p61qkb3b257aDen/oIr00vK1CQhlCjfyjVlR57d55SPv2HFZycopmz9igFi1rpotp3rKmpqYeiM6bvUkNr6siY4wiygZr9Upvv4rEk0nauH63KlX2FlUPH/IeLMXsP6r5czerbYf02z5kLrRKoI7FJur4gUS5UzzatTxOFeqnb0aaePRMIWPvmoMKKuf9seZO8WjROxt1RdNwVbyOu31cqitrh2vv7qPavzdeycluLZj1m5q0qJKt1/h5Jpd9XIruneto4qg7NHHUHWrTtLImzfb281q7OUaBxQtn68eYJP21+4jij59W/dr8ALtU3bs21MSvemniV73UpkUNTZq+3vvZbNzr/WzoRZGrunepq4mf3KWJn9ylNs3O/W4EZOu7cUPTylqx1ntHnCPxidqxJ14VylLoRv6XnREVU4wxHay103ItGx/x9/dTv/53qPfD78vjsbr1tsaqVr2s3nt3iqLqVFTr1vV0e9fr9eILX6ndTQMUHFxcb47wdkf+9puF2r3rgD76cIY++nCGJOmT/3tcpUoFasjgsdq2zbshefTRdrqiMjvaS+Hn79Ijz16vV/4zXR6P1Q0dr1SlKqEaPWq1qtcqo0YtKunz91bo1MkUDe07R5JUJqKEXnrzpjzOvGD49sGBalmjgUqXCNHuwZP1ypRP9NnSn/I6rXzD399Pz/a9Rf959Et53B517HKNqlQL16j356hW7fJq0aqWOt16jQb0Havbbx6poOCien3YnZKkrnc10msvjdfdt70na61u6dxA1WtESJJefPo7xceflL+/n57r21FBQRT4ssPl51LDHtU1f5j3oL9Ki7IKrlBc68dtV2jlQFVoUFrbZu3V3l8PyuUyCihRSI17eQtMu1bEKW5bvE4fT9b2xTGSpMa9aqpkJX4w/BN+/i49/lxL9X1iojxuq5s61dYVVUvpy4+WqUatcDWJrqJtm2L06nNTdSzhlJYv2q6vP16uT8bcJ0mK2ZegA7HHVK8BvY1yQnSjilq4cqfa9vhWRQr7a/BzrdKmdfnXGE0cdYckafjHyzRl3u9KPJ2i6Lu+Utf2tfRET+9tZafO+0M3t6zGZQk5LPr6alq49E+17faBihQupMH9z1wm26XHJ5r4lfc2scP/N1dTZm1S4qlkRXd6V107Xa0nHm6RV2nnG9GNKmnhip1qe+9oFSnir8HPn7k7XZde32viJ3dJkoaPWqopc3/zfjfu+EJdO9TWE/dfp2bXVtTi1bt18wPfyuUyeu5f16tkcJG8WhzAZ0xGvRgyDDTmmKTikpJS/4wka60NynRGSSme2Vl7E+S6vxLW5XUKSHVln7F5nQJSHXn7mbxOAaneXjsnr1PAWR6ofVVep4BUFY8m5XUK+Fvx0LzOAH9LPJrXGeAspvx/8nWVcejqR/Llb9oXG37kyM8tyyMqrLWc8gEAAAAAALkqO3f9MJK6S6psrX3NGBMpqay1dmWuZQcAAAAAQB7jRl2+lZ1mmh9IaiLpntTHxyW9n+MZAQAAAACAAis7zTQbWWsbtSyz9QAAIABJREFUGGN+lSRr7RFjTMDFZgIAAAAAAMiq7IyoSDbG+EmykmSMKSPJkytZAQAAAACAAik7IyrelTRBUpgxZpCkrpL650pWAAAAAAA4hB89KnwqO3f9+MYY84ukNvLemrSLtXZLrmUGAAAAAAAKnOzc9eMdST9Ya2mgCQAAAAAAckV2elSskdTfGPOHMWa4MaZhbiUFAAAAAAAKpuxc+vGlpC+NMaGSbpf0hjGmorW2eq5lBwAAAABAHnNl5xQ/Ltk/Wd3VJNWUdIWkrTmaDQAAAAAAKNCyXKgwxrxhjPld0kBJmyRdY63tmGuZAQAAAACAAic7tyfdLqmJtfZgbiUDAAAAAAAKtosWKowxNa21WyWtlFTRGFPx7OnW2jW5lRwAAAAAAHnNz5i8TqFAycqIiqcl9ZY0IoNpVlLrHM0IAAAAAAAUWBctVFhrextjXJL6W2uX+CAnAAAAAABQQGWpmaa11iPpzVzOBQAAAAAAFHDZuT3pLGPM7cZwcQ4AAAAAAMgd2bnrx9OSiktyG2MSJRlJ1loblCuZAQAAAADgAC5O1/tUlgsV1trA3EwEAAAAAAAgS4UKY4y/pPaSaqY+tVnSTGttSm4lBgAAAAAACp6L9qgwxpSTtEnSM5LKSSov6XlJm1KnAQAAAAAA5IisjKgYLOlDa+3bZz9pjPmPpCGSeuZGYgAAAAAAOIEfPSp8KiuFisbW2vvPfdJa+64xZlvOpwQAAAAAAAqqrNyeNDGTaSdzKhEAAAAAAICsjKgINsbclsHzRhK3JgUAAAAAADkmK4WKBZI6XmDawhzMBQAAAAAAx3HRo8KnLlqosNY+kJUXMsb0tNZ+eekpAQAAAACAgiorPSqy6skcfC0AAAAAAFAA5WShgsEwAAAAAADgkmSlR0VW2Rx8LQAAAAAAHMHPcF7elxhRAQAAAAAAHCMnCxVLcvC1AAAAAABAAZTlQoUx5kljTJDx+tQYs8YY0/bv6dbax3MnRQAAAAAAUFBkZ0TFg9baBEltJZWR9ICkobmSFQAAAAAAKJCy00zz7x4UHSR9bq1dZwwdRQAAAAAA+ZuLX74+lZ0RFb8YY2bJW6iYaYwJlOTJnbQAAAAAAEBBlJ0RFQ9JulrSX9bak8aYUvJe/gEAAAAAAJAjslyosNZ6jDEpkloYY86eb33OpwUAAAAAAAqiLBcqjDGfSaonaZPOXPJhJY3PhbwAAAAAAHAEP3pU+FR2Lv1obK2tnWuZAAAAAACAAi87zTSXGWMoVAAAAAAAgFyTnREVX8pbrIiRdFre25Vaa229XMkMAAAAAAAUONkpVHwm6T5JG8RtSQEAAAAABYTL0KTCl7JTqNhlrZ2ca5kAAAAAAIACLzuFiq3GmG8l/STvpR+SJGstd/0AAAAAAAA5IjuFiqLyFijanvUctycFAAAAAAA55qKFCmNMBWvtHmvtAxlM65g7aQEAAAAA4Ax+tKjwqazcnnSuMeaKc580xjwg6e2cTggAAAAAABRcWSlU/FfSbGNM9b+fMMb0kfS0pOjcSgwAAAAAABQ8Fy1UWGunSXpE0nRjTB1jzNuSbpHUwlq7J7cTBAAAAAAAecMY084Ys80Y84cx5sVM4roaY6wxpuGlvmeWmmlaa+caY+6XNF/SUkltrLWnLvXNAQAAAABwOpcpmE0qjDF+kt6XdKOkPZJWGWMmW2s3nxMXKOk/klbkxPtedESFMeaYMSZB0nRJQZLaSIo763kAAAAAAJD/XCfpD2vtX9baJEnfS+qcQdxrkoZJypEBDVm59CPQWhuU+m+Atbb4WY+DciIJAAAAAADgOOUl7T7r8Z7U59IYY+pLirTWTsmpN81KM00AAAAAAJDPGGN6G2NWn/XX+9yQDGazZ83vkvSWpGdyMq8s9agAAAAAAAD5i7X2Y0kfZxKyR1LkWY8rSNp31uNASXUkzTfePh4RkiYbYzpZa1f/07woVAAAAAAAkImC2kxT0ipJ1Y0xlSXtlXSXpHv+nmitjZdU+u/Hxpj5kp69lCKFxKUfAAAAAAAgA9baFEmPS5opaYukMdbaTcaYgcaYTrn1voyoAAAAAAAAGbLWTpM07ZznXr5AbMuceE9GVAAAAAAAAMdgRAUAAAAAAJkowD0q8gQjKgAAAAAAgGNQqAAAAAAAAI7hk0s//I8d9MXbIAtqBF+T1ykg1ZG3K+V1CkhV8qkReZ0CUv35xj0XD4LPVPIrm9cpINWpcgF5nQJSJSQdyusUkCqsKMdSQH5FjwoAAAAAADLhMlyM4EusbQAAAAAA4BgUKgAAAAAAgGNQqAAAAAAAAI5BjwoAAAAAADLhMiavUyhQGFEBAAAAAAAcg0IFAAAAAABwDAoVAAAAAADAMShUAAAAAAAAx6CZJgAAAAAAmaCZpm8xogIAAAAAADgGhQoAAAAAAOAYFCoAAAAAAIBj0KMCAAAAAIBM0KPCtxhRAQAAAAAAHINCBQAAAAAAcAwKFQAAAAAAwDHoUQEAAAAAQCZcnOP3KdY2AAAAAABwDAoVAAAAAADAMShUAAAAAAAAx6BHBQAAAAAAmXAZk9cpFCiMqAAAAAAAAI5BoQIAAAAAADgGhQoAAAAAAOAYFCoAAAAAAIBj0EwTAAAAAIBM0EzTtxhRAQAAAAAAHINCBQAAAAAAcAwKFQAAAAAAwDHoUQEAAAAAQCZchnP8vsTaBgAAAAAAjkGhAgAAAAAAOAaFCgAAAAAA4Bj0qAAAAAAAIBMuY/I6hQKFERUAAAAAAMAxKFQAAAAAAADHoFABAAAAAAAcgx4VAAAAAABkgh4VvsWICgAAAAAA4BgUKgAAAAAAgGNQqAAAAAAAAI5BoQIAAAAAADgGzTQBAAAAAMgEzTR9ixEVAAAAAADAMShUAAAAAAAAx6BQAQAAAAAAHIMeFQAAAAAAZMJlOMfvS6xtAAAAAADgGBQqAAAAAACAY1CoAAAAAAAAjkGPCgAAAAAAMuGSyesUChRGVAAAAAAAAMegUAEAAAAAAByDQgUAAAAAAHAMelQAAAAAAJAJl6FHhS8xogIAAAAAADgGhQoAAAAAAOAYFCoAAAAAAIBjUKgAAAAAAACOQTNNAAAAAAAy4TKc4/cl1jYAAAAAAHAMChUAAAAAAMAxCuylH9ZaDRoxXQuW/q4iRQpp6MtdFFWz3HlxG7fsU5+BE3XqdLKir6+ufs+0lzFGW37br1eGTtHp0yny83NpwAs3q15UBR07fkrPvTxe+2Li5XZ79OC91+v2jvXzYAmdbeGiTRo0aIw8Ho+6dW2q3r3bpZuelJSs51/4Qps27VJISHG9NfJhVahQWpI0atQMjR23RC6XS/373aHmzaMkSV98MUc/jl0iY4xqVC+nIUN6qnDhQho9+md9+dU87dp1QMuWvanQkiV8vryXk2WLf9PIN6bJ4/Go023XqOdD0emmJyWl6NV+Y7V18z4FBxfT68PvVLnyJZWS7NagARO0bct+ud0ete94te5/2Dvv96OXatK41bKSOt/WUHffd30eLFn+9el9/XRL3aaKO3ZEdV/rntfp5Hurl+7URyMWy+PxqF3n2rrj/mvSTd+wZp9GjVyk7X8c0ouD2qp5m2pp0z59d6lWLt4ha6X6jSrokWeay3Bf9myx1mrQsJ+0YMk27/771W6KqlX+vLiNm/eozys/6tTpFEU3vVL9nu8oY4ze+2i2xoxfpdCSxSVJTz9+k6Kb19T6jbv10mvj097jiUdu0I2t6/h02S43SxZt0RtDJsrj9ujWro31UK826aYnJaWo34vfasum3QoOKa5hI3uofPlQ7d17WLfeMlRXXBEmSap7VSW9NKCbJCk5KUVDBo3XqpV/yuUyeuLJ9rqh7VU+X7bL3Yolf+qdYbPk8VjdcuvVuvfB9Pvdtb/s0rvDZ+mv3+P0ytBb1erGWpKk37fGaMTgGTpx/LRcfi71eLip2txUOy8WId/wbrMma8Hird5t1sA7FFWrwnlxGzfvUZ+Xx3h/czSrqX7Pd/Jusz6cpTHjV57ZZj3RTtHNa/l6MQCfK7CFioVLf9eO3Yc1a9x/tG7jHg14Y6p+/LzXeXED3piigX066uq6FdTrqW+0cNkfir6+uoa/N1uPPdxS0ddX14Ilv2n4e7P19UcP6JsfV6pq5TL6aOQ9OnzkhNp1e08d29VVQKECu6rP43Z7NHDgd/r8sycVHl5SXbsNUevW9VSt2plC0Y9jlygoqJhmz3pNU6eu0psjJujtt3rpjz/2aeq0VZo65WXFxsXrgQfe1swZA3XwYLy++vpnTZv6iooUCdCTT32sqVNX6bbbrleDBlXVsmVd9egxMg+X+vLgdns0fPBPeu/jBxQWHqT77/5IzVvWUpWqYWkxk8f/osCgoho39WnNmr5e7789U4OG36W5szYqKdmtb8c/oVOJSbrr1nfVtn09JZ5M0qRxq/X5t4/Iv5Cfnnr0SzVtUUMVK5XOwyXNX75YNlX/mz9WX93/cl6nku+53R69P2yhBv+vk0qHl9CTPX9UoxaVValKaFpMWEQJPfNKG40bvTbdvJvX7dfmdfv1wXd3SZKe7TVeG9bsU71rzv+RjQtbuHibduw6qFmTntW6Dbs1YPBE/fj1Y+fFDRg8UQP736ar61VUr8c/18Ilvym62ZWSpPvvbaaHerRIF1+9arjGffO4/P39FHcgQZ3vfEetWtSSv7+fT5brcuN2ezT49fEa9X+PKDw8WPfc+ZZatopS1WoRaTETxq1QUFBRTZnZT9On/aq3R0zR8JE9JEkVIktrzIRnz3vdT0bNUWhoCf00vY88Ho/i40/6bJnyC7fbo5FDZuitj+5RmfAg9er+mZpGV1flqmXSYsIjgtR3YEd9/9WKdPMWLlpI/V7rpMhKoToYd0wP3fOprmtSRYFBRXy9GPnGwsVbvdusyc9r3YZdGjBogn4c/cR5cQMGTdDAl25P3WZ9poVLtim6WU1J0v33NtdDPaPPmwe+5eLEgk9l6dIPY4yfMea/uZ2ML81duE1dOlwlY4yurhuphGOnFHfwWLqYuIPHdPzEadWvFyljjLp0uEpzF2yVJBkZnThxWpJ07PhphZUO9D5vjE6cPC1rrU6cTFJwUFH5+3GFzdnWr9+hShXDFBlZRgEB/rq5w7WaO3d9uph5c9fr1i5NJEk33dRAy5ZtlbVWc+eu180drlVAQCFFViitShXDtH79DkneHfOpU8lKSXHrVGKywsJCJEm1a1dMG42BzG3euEcVKpZS+QqhKlTIXze2q6uFP29JF7Nw/hbd3Mk7Sqj1jVFateIvWWslI506maSUFLdOn06RfyE/FS9RWDu2H1CdepEqUjRA/v5+qt+wshbM3ZLR2+MfWvTHWh0+kZDXaRQIv22KU7nIYJWtEKxChfwUfWN1LV+wPV1MeLkgVa5e+ryREsYYJSW5lZLsUXKyW+4Uj0JCi/oy/Xxh7oLN6nJLA+/+u15FJRxLVNyB9P//4w4kePffV1Xy7r9vaaC58zdl+rpFU7dRknQ6KYWRLhexccMuRVYsrQqRpVQowF/t2tfX/Hkb08X8PG+jOnW5VpJ0Y9t6Wrn8d+/+IhMTJ6zUg6kjM1wul0oyCjLbtmzcp/KRoSpXoaQKFfJTm5tqa/H839LFlC0fomo1ws/7f16xUilFVvIWXkuHBapkaHEdPUKx6FLMnX/2NqtSJtusU+m3WT9nvs0C8rss/YK21roldc7lXHwqNi5BEeFBaY8jwoIUG5dwfkxYxjF9n26nYe/OUvQtI/XGu7P09GM3SJK6d7tOf+44qOYdRqjTPR+o39Pt5XJRqDhbbOwRRZQtmfY4PCJEsbFH0sfEHVXZ1Bh/fz8FBhbVkaMnLjhveHhJPfjgDWrVuq+aNX9BJQKLqFkzhipmV1xsgsLDg9Meh4UH6cA534sDsQkKS43x9/dTiRKFFX/0pNrcWEdFigXo5jZvqFPb4eres5mCg4upSrUw/bpmh+KPntSpxCQtXfSbYmPjfbpcQE45eOC4yoSf+eFUOryEDh04kaV5a9WLUL1ryqt7+8/Vvd0XatC4oipWDr34jEgnNi5BEREhaY8jwoMvsP8OvmDMN98vVcc73lafAT8qPuHMj7B1G3bp5ttHqlO3t/Vqvy6MpshEXGx8us8hLCJEsXHxF4zx9/dTicAiOnrU+33Zu/ew7rhthB7s8T+tWf2XJCkhIVGS9P57M3Tn7SP07FNf6tA5J5FwcQfijiksIjDtcZnwIB2My/563Lxhr1KS3SofWfLiwbig2Lj4c7ZZ539XYuPiFREefMGYb75fqo7dRqrPK2PSbbOA/Cw7v6CXGGP+Z4xpboxp8PdfrmWWyzKq559bVc4s5rtxq9Tnv+20YMrT6vPUTer3+iRJ0uLlf6hW9QgtmvaMJo5+RAOHT9Px46dyOPvLW5bWfQZnXEwm88bHn9Dcues1d87rWrTwDSUmJmnS5BUZRCO7svq92LRxj/xcRlPnvKAJ05/Rt18u0d49h1W5Sph6PNBcT/T+XE8++qWqXxkhP0YZ4XKV4Rcga7Pu231Uu3cc0ddTe2r0tJ5at3qPNqzZl6PpFQQZ7h/O+QxsBh/U3zF3d2us2T89r0nf/0dhpYM0dOTUtJir6lbU1HFPa+zoxzXqs/k6fTo5R3PPTzLeT2dhX26MypQJ0sy5L2nM+Gf07Aud9eLzo3X8+Cm53W7FxhxV/fpX6Idxz6je1ZU0YvjkXFuGfCvjHXW2XuLggWN6vf9k9Xm1o1wuRhddiowGEZ1/3HvhmLvvaKLZU17QpB+e8m6zRkzJjTQBx8nOr4XrJUVJGihpROrfmxcKNsb0NsasNsas/viLuZeWZQ755seV6tz9Q3Xu/qHCSgcqJvbM2ZWYuASFlQlMFx8RFqSYuIxjJkxdp7atvI1s2t8QpfWb90qSxk9Zq7ataskYo0qRpVShXIj+2nkwtxftshIRXlIx+8+MoIiNOZp2mcbZMftTY1JS3Dp2LFEhIcUvOO/SZVtVoUIphYYGqlAhP7W9sb5+/fVP3yxQPhIWHpRutENcbIJKn/O9CAsPUlxqTEqKW8ePn1ZQcFHNnLZejZtWl38hP4WWKqF69Stqyybv96LTbQ311ZjHNOqLXgoKKqrIiqV8t1BADiodVkIHYo+nPT4Ye1ylShfP0rxL5/+lmnXCVbRYgIoWC1DDJpW0dWNMbqWar3zzwzJ1vvMddb7zHYWVCVJMzNG0aTGx8QorE5QuPiIsWDFnnY08O6Z0qUD5+bnkcrnU7bZrtWHjnvPer2qVMBUtGqDf/ojNpSW6/IVHhKT7HOJijiosLOiCMSkpbh0/dkrBwcUUEOCvkBDv96Z2VKQiI0tp544DCgkpriJFA9T6hrqSpLY3XaUtm8//fJC5MuGBios5M4LiQGyCSpfJ+iU0J46f1vNP/KBej7VUVD166PwT33y/VJ3veEud73grg23W0fO3WeHBiomNzzAm/TbrOm3YuNs3C4HzuIzJl39OleVChbW2VQZ/rTOJ/9ha29Ba27D3/W0uFOZT3btdp0nfPKpJ3zyqG6JrauK0dbLWau2G3QosUTitz8TfwkoHqnixwlq7YbestZo4bZ3atPA24gorE6iVa3ZIkpav2q4rIr0/vMqGB2vZKu8QxoOHjmv7rkOqUJ4hc2erW7eSduyM0+49B5WUlKKp01apdet66WJat66nCROXSZJmzlyjxo2vlDFGrVvX09Rpq5SUlKzdew5qx8441at3hcqVDdW6dduVmJgka62WLduqqlXK5sXiXdZqRZXX7p2HtG/PYSUnp2j2jA1q0bJmupjmLWtq6uRfJUnzZm9Sw+uqyBijiLLBWr3S268i8WSSNq7frUqVvY27Dh/y/rCL2X9U8+duVtsO6T9v4HJRo3aY9u2KV8zeBCUnu7Vg9u9q3OKKLM1bJjxQG9bskzvFo5QUtzas2avIK9g/ZEX3O5to0g9PatIPT+qGVlGaOGWNd/+9fpcCSxQ576A/rEyQd/+9fpd3/z1ljdpEey8HPPva8DnzNql61XBJ0u69h5WS4pYk7d13RNt3HFD5cnw+FxJVJ1K7dh7Qnj2HlJyUohnTf1V0q/R3SWnZKkqTJ66SJM2etV7XNaomY4wOHz4ut9sjSdqz+5B27jygChVCZYxRdMvaWrXSe6JhxfLfVbVqhJA9NaPKac+uw9q396iSk92aO3OzmkXXyNK8yclu9X16rNrdUk+t2nJniX+q+13Xa9KY/2rSmP+es83aqcASRTPZZu08s81qmdE2a6OqV+M7gYLBXKypUVqgMeGSBksqZ61tb4ypLamJtfbTi84c/13W3sSHrLUaOHyaFi37Q0WLFNLglzqrbm1v1bhz9w816ZtHJUkbNu9NvT1pilpcX00vPdtBxhitXrtTg0fOUEqKR4UL++uV529WnVrlFHsgQX0GTtSBg8dlrVWvns3Uub2DbqsV5IyN24IFGzR48I9yezy6/fbr9egjHfTOu5NVp04ltWl9lU6fTtZzz3+uLVt2Kzi4mN4a+bAiI70/ej/8aJrGjVsqPz8/9e3bTdEtvAdG7777k6ZNXy1/fz/VqhWpQa/fq4CAQvrqq3n6v09n6eDBBIWGBio6uo4GvX5fXi6+JOlokjNH2ixZtE1vDZsmj9ujjl2u0QO9W2rU+3NUq3Z5tWhVS6dPJ2tA37H6bet+BQUX1evD7lT5CqE6efK0XntpvLb/dUDWWt3SuYHue6C5JKl3z08UH39S/v5+eurZ9rq2cdU8Xsr0Sj41Iq9TuCTfPjhQLWs0UOkSIYpNOKxXpnyiz5b+lNdp/SN/vnFPXqdwUSuX7NDHIxfL7bZq26mW7n6wob76aIVq1ApT4+jK2rYpVq89P13HE04roLCfSoYW06gx93jvGPLGAm38db9kpIZNKqr3f5vl9eJkqop/ZF6ncB5rrQYOnaRFS3/z7r8HdFPdKO+t/jrf+Y4m/fCkJGnDpr9vT5qsFk2v1EsveG/191z/H7R12z7JGJUvW1ID+9+qsDJBmjhljT75fL78/f3kchk91ruNbmgVlZeLms6pwgF5ncJ5Fi3YrGFDJ8nj8ajLrdep1yM36v33pisqKlItW9fR6dPJ6vfCt9q6ZY+CQopp2Js9VCGylObMWqf335shf3/vWeJHH2+nlqnret/ew+r34rc6dixRJUuW0MBBd6mswwpGCUmH8jqFi1q26A+9O3y2PB6Pbu58lXr0aqb/+2CBatYuq2Yta2jLxn3q9/RYHUs4pYDC/gotVVxfj/+XZk7doCGvTFHlKmeakPcd2FHVazrj+PFcYQq+eFAes9Zq4JCJWrR0m4oWCdDgV7upbpR329r5jrc0aYz3fgUbNu1Ouz1pi6Y19dKLnb3brH7fp26zpPLlSmpg/9vPK3Q4RtHOzj09nwPWHHjdcb9pc0KDMv0d+bllp1AxXdLnkvpZa68yxvhL+tVaW/eiMzuwUFFgOaRQAecWKgqiy71QkZ9cDoWKgsSJhYqCyomFioLqcihUFBSXQ6GiQKFQcVlyaqHCPxuxpa21Y4wxfSTJWptijHHnUl4AAAAAADiCy9AM3peys7ZPGGNKKbWXsDGmsSTuMQgAAAAAAHJMdkZUPC1psqSqxpglkspI6porWQEAAAAAgAIpy4UKa+0aY0y0pCvlvWv8NmstNxgHAAAAAAA5JjsjKiTpOklXpM7XwBgja+1XOZ4VAAAAAAAokLJcqDDGfC2pqqS1kv5uomklUagAAAAAAORbLuPIm2PkW9kZUdFQUm2b1fuZAgAAAAAAZFN27vqxUVJEbiUCAAAAAACQnREVpSVtNsaslHT67yettZ1yPCsAAAAAAFAgZadQMSC3kgAAAAAAwKlcokeFL2WnUFFV0iJr7e+5lQwAAAAAACjYslOouELSvcaYSpJ+kbRI3sLF2txIDAAAAAAAFDxZbqZprX3ZWttaUh1JiyU9J2/BAgAAAAAAIEdkeUSFMaa/pKaSSkj6VdKz8o6qAAAAAAAg33IZelT4UnYu/bhNUoqkqZIWSFpurT2VK1kBAAAAAIACKTuXfjSQ1EbSSkk3StpgjFmcW4kBAAAAAICCJzuXftSR1FxStKSGknaLSz8AAAAAAEAOys6lH29Lmi/pfUm/WmuP50pGAAAAAAA4iMtk+WIE5ICLrm1jjL8xZpikq+XtU/GupO3GmGHGmEK5nSAAAAAAACg4slIWGi4pVFJla20Da219SVUlhUh6MzeTAwAAAAAABUtWChW3SOplrT329xPW2gRJj0rqkFuJAQAAAACAgicrhQprrbUZPOmWdN7zAAAAAAAA/1RWmmluNsb0sNZ+dfaTxph7JW3NnbQAAAAAAHAGlzF5nUKBkpVCxWOSxhtjHpT0i7yjKK6VVFTSrbmYGwAAAAAAKGAuWqiw1u6V1MgY01pSlCQjabq1dm5uJwcAAAAAAAqWrIyokCRZa+dJmpeLuQAAAAAAgAIuy4UKAAAAAAAKImOych8K5BTWNgAAAAAAcAwKFQAAAAAAwDEoVAAAAAAAAMegRwUAAAAAAJlwcY7fp1jbAAAAAADAMShUAAAAAAAAx6BQAQAAAAAAHIMeFQAAAAAAZMIYzvH7EmsbAAAAAAA4BoUKAAAAAADgGBQqAAAAAACAY1CoAAAAAAAAjkEzTQAAAAAAMuGimaZPsbYBAAAAAIBjUKgAAAAAAACOQaECAAAAAAA4Bj0qAAAAAADIhOEcv0+xtgEAAAAAgGNQqAAAAAAAAI5BoQIAAAAAADgGPSoAAAAAAMiEy3CO35dY2wAAAAAAwDEoVAAAAAAAAMegUAEAAAAAAByDHhUAAAAAAGTCcI7fp1jbAAAAAADAMShUAAAAAAAAx6BQAQAAAAAAHINCBQAAAAAAcAyaaQIAAAAAkAmX4Ry/L7G2AQAAAACAY1CoAAAAAAAAjkGhAgAAAAAAOAbtZxaFAAAgAElEQVQ9KgAAAAAAyIShR4VPsbYBAAAAAIBjUKgAAAAAAACO4ZNLP+ye333xNsiCpJoheZ0CUr29dk5ep4BUf75xT16ngFRVX/g2r1PAWezw5/I6BaTyWE9ep4BUJQuH53UKSMNV7EB+xbcbAAAAAIBMuLgYwadY2wAAAAAAwDEoVAAAAAAAAMegUAEAAAAAAByDHhUAAAAAAGTCGM7x+xJrGwAAAAAAOAaFCgAAAAAA4BgUKgAAAAAAgGNQqAAAAAAAAI5BM00AAAAAADLhopmmT7G2AQAAAACAY1CoAAAAAAAAjkGhAgAAAAAAOAY9KgAAAAAAyISRX16nUKAwogIAAAAAADgGhQoAAAAAAOAYFCoAAAAAAIBj0KMCAAAAAIBMuAzn+H2JtQ0AAAAAAByDQgUAAAAAAHAMChUAAAAAAMAx6FEBAAAAAEAmDOf4fYq1DQAAAAAAHINCBQAAAAAAcAwKFQAAAAAAwDEoVAAAAAAAAMegmSYAAAAAAJlwGc7x+xJrGwAAAAAAOAaFCgAAAAAA4BgUKgAAAAAAgGPQowIAAAAAgEwYelT4FGsbAAAAAAA4BoUKAAAAAADgGBQqAAAAAACAY9CjAgAAAACATLg4x+9TrG0AAAAAAOAYFCoAAAAAAIBjUKgAAAAAAACOQY8KAAAAAAAyYQzn+H2JtQ0AAAAAAByDQgUAAAAAAHAMChUAAAAAAMAxKFQAAAAAAADHoJkmAAAAAACZcNFM06dY2wAAAAAAwDEoVAAAAAAAAMegUAEAAAAAAByDHhUAAAAAAGTCcI7fp1jbAAAAAADAMShUAAAAAAAAx6BQAQAAAAAAHIMeFQAAAAAAZMJlOMfvS6xtAAAAAADgGBQqAAAAAACAY1CoAAAAAAAAjkGPCgAAAAAAMmE4x+9TrG0AAAAAAOAYFCoAAAAAAIBjUKgAAAAAAACOQaECAAAAAAA4Bs00AQAAAADIhMtwjt+XWNsAAAAAAMAxKFQAAAAAAADH4NIPSdZaDfr0Fy1cs1dFCvtryONNFFU1NF1M4ukUPTV8kXbFHpefy6hVw/J65r766WJmLN2lp95cpB+HtVPdaqV8uQiXtcWLtuiNIePlcVvd1rWxHup1Q7rpSUkp6vfiaG3etEfBIcU0fGRPlS9/Zv3u33dEXToO0aOPtdP9D7aWJH395XyNH7tcMlL1GmX12qB7VLhwIZ8uV36wb/0hrRn9h6zHqmp0WdXuWCnd9L8W7dfa7/9S0ZIBkqQaN5RX1ZbldGTnMa364ncln0qRcRlFdaykSo3D8mIR8o3VS3fqoxGL5fF41K5zbd1x/zXppm9Ys0+jRi7S9j8O6cVBbdW8TbW0aZ++u1QrF++QtVL9RhX0yDPNZYzx9SIUCJ/e10+31G2quGNHVPe17nmdTr5krdWg4VO0YMk2FSkSoKEDbldUrfLnxW3csld9XhmrU6eTFd30SvV77pa0//dff79Uo8csl7+fS9HNrtTzT7ZPm2/f/qO6udvberx3Gz3Uo7nPlutyt2TRVg0fOkket0ddbm+kB3u1Tjc9KSlFL/X5TltS9+VvjLhP5cp7j7V+27ZPr786TieOn5LLZTT6hyfZZ1+ixYs2a+jg8XJ7PLq9axM93OvGdNOTkpLV54XR2rx5t0JCiuvNkfefc2x1WJ06Dta/H2uvBx5s4+v0LxvWWg0a/KMWLNykIkUKaejgHoqKqnhe3MZNu9Snz1fe7VGLKPXr203GGB09ekL/ffpT7d17SOXLl9Lbbz2s4OBiF3zdvXsP6Yn/fCy3xyol2a17743W3Xe1kCRNm7ZaH46aIY/bKjo6Ss8/d5uvVweQoxhRIWnhmn3auT9BM9/vpIGPNNKrH6/MMO6BzrU0/b2OGv9me63ZekAL1+xNm3Y8MVmjp23VVdUpUGSH2+3R4NfH6sNR/9LEn17U9Glr9OcfMelixo9brqCgYpo6s7/u69lSb4/4Kd30YW9MULPmtdIex8Ye1TejF+q7H5/WhMkvyuO2mjFtjU+WJz/xeKx++ep3tXy2njoMvU47l8cpfu+J8+IqNiqj9q9fq/avX6uqLctJkvwC/NTkXzV185Dr1PLZelrzzR9KOpHs60XIN9xuj94ftlCvvXOLRo25R/Nn/a6dfx1OFxMWUULPvNJGrW6qke75zev2a/O6/frgu7v04fd36bfNcdqwZp8v0y9Qvlg2Ve3e+29ep5GvLVzym3bsPqRZE5/Ra/27aMCQSRnGDRgySQP736pZE5/Rjt2HtHDpb5Kk5av+1NwFW/TT9//R1B+f0kP3pS9GDBk5Vc2vr5HRS+IC3G6Phg6aoP999LDGTX5OM6b9et6+fOK4FQoMKqrJM/qoe48WemfkVElSSopb/V/8Tv1evl3jJj+nT754VP7+fnmxGPmG2+3R66/9qA8/fkSTf+qraVN/0Z9/7E8XM37scgUFF9P0mS/rvh4tNfLNyemmvzF0gpo3r+3LtC9LCxdu0o6dcZo1Y4Bee7W7Bgz8PsO4Aa9+p4Gv3qNZMwZox844LVy0WZL08Scz1aTJlZo181U1aXKlPv5kZqavW6ZMsL7/7llNmtBXY354Tp98MkuxcUd15MhxDXtzgr78/ElNnfKSDh06pmXLtvpmJRQgxrjy5Z9TOTczH5q7co86t6wiY4yuvrK0Ek4kKe5wYrqYooX91bhuhCQpoJCfalcJVcyhMzHvfrtOD3WprYAAdq7ZsXHDTlWsWFoVIkurUIC/2rWvr5/nbUgXM3/eBnXqcq0k6ca2V2nF8t9lrZUkzZuzXhUqlFLVahHp5nG7PTp9KlkpKW6dOpWkMmHBvlmgfOTwnwkqEVZUJcKKys/fpYqNw7RnzcEszRtUtpgCI4pJkoqVLKwiQYV0+hiFin/qt01xKhcZrLIVglWokJ+ib6yu5Qu2p4sJLxekytVLnzdSwhijpCS3UpI9Sk52y53iUUhoUV+mX6As+mOtDp9IyOs08rW5Czary831vfvsuhWVcPyU4g6kX+dxBxJ0/Pgp1a9XUcYYdbm5vubO9/4w+G7sCvW+P1oBAd5BpaVCS6TNN+fnzapQPlTVqzICLDs2btilyMhSqhBZSoUC/HVTh6s1/+dN6WLmz9ukjp0bSpJuaFtPK1P35cuW/qbqNcrqypreQndISHH5+XF4eik2rN+pihXLKDL12Kp9hwaad86x1bx5G9S583WSpLY3Xa0Vy39LO7aaO2e9KkSef2yF882dt15dOjfybo+urqyEhJOKi4tPFxMXF+/dHtX3/tbo0rmR5s5dd9b8jSVJXTo31px0z5//ugEB/goI8I42SkpKkSf1M9u956CuqBSm0NBASVKTJjU1c9avPlkHQG7J0p7AGONnjBmd28nkldjDJ1W2dLG0xxGliin28MkLxiecSNLPq/eqSd1wSdLmvw5r/6GTatWwQq7nmt/ExsYrPKJk2uPwiJDzNvBnx/j7+6lEYBEdPXpCJ0+e1mefztWj/26XLj48PEQ9H2iltm1eVZvol1WiRFFd37Rm7i9MPnPyyGkVK1U47XGx0MJKPHL6vLjdqw5qWr9VWvzeRp04dOq86Yf+TJAnxapEGD+O/6mDB46rTPiZH1Olw0vo0IHzR7dkpFa9CNW7pry6t/9c3dt9oQaNK6pi5dCLzwg4VGxcgiLCzxSfI8KCFHtOoSL2wDkx4UGKjfPG7Nh1SKt/3aFuPT7Qvb0+1vpNeyRJJxOT9MmXC/R47/SXLODi4mLjFV42JO1xeHiIDsSe/2MtIsIb492XF9XRoye1a8cBGSP9u9fHurvrW/ri0599mnt+FBd3NG1dS97PI+7czyM2XhFlz/48zjq2+r85+ve/2wsXFxt7VBFnHcdGRJRUbNzR9DFxRxURfubziAgvqdhYb8yhQ8cUlnoyLSwsWIcPH7vo6+7ff1gdO7+ulq37qddDbRUeFqJKFcP01/ZY7dl7SCkpbs2du04xMUdyZ6EBH8lSocJa65ZUxhgTkMv55A17/lMXunw7xe3RMyMX674OVyoyIlAej9WQz3/RC/c3yN0c86uM1r3MxWOM0Qf/m6H7erRUseKF001LiD+pn+dt1PTZL2vO/IFKTDytKZNX52DSBVn6z6b81aXVaWRjdRh0rcKjSmr5x+mHGSYePa1lo7aoUa8rZVz0RPjHMvgOnPs1uZB9u49q944j+npqT42e1lPrVu/h0g9c1uwF9glZjXG73UpISNSYLx/V80+211Mvfidrrd77aI563tNUxYsVPn9mZF+WPhPvCMhf12zXoGHd9dnXj2ne3I1asfx3HyWZP2XtO3J+kJHR+/+brvt6nn9shYxluB6zsq4vsg/P7HXLlg3VT5P6a9bMVzVh0nIdPJig4OBiGvDKXfrv05+q+70jVb58Kfn5Mcobl7fsNNPcIWmJMWaypLRTedbakRkFG2N6S+otSR+90lG9uzW8hDRz3jfTt+nH2X9KkupWC9X+g2dGUMQcOqmwksUynO/lD1eoUtkg9ezoPUN/IjFZv++KV4+X5kiSDh5N1L+HLNAHfaJpqJkF4RHBij2r4hsbc1RlwoIyjImICFFKilvHj51ScHAxbVi/U3NmrdVbIybr2LFEGeNS4cKFVKpUoCqUD1Vo6nDeNjfW09q123VLJ2f9H3S6YiUL6+ShMyMoTh4+ndY082+FA880O6vaspzW/fBX2uPkxBQtGLFB9bpWVulqXHpzKUqHldCB2ONpjw/GHlep0sWzNO/S+X+pZp1wFS3m/ewaNqmkrRtjVLdBuVzJFcgN34xZpjETvAXnurXLK+ass8MxcQkKKx2YLj4iLCh9TGyCwsp4Y8LDgnVj6ygZY1SvTqRcxujI0RNat3G3Zs7dqDffnaGEY96mjoUL++veO5v4YAkvb2HhwYrdf+YscmxsBvvy8GDFxBxVeNq+PFHBwcUUFh6saxpWVcmS3m1as+Y1tXXzHjVqXN2ny5CfhIeHKCbmIp9HRIhi9nvP2qcdW4UU04b1OzR75lqNfDP12MplVLhwId3TvYWvF8OxvvlmgcaMXSJJqlunUrqRCzExRxRWJv0xT0R4ScXEnvk8YmKPKCzMO8KiVKlAxcXFKywsWHFx8WmXbkRElLzo64aHhah6tbJa/csfandTA7VuVU+tW9WTJP0wZrFcnCDKcSajE0f5gUP/q2TnIsB9kqakzhN41l+GrLUfW2sbWmsbOq1IIUnd21+piSM7aOLIDmpzXaQmzf9L1lqt3XZQgcUCFJbBNdxvf7tWx04mq++DZ7rtBxYP0PIvu2reqC6aN6qLrqpRmiJFNkTVqaidOw9qz55DSk5K0Yzpv6plqzrpYlq2qqPJE1dJkmbPWqfrGlWXMUZfjv6PZsx5RTPmvKLu90Xr4d436O7uzRVRNkTr1+1UYmKSrLVasfx3VakSnheLd1kLrRKoY7GJOn4gUe4Uj3Ytj1OF+qXTxSQePVPI2LvmoILKeQt87hSPFr2zUVc0DVfF67jW+1LVqB2mfbviFbM3QcnJbi2Y/bsat7giS/OWCQ/UhjX75E7xKCXFrQ1r9iryipIXnxFwkO53NNGk757QpO+e0A0ta2vi1F+9++wNuxRYoojCyqT/ERZWJkjFixfW2g27ZK3VxKm/qk20tzHgDS1ra/kq74mK7TsPKjnFrZIhxfXtp//SvCnPa96U59Xznuv1rwdaUqTIoqg6kdq166D2pu7LZ05bq5atotLFRLeK0k+TvMWmObPW69pG1WSM0fVNr9Tvv+1XYmKSUlLc+mX1X6pSlX32pahTt6J27TyQdmw1fdoatWpVN11Mq1Z1NGmSt3n8rJlr1aix99jqq9FPadbcAZo1d4Du7RGtXr1vpEhxju7dozVpQl9NmtBXN7Spp4mTVni3R2u3KzCwaNqlHH8LCwv2bo/WbvdujyatUJvW3oJC69b1NHHScknSxEnLzzzfqm6GrxsTc0SnTiVJkuLjT2rNmr9UubL3+3Lo0LG057/9bqG6dW3qk/WBgsEY084Ys80Y84cx5sUMphc2xvyQOn2FMeaKS33PLI+osNa+eqlv5lTR15TTwjV71fbfk1WksJ8GP37mwKTL09M0cWQHxRw8qY/GblKV8kG67dnpkqTu7Wuo243VLvSyyAJ/fz/17Xe7Hu31kdwej7rc2kjVqpfV++9NU+2oimrVuo5uvb2x+r4wWjff9LqCQ4pp2Js9Mn3NelddoRvaXqU7u74pPz+XatWqoK53XO+jJco/XH4uNexRXfOHrZe1VlValFVwheJaP267QisHqkKD0to2a6/2/npQLpdRQIlCatzLO9Jo14o4xW2L1+njydq+2Nv5vXGvmipZ6YK1TWTCz9+lR59vrv7/mSy326ptp1qqVLWUvvpohWrUClPj6MratilWrz0/XccTTmvF4u0aPWqlRo25R83aVNW61Xv06N3fS0Zq2KSiGreonNeLlG99++BAtazRQKVLhGj34Ml6Zcon+mzpTxefEVkW3exKLViyTTd2HqGiRQpp8IDb06Z1vvs9TfruCUnSgD6d1WfAWJ06laIWTWuoRVPvnTxu73yN+r46Xrfc8bYK+ftr6ICu3K73Evn7++mFfrfq370/kcdj1fnWa1W1WoQ+eG+GakdFqmXrKHW5/Tr1f/E7dWo3REHBxTT0zXslSUHBxXRvzxa69853ZIzUrHktNY/mbhOXwt/fT337d9W/Hv5Abo9Ht97WWNWql9X/3p2qqDoV1ap1Xd3WtYn6vPC12t80UMHBxTR8xP15nfZlKTq6jhYs3KQbb3pFRYsEaPDg+9Kmdb51sCZN6CtJGvDK3Wm3J23RPEotWngLeb0fbqunnv5UY8cuVdlyoXrnrYczfd0//4zR0GHjZIyRtVYPPniDrqzhvT3zoME/aus2b8+dxx7tkFbAAC6VMcZP0vuSbpS0R9IqY8xka+3ms8IeknTEWlvNGHOXpDck3XlJ75vRNVAXSLCMpOclRUkq8vfz1tqLdp2ymwbm14Eyl52kmtfmdQpINWT1xLxOAal61Iq6eBB8ouoL3+Z1CjiLHf5cXqeAVCeL5M82YZejQi4+C6colK2r2JHrXG3yd9XX/pw/f9OaVpl+bsaYJpIGWGtvSn3cR5KstUPOipmZGrPMGOMvKUZSGZvVYkMGsvPt/kbSD5JukfSIpJ6SDvzTNwYAAAAA4LJgPXmdQe64eHmpvKTdZz3eI6nRhWKstSnGmHhJpSQd/KdpZadHRSlr7af/z959x0dVZn8c/54kkAAhoSahBBBEmiBFBES6vYEodl0s4OrPsqsrq6IrNkSwrKuuLqyr2FgVpUixS1GKonSQotJJAqEEAiQk8/z+mNlAICQzkpkMmc/79corc+995uZcLpmZnHuecyUddM7NdM7dLKnz7/3BAAAAAACg7JjZYDNbcNjX4COHFPG0Iysl/BkTkEAqKg76vm81s4vkba5Z/3h+OAAAAAAAKBvOudGSRhczZJOk1MOW68ubCyhqzCbf1I9ESTuOJ65AEhVPmlmipPskvSQpQdKfj+eHAwAAAACAsPWDpKZmdpKkzZKulnTtEWMmy9saYq6kKyR9fTz9KaTA7voxxfdwt6Rex/NDAQAAAABAePP1nLhT0meSoiX9xzm33Mwel7TAOTdZ0uuS3jaztfJWUlx9vD/X70SFmZ0i6VVJyc65U82sjaRLnXNPHm8QAAAAAACErfLaTNMPzrlpkqYdse5vhz0+IGlAaf7MQJppjpH0oHy9KpxzS1QKmRIAAAAAAID/CSRRUdk59/0R6/JKMxgAAAAAABDZAklUbDezJvLdZsTMrpC0NShRAQAAAACAiBTIXT/+T97bljQ3s82SfpN0XVCiAgAAAAAgXERwj4qyEEiiYr1z7mwzqyIpyjm3J1hBAQAAAACAyBTI1I+1ZjZKUgOSFAAAAAAAIBgCSVS0kbRa0utmNs/MBptZQpDiAgAAAAAAEcjvqR++KooxksaYWXdJ4yS9YGbjJT3hnFsbpBgBAAAAACg79KgIKb8rKsws2swuNbMJkl6U9JykxpI+kTQtSPEBAAAAAIAIEkgzzTWSvpE0yjk357D1430VFgAAAAAAAMclkERFG+fc3qI2OOfuNrMHnXNPl1JcAAAAAAAgAgXSo6LIJMVhBkgiUQEAAAAAKF889KgIpUDu+lESK8V9AQAAAACACFSaiQpXivsCAAAAAAARiIoKAAAAAAAQNkozUfFhKe4LAAAAAABEIL+baZpZfUkvSTpLkkfSt5Lucc5tkiTn3PCgRAgAAAAAQFlyNNMMpUAqKt6QNFlSHUn1JH3iWwcAAAAAAFAqAklU1HbOveGcy/N9vSmpdpDiAgAAAAAAESiQRMV2M7vezKJ9X9dLygxWYAAAAAAAIPL43aNC0s2SXpb0gry3Ip3jWwcAAAAAQPlFj4qQ8jtR4ZzbIOnSIMYCAAAAAAAiXImJCjP7WzGbnXPuiVKMBwAAAAAARDB/Kiqyi1hXRdItkmpKIlEBAAAAAABKRYmJCufcc/97bGZVJd0j6SZJ/5X03LGeBwAAAABAuUCPipDyq0eFmdWQdK+k6ySNldTeObczmIEBAAAAAIDI40+PilGS+ksaLam1c25v0KMCAAAAAAARKcqPMfdJqivpYUlbzCzL97XHzLKCGx4AAAAAAIgk/vSo8CeZAQAAAABA+eShR0UokYQAAAAAAABhg0QFAAAAAAAIGyQqAAAAAABA2CBRAQAAAAAAwkaJzTQBAAAAAIhojmaaoURFBQAAAAAACBskKgAAAAAAQNggUQEAAAAAAMIGPSoAAAAAACgOPSpCiooKAAAAAAAQNkhUAAAAAACAsEGiAgAAAAAAhA16VAAAAAAAUBx6VIQUFRUAAAAAACBskKgAAAAAAABhg0QFAAAAAAAIG/SoAAAAAACgGM7ll3UIQWFlHcAxUFEBAAAAAADCBokKAAAAAAAQNkhUAAAAAACAsEGiAgAAAAAAhA2aaQIAAAAAUByPp6wjiChUVAAAAAAAgLBBogIAAAAAAIQNEhUAAAAAACBs0KMCAAAAAIDiOHpUhBIVFQAAAAAAIGyQqAAAAAAAAGEjJFM//rprUyh+DPxQf9nWsg4BPje1PK2sQ4BPw+g6ZR0CfNyo+8s6BBzG7h9V1iHA593XdpZ1CPC5enrvsg4BPu6MLmUdAg5jNco6ApQn9KgAAAAAAKA49KgIKaZ+AAAAAACAsEGiAgAAAAAAhA0SFQAAAAAAIGzQowIAAAAAgOLQoyKkqKgAAAAAAABhg0QFAAAAAAAIGyQqAAAAAABA2CBRAQAAAAAAwgbNNAEAAAAAKA7NNEOKigoAAAAAABA2SFQAAAAAAICwQaICAAAAAACEDXpUAAAAAABQHA89KkKJigoAAAAAABA2SFQAAAAAAICwQaICAAAAAACEDXpUAAAAAABQHEePilCiogIAAAAAAIQNEhUAAAAAACBskKgAAAAAAABhgx4VAAAAAAAUhx4VIUVFBQAAAAAACBskKgAAAAAAQNggUQEAAAAAAMIGiQoAAAAAABA2aKYJAAAAAEBxaKYZUlRUAAAAAACAsEGiAgAAAAAAhA0SFQAAAAAAIGzQowIAAAAAgOJ46FERSlRUAAAAAACAsEGiAgAAAAAAhA0SFQAAAAAAIGzQowIAAAAAgOI4elSEEhUVAAAAAAAgbJCoAAAAAAAAYYNEBQAAAAAACBv0qAAAAAAAoDj0qAgpKioAAAAAAEDYIFEBAAAAAADCBokKAAAAAAAQNkhUAAAAAACAsEEzTQAAAAAAiuOhmWYoUVEBAAAAAADCBokKAAAAAAAQNkhUAAAAAACAsEGPCgAAAAAAiuNxZR1BRKGiAgAAAAAAhA0SFQAAAAAAIGyQqAAAAAAAAGGDHhUAAAAAABTH4ynrCCIKFRUAAAAAACBskKgAAAAAAABhg0QFAAAAAAAIG/SoAAAAAACgOPSoCCkqKgAAAAAAQNggUQEAAAAAAMIGiQoAAAAAABA26FEBAAAAAEBxPK6sI4goVFQAAAAAAICwQaICAAAAAACEDRIVAAAAAAAgbNCjQlL60h1a+t5ayTk16FZHp1zUoND2Dd+mafkHvyquekVJUuM+9dSwex1J0qRbZiqhfhVJUuWacep096mhDb6cWb8oU9++sUYej1PLPnXUoV+jIsetnZehz55fpgFPn66kJglaNTtNCydvKNieuWGvrnymo2o3qhqiyMunH+as06vPzpTH43R+v1a6emDHQtuX/LRZrz03U7+u3a6HnrpA3c9uKklatGCjXnt+VsG4jet26qHhF6hrzyYhjf9E55zTUyM/0czvVikuroJGPDZArVrUO2rcshWb9OCjH+pATp56dG2moUMukZnppde+0Acf/6Aa1b2vUffeeZ56dGuuJcs26pEnPi74GXf98Wyd05vXruI45/TUqCm+c1FRI4ZdXvS5WLlZDz46XgdyDnrPxf0Xy8wkSW//d47e+WCeYqKj1OOsZhpyzwUFz9uydZcuGvB33Tm4j265sVvIjqu8e/2Gobq4dVdl7Nmp1k9cV9bhRIQOLw5V3Qt7KG/fAc0b+IB2Llxx1JgGV16gVkNvl0VHacvUmVr011GSpMqpddRl7DOqUK2qLDpaix94Vlumzzrq+SiZc07DP16jWSsyFVchSsOva6lWqUd/Jhr06iJty8pVnsfp9MaJemRAM0VHmV6e/qs+nLtFNeK9n33/dFFj9WhVK9SHccJyzumpFz7XrDm/KC6ugp5+5GK1albnqHHLft6qB5/4RDk5eep+ZhMN/fO5MjP9vCZdj46crn37clWvTqKefayf4qvEKvdgvh59ZpqWrdyqqCjTQ38+V53aNyyDIwSCL+ITFc7jtOSdNTrzvjaqVCNWMx//SSltayqhXpVC4+qdUVttrm961POjK0ap12Onhyrccs3jcRRUOzMAACAASURBVJr1+ipd+nA7xdeM1YcPLtBJp9dWjfqFz0Xu/jwtmb5RyU0TCtY165aiZt1SJHmTFNNGLiFJcZzy8z16+ZkZGvHKZaqVHK+7bvyvunRvrIaNaxaMSUqpqr8MO0fj3/6p0HPbnp6q197z/lGQtfuAbrrsTXXoXDgBiJLN+naV1m3Yrs8n/UWLl27UsOET9eHb/3fUuGHDJ+rxh/urbZsGGnTnG5r13Wr1OKuZJGng9Wfplhu7FxrftEmyPnr3TsXERCtjW5b6XvWienVvoZiY6JAc14lo1nertW5jpj6feJ8WL9uoYU9P0odv3XHUuGFPT9LjD1+mtq1TNejusZo1Z7V6dG2meT/8oq9mrtQn/71bFSvGKHPH3kLPe/r5qep25imhOpyI8ebcqXp5xni9NfBvZR1KRKh7QXdVbdpInzQ9VzU7naaOrw7T552vLDSmYo1qajdqiD7t0F8523eq85sjlNy7s9K/nqdTH75d6z+YrrWvjVNCiybqOW20Jp/Up4yO5sQ2a0Wm1m/bp08f7qzF67P0+Ier9P69R39efeGmUxUfFyPnnO75zzJ9uihDF7VPliT9oWcD3dyb9+7fY9bcX7R+4w599uHtWrx8ix4b+ak+eP2mo8Y9NnK6Hn/gQrU9tZ4G3/tfzZ73i7p3OVkPPz1VQ+7sozPaN9RHnyzS6+/M1T239dSHkxZKkj55d7Ayd2Rr0L3/1fj/3KyoKAv1IUYmj6esI4goET/1Y+evWaqSVElVkiopKiZK9TolKW1RZlmHFZEy1mYpMaWyEpMrKTomSk3PTNJvP2w7atz8939V+0sbKrpC0f99V3+brqZdk4Mdbrm3anm66qYmqk79RFWoEK0e556iOTN/LTQmpW6CGjetLSvmDXL2V2t0+pmNFBdXIdghlztfzVyhfhe3l5mpbZsGytqzXxnbsgqNydiWpb3ZOWp3WkOZmfpd3F5fzVhe7H4rVapYkJTIyc0ruOKPY/tq5gr1u6id91y0bqCsvQeKPhd7D6hdmwbec3FRO301w3s1edz4+Ro8sIcqVvReH6hZI77geV9+s0L169VQ0yZJoTugCDF77SLtyM4qeSBKRb2+ffTbWxMlSZnzF6titQTFpdQuNCa+car2rF6nnO07JUlpX85V6uXnSfJeha6Q4P3dqJhYVfu3ZIQw+vLl62Xb1bdjivc1q1GisvbnKWN3zlHj4uO8r0l5HqeD+R7xblA6vpq1Wn0vaOP99z+1nvc9Y/ueQmMytu/R3uxctWtdX2amvhe00ZczV0uSflufqY7tvEmiM89orM9nrJIk/fLbdnU5vZEkqWaNKkqIj9OylVtCd2BACJWYqDCzu4v7CkWQwXRgV64q1YgtWK5UPVYHdh79Qr7lx+365m8L9P0ry7V/x4GC9Z6DHs147EfNevInbf1pe0hiLq/27shRfM1D5yK+ZqyydxQ+F9t+26O923PUqMOxyw/XziVRURq2Z+xV7eRDVSm1k+KVmbG3mGcUbcbnq9XrPK4U/x7pGVlKSalWsJySnKj0jKyjxyQlHnPMu/+do0uu/LseHPahdmftK1i/eOkGXXT587p0wN/12NB+VFOUID0jSynJh/07JyUo/YhERfq2I8YkJxSci3UbMrVg4ToNuPGfun7QaC1ZvkmStG9/rsaMnak7B/cOwVEAwVW5XrL2bUwrWN63KU2V6xV+P96zdr0SmjdWlYb1ZNHRqt+vj6qkeisilw57WSddf4n6bZypntNGa8FdT4Y0/vIkfVeOUqrFFSynJMYWmaiQpFtfXaSzhn6rKrExOq/toYTpu7M3qe+I+Rr63krt3ncw6DGXJ+nb9qhO8qHK35TaCUrftueoMSlJhz5npSRVLRjTtHFtfT3bm7T49OuV2up7L2nWNElfzVqtvDyPNm3ZpeWrtmprRuH9AuWFPxUVtUv4KpKZDTazBWa2YPGklaURa1C4om6He0Q6OaVtTZ0zspN6PX66aresrp/+vapg2zmjOqvnox3UYXALLR23VtkZ+4MbcHlW5Lk4dDKcx+nbsWvU9caTj7mLtDW7FVMxWjUbxB9zDH6/QK+8Z27P1rq1mTq9C/Mnfw9XxAvUkafAFfGL878x1wzorC8+GaJJ/71bSbUSNOL5qQVjTmvdQFM/ulfj37lT//rPDOXk8CG0OEW9Vxz5+1DcmPz8fGVl7dcHY2/XkHsu0J8eGCfnnF567Uv94dquqlI59ugnAyeaIt4jjnwdO7grSz/cPkxd339B58x+V9nrNsuTly9JanTNRfr1zQmamNpDMy4crDPfHlnkPlGyEj5SFfLv29tq1hNdlZvn0bzV3kqXq7vW1+ePdNGEIWeodkJFjZy4NnjBlktFvTcf9QZexBjv9+FDL9a7H/2o/gNfV/a+HFXwXUy4/OK2SklK0BU3v67hf/9c7VrXV0w0vyMon0rsUeGce+T37Ng5N1rSaEka8t3gol4vw0Kl6hW1/7Cr9vt35iiuWuEPjBXjD5WsN+pRRyvG/3rY871jqyRVUq3m1bR7w15VSaoU5KjLp/iasdqbeehc7M3MURVfA1NJyj2Qrx0bszXxMe/8vH27cjV15BJdNKSNkpp4s9Zrv8ugmqKU1EqK17b0Q1n6bRl7VaN2lWKecbRZX6zWmb2acLU+AO++P1cffPy9JKl1q/pKS9tVsC0tfbeSaicUGp+SlKi0jN1FjqlV89CVmgH9O+qPd4896uc1aZykSpUqavXadLVuVb9Uj+VE9+4Hc/XBhAWSpNYt6ykt/bB/54wsJdUq3AcnJSmh8Jj0LCXV9o5JTkrUOb1byczU5tRURZlp565sLV62UZ99tUzP/uNTZe05oKgoU2xsjK6/qksIjhA4fk3vuFYnD/L2ocj8Yakq+6ojJKly/ZQip29snvKNNk/5RpLUZNCVcvneed+Nb7lCM86/VZK0fd4iRcfFKrZWdeVs2xHswygX3p29SePneqcBnNqgqtJ2HaoATtudo9oJx06IxlaIVu/WtfT1sm3q2ryGaiUc+vw1oEtd/XH0kuAFXk68O36BPpzs/YzaukVdbU0/VHWXti1LSbUKX0RLTqqqtMOqIdIy9hS8rzRuVEv/efFaSdJvGzI18ztvoigmJkoP/umcgudcPehNNUytEZTjQRHoURFSfveoMLOTzewzM1vsW25jZg8GL7TQqHZSgrLT9yt723558jzaPD9DKW1rFhpzYNehP563LsxU1TqVJUm52QeVf9D7HzZnz0HtWJOleN82BC6pSVXt3rpPWRn7lZ/n0Zo5GWp0+qEpHrGVY3TL69104ytn6sZXzlRy04RCSQrncVo7j0RFaWnWMlmbN+7S1s27dfBgvmZ+vlpdujcOaB/ffMa0j0Bdd1UXTXr/Hk16/x6d3auVJk75Sc45LVqyQVXj445KVCTVTlCVyrFatGSDnHOaOOUn9enRUpIK9VD48uvlatrE+7uxcfMO5fmuYG7eslO/rdumenWrh+gITxzXXdlFk8bdpUnj7tLZPVtq4tSF3nOxtJhzUSVWi5b6zsXUhQXn4uyeLTXvh18kSb+t366DefmqXq2K3nv9Nn09ZYi+njJEf7j2TN12U0+SFDihrPnne5rerp+mt+unTRO/1Ek39pMk1ex0mg7u3qMDaUf3moqt7f3DqkK1BJ1yx7X65d8fSpL2bdiq5D7e//8JzRsrKi6WJEUArutWXxOGnKEJQ85Qn9a1NemHNO9r1rrdqhoXraTEwomK7JxDfSvy8j2auSJTjZO8FyQOnybyxZJtalonsAsVkei6K07XxLcGaeJbg9Sn+ymaNH2J999/2WZVrRJ7VHI7qVZVValSUYuWbZZzTpOmL1Gf7t7PTJk7siV5G82/9sZ3uvqy9pKk/QcOat/+XEnSd9//qpiYKJ180jEL3IETWiB3/fi3pIckveJbXippnKSnSzuoUIqKNrW5/mTNfX6pnMepwVkpSqhXRSsn/KZqjaqqTrta+vXLzUpblCmLMlWMj1G7W5pLkvZu3adFY9fIzFvy2/TC1KPuFgL/RUVHqdvNp2jyU4vkPE4tetVVzdR4zX//VyU1qaqTTi/+hXjLyl2KrxmrxGQqWkpDdEyU7ry/px66a6I8+U7nXdpSjZrU1NjX5uqUFsnq0qOxVi1P02P3T9WerAOaN/s3vT16nsZ8cIMkKW1Llral71Gb9lyl/716nNVMM7/9WedcOkqV4ipo+LABBdv6XvWiJr1/jyRp2EP9fLcnPajuXZupu++OH6NenK6fV22RzFSvTnU9/vBlkqQfF67TmDdmKCYmWlFRpmEP9Su4hSmK1uOsZpr53Sqd0/c537m4vGBb32te0qRxd0mShj3YVw8OG68DB/LUvesp6t7V+6Hz8r4d9NBjH+viK/+uCjExGjHsCpqYhsB7Nz+unqe0V634ato4fLIenTJG/5nzSVmHVW5tmTZTdS/soUvWfqH8ffs176aHCrZdsHCiprfzJjE6vDhU1U/zfpZa9vgr2rNmnSTpp/tGqNOYJ9X8zwMl5zRv4AOhPoRyo0fLmpq1IlPnPTFXcRWjNfzaFgXbLhv5vSYMOUP7czz6vzFLlJvnUb6TOjetrqu61pUkPTt5rX7evFcmqV7NShp2ZbMyOpITU48zT9asOb/o3AH/VFxsBQ1/+OKCbf1uHKOJbw2SJD16//l66MkpOpBzUN06N1H3Lt7buE/9Yrne/ehHSdK5PZup/8WnSZIyd2br1j+NU5SZkmtX1TN/6xviIwNCx4qaA13kQLMfnHMdzWyhc66db90i51zbkp4bzlM/Ik39eErww0Xfxq3LOgT4NIw++t7mKCOUVYYVu39UWYcAn3df21nWIcDn6uk0vw0XdgYVaOHEatxYrjPwbumwcvk3rbUeFpbnLZCKikwzO0m+1i9m1k9SWvFPAQAAAADgBOcpl3mKsBVIouJOSa9Lam5m6yVtlXRNUKICAAAAAAARye9EhXNuraTeZpYo75SRXSU9BwAAAAAAIBCB3PXjTjNLcM7tljTCzL43sz5BjA0AAAAAAESYQKZ+DHbOvWxm50qqL+l2SaMldQhKZAAAAAAAhAMafoeU3xUV8jXRlHSBpDeccz8G+HwAAAAAAIBiBZJoWGxm0yRdImm6mcXrUPICAAAAAADguAUy9eMmead5rHXO7TOzWpJuCU5YAAAAAAAgEvldUeGcy5fUWN7eFJJUKZDnAwAAAAAAlMTvigoze1lSBUndJT0lKVvSa5I6Bic0AAAAAADCgIeuB6EUyNSPM51z7c1soSQ553aYWcUgxQUAAAAAACJQIFM3DppZlHwNNM2spiTu0QIAAAAAAEpNIImKVyR9JKm2mT0m6VtJzwQlKgAAAAAAEJH8nvrhnHvLzH6UdLYkkzTAObcsaJEBAAAAABAOPEwmCKUSExVmVsU5l21mCZI2SnrjsG0JzrmsYAYIAAAAAAAihz8VFeMlXSBpubz9KeyI7w2CFh0AAAAAAIgoJSYqnHMX+L6nBj8cAAAAAAAQyfzqUWFm0ZLOldTct2qFpC+dc/nBCgwAAAAAgLBAj4qQ8qdHRR1JX0vKlLRQ3ikfl0t6wcx6O+fSghsiAAAAAACIFP5UVAyX9G/n3HOHrzSzP0t6WtJNwQgMAAAAAABEHn8SFV2cc0clI5xzL5jZz0GICQAAAAAARCh/EhX7f+c2AAAAAABOeM65sg4hKKysAzgGfxIViWZ2aRHrTVJCKccDAAAAAAAimD+Jiu8kDTjGtjmlGAsAAAAAAIhwJSYqnHM3+LMjM7veOffO8YcEAAAAAAAiVVQp7uveUtwXAAAAAACIQP5M/fBXuPbhAAAAAADg9/N4yjqCiFKaFRXlsw0qAAAAAAAImdJMVFBRAQAAAAAAjktpJirmleK+AAAAAABABPK7R4WZ1Zb0pKR6zrmLzaylpDOcc29KknPu9uCECAAAAABAGaJHRUgFUlHxpqSZklJ9y2sk3VfaAQEAAAAAgMgVSKIiyTn3niSPJDnnDkrKD0pUAAAAAAAgIgWSqMg2sxry3d3DzDpK2hOUqAAAAAAAQETyu0eFpL9I+kRSYzObKamepCuCEhUAAAAAAOHC48o6gojid6LCObfAzHpJaiHvrUhXOOdygxYZAAAAAACIOIHc9SNW0m2SzpJ3+sdsMxvjnMsJVnAAAAAAACCyBDL1Y6ykHEljfMvX+NZdXdpBAQAAAACAyBRIoqKlc67NYctfmNni0g4IAAAAAICw4vGUdQQRJZC7fizy3elDkmRmHSTNLf2QAAAAAABApAqkoqK9pPlm9qtv+SRJy81soSTnnGtf6tEBAAAAAICIEkiiom/QogAAAAAAAFBgiYpBkt5wzq0KVjAAAAAAACCyBZKoWCfpLTPLk/SGpPedc3uCEhUAAAAAAOGCZpoh5XczTefca865TvJWVjSXtNTM3jKzbkGLDgAAAAAARJRA7vohM4uSt4lmI0k7Ja2S9JCZvVP6oQEAAAAAgEjj99QPMxspqb+kmZKed87NOWwbfSsAAAAAAMBxKzFRYWYNnHMbJK2V1NY5t7eIYV1KPTIAAAAAAMKBx5V1BBHFn6kfEyXJOTf6GEkKOed2lGpUAAAAAAAgIvmTqLCgRwEAAAAAACD/elTUM7N/HGujc+7uUowHAAAAAABEMH8SFfsl/RjsQAAAAAAACEseT1lHEFH8SVRkOufGBj0SAAAAAAAQ8fzpUZHrz47MrNVxxgIAAAAAACJciYkK51xnP/f19nHGAgAAAAAAIpw/Uz/8xd1BAAAAAADlDz0qQsqfqR/+cqW4LwAAAAAAEIFKM1EBAAAAAABwXEozUeFX000AAAAAAIBjKbFHhZm1L267c+4n33d/m24CAAAAAAAUyZ9mms8Vs81J6l1KsQAAAAAAEH48tGQMpRITFc65XqEIBAAAAAAAwO8eFWZW2cweNrPRvuWmZnZx8EIDAAAAAACRxp+pH//zhqQfJZ3pW94k6UNJU0p64mPTNgUeGYIiuk58WYcAnwo16D8bLg7UrVjWIcDH47hHeTh597WdZR0CfK77Y/WyDgE+8c0qlXUI8OlehXMRTqqVdQAoVwJJVDRxzl1lZtdIknNuv5lZkOICAAAAACA8eLiYEkqB3J4018wqydtAU2bWRFJOUKICAAAAAAARKZCKikclfSop1czeldRV0sBgBAUAAAAAACKT34kK59wXZvaTpM6STNI9zrntQYsMAAAAAABEHL8TFWbW3fdwj+97SzOTc25W6YcFAAAAAECYoEdFSAUy9eP+wx7HSTpD3ruA9C7ViAAAAAAAQMQKZOrHJYcvm1mqpJGlHhEAAAAAAIhYgdz140ibJJ1aWoEAAAAAAAAE0qPiJfluTSpvgqOtpMXBCAoAAAAAgLDhcSWPQakJpEfFgsMe50ka55z7rpTjAQAAAAAAEazERIWZNXDObXDOjQ1FQAAAAAAAIHL506Ni4v8emNlHQYwFAAAAAABEOH8SFXbY48bBCgQAAAAAAMCfHhXuGI8BAAAAACj/PJ6yjiCi+JOoOM3MsuStrKjkeyzfsnPOJQQtOgAAAAAAEFFKTFQ456JDEQgAAAAAAIA/PSoAAAAAAABCwp+pHwAAAAAARCyXT7vGI5lZDUnvS2okaZ2kK51zO48xNkHSSkkTnHN3lrRvKioAAAAAAECgHpD0lXOuqaSvfMvH8oSkmf7umEQFAAAAAAAIVF9JY32Px0rqV9QgM+sgKVnS5/7umEQFAAAAAAAIVLJzbqsk+b4nHTnAzKIkPSfp/kB2TI8KAAAAAACK4ymfPSrMbLCkwYetGu2cG33Y9i8lpRTx1KF+/og7JE1zzm00M7/jIlEBAAAAAEAE8iUlRhez/exjbTOzdDOr45zbamZ1JGUUMayLpG5mdoekeEkVzWyvc664fhYkKgAAAAAAQMAmS/qDpBG+75OOHOCcu+5/j81soKTTS0pSSPSoAAAAAAAAgRsh6RwzWyPpHN+yzOx0M/v38eyYigoAAAAAAIqTXz57VBwP51ympD5FrF8g6dYi1r8p6U1/9k1FBQAAAAAACBskKgAAAAAAQNggUQEAAAAAAMIGiQoAAAAAABA2aKYJAAAAAEAxnIdmmqFERQUAAAAAAAgbJCoAAAAAAEDYIFEBAAAAAADCBj0qAAAAAAAoTj49KkKJigoAAAAAABA2SFQAAAAAAICwQaICAAAAAACEDXpUAAAAAABQnHxPWUcQUaioAAAAAAAAYYNEBQAAAAAACBskKgAAAAAAQNigRwUAAAAAAMVwHlfWIUQUKioAAAAAAEDYIFEBAAAAAADCBokKAAAAAAAQNkhUAAAAAACAsEEzTQAAAAAAipNPM81QoqICAAAAAACEDRIVAAAAAAAgbJCoAAAAAAAAYYMeFQAAAAAAFMdDj4pQoqICAAAAAACEDRIVAAAAAAAgbJCoAAAAAAAAYYMeFQAAAAAAFMPl06MilKioAAAAAAAAYYNEBQAAAAAACBskKgAAAAAAQNigRwUAAAAAAMXxeMo6gohCRQUAAAAAAAgbJCoAAAAAAEDYIFEBAAAAAADCBj0qfCpcdJuimnWUDuYo96Pn5bb8ctSYireMkFWtIeXlSJJy3nhYyt5dsD2qVVfFXjtUB/55j9zmNSGLvbxxzmnErC2avT5LcTFRevLsVLVMqnzM8XdN+U2bdudqwnXNJEl/mb5O63Z5z9GenHxVjY3W+GuahST28sY5p6de+U6zvl+vuNgYPT2kt1o1rX3UuBf+M1+TvlilrD05+mnKoIL1T//zO81fvFmStP9Annbs2q8fJt0SsvhPdN/NXqlnnp4oT75Hl13RWbcM6lNoe25unoY+8J5WLt+oxGpVNPL5G1WvXg1t3rxDl108Qo0aJUmSWp/WUI8MGyBJOpibp6ef+lg/fP+LoqJMd91zgc4+97SQH9uJ7LvZP2vUiEny5HvU7/JOunlQ70Lbc3Pz9MiD47Ry+SYlVqusZ567QXXr1ZAkrV61RU8+9pGy9x5QVJTpnffvUWxshbI4jHKjw4tDVffCHsrbd0DzBj6gnQtXHDWmwZUXqNXQ22XRUdoydaYW/XWUJKlyah11GfuMKlSrKouO1uIHntWW6bNCfQgR4fUbhuri1l2VsWenWj9xXVmHU+79vCBDk19dIY/H6YzzU9X7qpMLbZ87db3mfLJeFmWKjYvWFfe0VnLDqpKkLb9m6aN/LFXOvjxZlOnuf3RVhYrRZXEYJ6y5367W889Mk8fj0aX9O+gPt/QotD03N0+PDR2vn1dsUWJiZT056irVrVddBw/m6enHJ+nn5VtkUaZ7/3qhOnRsLEl69R9faNonC7Un64BmzP9bWRwWEFIkKiRFnXK6rFY95Tx/qyy1mSpeeqdyXvtzkWNzPxxVdBKiYiXFdOkrz4afgxxt+Td7/R6t35WjqTc015L0fXpyxma9d2XTIsd+uXaXKlUoXBj07AWNCh6Pmr1F8bEUDv1es77foPWbd+mzsddq8cp0PfbiLH3w8uVHjevVuaGu63uqzv/De4XWP3hH14LHb09YqpVrtwc95vIiP9+j4U9+rH/9+49KTk7UtVe9oJ69WqnJySkFYyZ8NF8JCZU05bOhmj5tof7+3BSNev5GSVL91Fr6YMJfjtrvmH99qRo14vXJ9Afl8Xi0e/e+kB1TeZCf79GIpybo1TGDlZycqOuuelE9erUsdF4mfjRfVRMqafKnD+rTaQv14vNT9cxzNygvL18PPzBOTzx9jZo1r6tdu7IVE8OH/+NR94Luqtq0kT5peq5qdjpNHV8dps87X1loTMUa1dRu1BB92qG/crbvVOc3Ryi5d2elfz1Ppz58u9Z/MF1rXxunhBZN1HPaaE0+qc8xfhqOx5tzp+rlGeP11kD+wAo2T77ThFeWa/DwTkqsFad/3P2tWnVOLkhESFK7nnXV5aKGkqTlc9M1efRKDXrqDOXnezRu5CJdM6St6jZOUHZWrqKj+RwViPx8j0YN/0Qvjb5JSckJGnjNa+rWs4UaN0kqGDP54x9VNaGSPpp6rz6fvkSv/P0zPTXqak38aIEk6b2P79KOzL360x1v6c1xf1RUVJTO6tFcA67prCsufqGsDg35rqwjiCi88kiKbtFZ+Qu/kiS5jaukuCpS1eoB7aPC2Tcob/Z4ubzcYIQYUb75dbcubVFdZqbTUqpoT06+tmUfPGrcvtx8vbVom27rmFzkfpxz+mztLl14SmDnEod8NWed+p7TTGamti1TlLU3RxmZ2UeNa9syRUk1qxS7r6nfrNFFvU8udgwOWbZ0g1Ib1FL91JqqUDFG51/QTjO+XlZozDdfL9Ol/TpKks45t42+n7dGzhX/Jjpxwve62VeZERUVperV44NzAOXUsqUblJpas+C8nHdhW834ZnmhMTO+Xq5L+p4uSTr7sPMyd85qNT2ljpo1rytJqlatCn8AHKd6ffvot7cmSpIy5y9WxWoJikspXPUV3zhVe1avU872nZKktC/nKvXy8yR53ycqJHh/ByomVtX+LRkhjD6yzF67SDuys8o6jIiwYdUu1apTWTXrVFZMhSi17VFXy+emFxoTV+VQJVfugTyZeR+v/nG76pxUVXUbJ0iSqiRUVFS0hSz28mDFsk2q36Cm6tWvoQoVYnTO+a0165uVhcbMmrFSF13aTpLU+5xW+mH+r3LO6bdftqljpyaSpBo141W1apxWLt8iSWp9Wqpq1a4qIFKUWFFhZncXt90594/SC6dsWEItud3bCpZd1nbvuj07jxpbsf+fJZev/OVzlPfNOO/z6zSWJdaWZ9X30ln9QxZ3eZWRfVAp8YfeQJPjKyhj70HVrlK4PPql+Wn6Q7skxcUU/UH/xy3Zqlk5Rg2rxQY13vIsfXu26tQ+9IdsSu14pW/PLjEpcaTN6Xu0OW2POretV9ohllsZ6buVHsKttwAAIABJREFUklKtYDkppZqWLll/zDExMdGKrxqnXbu8iaTNm3foyv7PKT4+VnfefaHan95YWVn7JUmvvPSpFny/VqmptfTgw/1VsxYffPyVkb5byXUOnZfk5GpaduR5yTjyvFTSrl37tGHdNplJdwwarZ07s3XeBW018JZeIY2/vKlcL1n7NqYVLO/blKbK9ZJ1IO3Qe/qeteuV0LyxqjSsp32b0lS/Xx9FV/S+nywd9rJ6f/66mt11vWKqVNJXZ98U8mMASltW5gFVq12pYDmxVpw2rNp11LjvJq/TrAm/Kf+gR7c901mStH1ztsxMYx6ar+zduTqtZ131GtAkZLGXBxnpWUpOTixYTkpO0PKlmwqN2ZaepSTfmJiYaMXHx2r3rn1q2ixFs75ZqXPOb62MtN36eeUWpaftVqvW9UN6DEA48OdSTu0SvopkZoPNbIGZLXh94YbSiDV4ikoUF3FVMvfDUcp56Q7ljB6iqIatFN22t2SmChcO1sHpY4IfZ4Qo8oLwEefo5237tXFXrvo0SSxisNf01bt0YdNqx9wOPxRxMswCv7Iy7Zu1OrdbY64eB6Coygg74hehyDFmql07QZ999Yg++Pg+/eWvffXAkHe0d+8B5efnKz1tl9q1a6T3P7pPbdo21HOjJgftGCKGHXleih6Sn+/Rwp9+01Mjr9N/3v4/ff3VMs2fRz+j41LE69GRvxcHd2Xph9uHqev7L+ic2e8qe91mefLyJUmNrrlIv745QRNTe2jGhYN15tsji9wncCI51mvQkbpe2kgPvtFLF93SXF+N874W5ed79NvyHbr2r+10x3Nnatl3aVqzkGmbx+vIz05FftQ10yX92ispOVEDr3lVz4+cptanNVD0MS7IAeVdiRUVzrlHfs+OnXOjJY2WpP1DLwy7CT3RnS5WTEdv6adn0xpZ4qGci7eaIvPoJ2X51uXuV/7iGYpKbab8lfMUldxQFW99xvvc+OqKvf5vynnncRpqBmDcku36aLn33/fUpMpK23toqkf63oNKOqKaYnFatlZs26fz3lyhPI+0Y3+ebvp4rd7o751akOdx+vKX3Xr/6qJ7W+DY3p20TB9O8zaja31KkrZu21uwLW3bXiXVPHZj02OZ9s1aPXJ3t1KLMRIkp1RTWtqhK2AZabuUlJRQ5JjklGrKy8vX3j0HlJhYWWamihW9L+8tW6UqNbWm1q/bppat6iuuUkX1Pru1JOnc807ThI/mh+6gyoGk5ESlbz10XtLTd6n2keclOfGI87JfiYmVlZScqA6nN1H16t6KpLO6NdfPKzapU2depwLR9I5rdfIgbx+KzB+WqnLqof4gleunFDl9Y/OUb7R5yjeSpCaDrpTL90iSGt9yhWacf6skafu8RYqOi1VsrerK2bYj2IcBBE1irTjt2ra/YHn39gNKqBF3zPGn9airj1/yTi2sVquSGreuqSqJFSVJzTsmafPa3WrarlZwgy5HkpITlJ5+qNl+RnrWUVM2kpITvBV6KYne94m9OUpIrCQz05+HXFgw7tYb/qXUBjVDFjuK5zxh9ydtueZ3is7M6prZh2a21ff1vpnVDWZwwZQ/f4pyXr5LOS/fpfyVcxXdzjtn21KbSTnZ0pHTPqKipMq+D6NR0YpufoY86eulnH06MPwa5Tx7k3KevUmejT+TpPgdrmlTS+Ovaabx1zRT78aJmrxyp5xzWpyWrfiKUUdN+7iqdS19fXMrfTawpd664mQ1qhZbkKSQpHkb9+ik6rFKia8Y6kM54V3X91RN/NeVmvivK9Wn60ma9MUqOee0aEWaqlaJDXjax68bd2r33hy1a1l0LxEUrdWpqdqwfps2bcrUwdw8fTp9oXr0OrXQmJ69WmnyxB8kSV98vkRndDpZZqYdO/Yq3/eH2KaNmVq/fpvq168hM1OPni31w/feuxrNn7dGTZqkCP5rdWqqNmzYrs2+8/LZtEXq2atVoTE9erXSJ5O8DdG+/HyJOvrOy5ldm2nN6q3avz9XeXn5+nHBr2rchN+LQK3553ua3q6fprfrp00Tv9RJN/aTJNXsdJoO7t5TaNrH/8TW9t51pUK1BJ1yx7X65d8fSpL2bdiq5D5dJEkJzRsrKi6WJAVOeKnNErV9S7Z2pO1T3kGPFs3copadC7/WbNt8qN/Uz99nqFY973v7KR1qK+23LOUeyFd+vke/Ls1UcgN6GQWiRat62rg+U1s27dDBg3n64tOl6t6zeaEx3Xo219TJCyVJX3+xXKef0VhmpgP7c7V/n7ff3fy5axUdHVWoCScQSQK568cbksZLut63fINv3XmlHVSoeVb9IHdKR8Xe+7r39qQfH+qmG3vnS8p5+S4puoJiBz4hRcdIFiXPL4uU/8OnZRh1+dWtUVXNWp+lC9/6WXEVovRkn9SCbVeMW+XXrUanr96lC09h2sfx6tGpgWZ9v17n3vie4mJjNPz+Q/Pp+932gSb+y3tVc9TouZry9Rrtz8lTj6vf0hUXtNBdf/A2eZz69Vpd1PPk3zVlJJLFxETrwaH9dfug0fJ4POp32Rk6uWmKXnlpulq1SlXP3qfqsss7aehf39PF5z2lhGqVNfJZ7x0/flrwi1556VPFxEQpKipKDz86QInVvB9C/3TvxRr6wHsaNWKiqleP1+NPXV2Wh3nCiYmJ1l+HXqY7Bo+Rx+PU97KOanJyiv750qdq2SpVPXu3Ur/Lz9DDD4zTpec/rYTEyhrxrPdtMyGxsq7/Q3ddf9WLMpPO6tZC3Xq0LOMjOrFtmTZTdS/soUvWfqH8ffs176aHCrZdsHCiprfzJjE6vDhU1U/z/qGw7PFXtGfNOknST/eNUKcxT6r5nwdKzmnewAdCfQgR472bH1fPU9qrVnw1bRw+WY9OGaP/zPmkrMMql6Kjo9TvjlM1Zuj33tuTnltfKY2q6rO3Vql+02pq1SVZcyav05qF2xUVE6XK8TG66j7vbaorV62gbv1P0j/u/lYyb0VFi04kVAMRExOtvzx0se6+faw8+R5d0q+DGp+crH+98qVatKyn7r1a6NLLOmjYQ+N1+UXPKyGxkp4ceZUkaceObN3zx7GKijLVTqqqYcOvKNjvS89/qs+mLdGBAwd18dkj1bd/Bw26g7sUofyykjrEFww0W+Sca1vSuqKE49SPSBVdh6x4uKjQ98yyDgE+OXUpvQ8XHucp6xBwmIkVjr7FLcrGdX/kDlbhYtIQ3r/DRfe6Xco6BBymWuyAcn1VKue5/uXyb9rY+z4Oy/MWSEXFDjO7WtL7vuUrJVEfCQAAAAAo3/LLZZ4ibAXSRvZmSTdK2i5pm7xTP24JRlAAAAAAACAy+VVRYWbRki51zl1Y4mAAAAAAAIDfya+KCudcvqTLgxwLAAAAAACIcIH0qJhtZi9K+q+kgnsaOeeWlHpUAAAAAACEC3pUhFQgiYoevu/tD1vnJHUvvXAAAAAAAEAkCyRRcb1zbv3hK8ysYSnHAwAAAAAAIlggd/2Y4Oc6AAAAAACA36XEigozO0VSC0mJZnbpYZsSJMUFKzAAAAAAABB5/Jn60UpSf0nVJA04bP0eSbcFIygAAAAAAMKF89BMM5RKTFQ45yZImmBmZznnvg1BTAAAAAAAIEIF0qMizcw+M7PFkmRmbczswSDFBQAAAAAAIlAgiYp/S3pMkse3vFTS9aUeEQAAAAAAiFiB3J60inNujplJkpxzzswOBicsAAAAAADCRL6n5DEoNYFUVGSa2UmSnCSZWT9JaUGJCgAAAAAARKRAKirulPS6pOZmtl7SVklXByUqAAAAAAAQkfxOVDjn1krqbWaJksw5tyt4YQEAAAAAgEhUYqLCzDpKek1SE3kbaN7qnFsV7MAAAAAAAAgHzuPKOoSI4k+Pin9KelhSPd/jF4MaEQAAAAAAiFj+JCqinXPTnXPZzrlxkpKCHRQAAAAAAIhM/vSoqGZmlx5r2Tk3ufTDAgAAAAAAkcifRMV3kgYcY9lJIlEBAAAAACi/8ulREUolJiqcczf4syMzu945987xhwQAAAAAACKVPz0q/HVvKe4LAAAAAABEoNJMVFgp7gsAAAAAAESg0kxUMGkHAAAAAAAcF3+aafqLigoAAAAAQPnj4bp8KJVmRcW8UtwXAAAAAACIQH4nKsystpn9y8ym+JZbmtnA/213zt0ehPgAAAAAAEAECaSi4k1JMyWl+pbXSLqvtAMCAAAAAACRK5AeFUnOuffM7H5Jcs4dNLP8IMUFAAAAAEBYcPn0qAilQCoqss2shnx39zCzjpL2BCUqAAAAAAAQkQKpqPiLpE8kNTazmZLqSboiKFEBAAAAAICI5Heiwjm3wMx6SWoh761IVzjncoMWGQAAAAAAiDh+JyrMLFbSbZLOknf6x2wzG+OcywlWcAAAAAAAlDkPPSpCKZCpH2Ml5Uga41u+xrfu6tIOCgAAAAAARKZAEhUtnXNtDlv+wswWl3ZAAAAAAAAgcgVy149Fvjt9SJLMrIOkuaUfEgAAAAAAiFSBVFS0lzTfzH71LZ8kabmZLZTknHPtSz06AAAAAADKWr6nrCOIKIEkKvoGLQoAAAAAAAAFlqgYJOkN59yqYAUDAAAAAAAiWyA9KtZJesvMvjOzW82sapBiAgAAAAAAEcrvRIVz7jXnXCd5KyuaS1pqZm+ZWbegRQcAAAAAACJKIFM/ZGZR8jbRbCRpp6RVkh4ys0zn3PWlHx4AAAAAAGXLeVxZhxBR/E5UmNlISf0lzZT0vHNuzmHb6FsBAAAAAACOW4mJCjNr4JzbIGmtpLbOub1FDOtS6pEBAAAAAICI40+PiomS5JwbfYwkhZxzO0o1KgAAAAAAEJH8mfphQY8CAAAAAIBwlU+PilDyJ1FRz8z+cayNzrm7SzEeAAAAAAAQwfxJVOyX9GOwAwEAAAAAAPAnUZHpnBsb9EgAAAAAAEDE8ydRkevPjsyslXNu+XHGA/w/e/cdJ2dVPX78czaVdNIDBOkDBJBOqBFUEKVJERSwAorYQEERLCBdlK+IoiCI/ESUIhA6SgvSLNQksPQSShqkEEjZnfP7YyYhIUuyC7szw87n/Xrta+d5njuT88zNzsxz5t5zJUmSJKmmZNEaFZW03FU/MnN0Kx/r/73PWCRJkiRJUp1rzfKkreXqIJIkSZIk6X1pz0SFY2EkSZIkSdL70poaFZIkSZIk1a1s9nv5SmrPERWtKropSZIkSZL0bpY7oiIiNl3W8cx8oPy7tUU3JUmSJEmSWtSaqR+/WMaxBHZqp1gkSZIkSVKdW26iIjN3rEQgkiRJkiRJrS6mGRG9gKOAVTPzsIhYGyhk5nUdFp0kSZIkSVWWRYtpVlJbimn+kVLBzG3K25OAk9o9IkmSJEmSVLfakqhYMzPPABYAZOZbQHRIVJIkSZIkqS61euoHMD8iVqBUQJOIWBOY15o7uuZs7SjObFWXqRJ6D6x2BCqbNX96tUNQ2Yo9hlU7BC3mgButl10r+hRWqHYIKtvzjHuqHYLK5vzaUnpSZ9WWRMVPgJuAkRFxCbAt8MWOCEqSJEmSpFpR9Mv3imp1oiIz/xERDwCjKU35+HZmTuuwyCRJkiRJUt1py6ofO5Rvzi7/Xj8iyMxx7R+WJEmSJEmqR22Z+nH0Yrd7AlsC/wOcwCpJkiRJktpFW6Z+7L74dkSMBM5o94gkSZIkSaohWbRGRSW1ZXnSd5oEbNBegUiSJEmSJLWlRsWvKS9NSinBsTHwcEcEJUmSJEmS6lNbalT8d7HbTcClmXl3O8cjSZIkSZLq2HITFRGxama+kJl/qkRAkiRJkiTVkiwWqx1CXWlNjYqrF96IiCs7MBZJkiRJklTnWpOoiMVur9FRgUiSJEmSJLUmUZHvcluSJEmSJKldtaaY5ocjYhalkRUrlG9T3s7M7Ndh0UmSJEmSpLqy3ERFZnapRCCSJEmSJNWibHZyQSW1ZuqHJEmSJElSRZiokCRJkiRJNcNEhSRJkiRJqhmtKaYpSZIkSVLdyqI1KirJERWSJEmSJKlmmKiQJEmSJEk1w0SFJEmSJEmqGdaokCRJkiRpGbLZGhWV5IgKSZIkSZJUM0xUSJIkSZKkmmGiQpIkSZIk1QxrVEiSJEmStAxZtEZFJTmiQpIkSZIk1QwTFZIkSZIkqWaYqJAkSZIkSTXDRIUkSZIkSaoZFtOUJEmSJGkZihbTrChHVEiSJEmSpJphokKSJEmSJNUMExWSJEmSJKlmWKNCkiRJkqRlyGZrVFSSIyokSZIkSVLNMFEhSZIkSZJqhokKSZIkSZJUM6xRIUmSJEnSMmTRGhWV5IgKSZIkSZJUM0xUSJIkSZKkmmGiQpIkSZIk1QxrVEiSJEmStAzWqKgsR1RIkiRJkqSaYaJCkiRJkiTVDBMVkiRJkiSpZpiokCRJkiRJNcNimpIkSZIkLUM2W0yzkhxRIUmSJEmSaoaJCkmSJEmSVDNMVEiSJEmSpJphjQpJkiRJkpYhi8Vqh1BXHFEhSZIkSZJqhokKSZIkSZJUM0xUSJIkSZKkmmGNCkmSJEmSliGbs9oh1BVHVEiSJEmSpJphokKSJEmSJNUMExWSJEmSJKlmWKNCkiRJkqRlyKI1KirJERWSJEmSJKlmmKiQJEmSJEk1w6kfZd12/xpdClvAgnnMu/wX5MtPL9Wmx2GnE30HwoJ5AMy94DiYM5Mum32M7rseQs6aBsCCe6+l+T83VzT+zqTrzofSsOZmsGAeC677FfnqM0u16X7QSdBnIDSV+mL+X34Kb84kRq5Pt50PIYauxoKrzqT4+D0Vjr7zykxOPusWxt3zND17duPUH+3GqMKIpdqd9bvbuebGR5k1ey4P3HZMFSLtnO6/+2l+dcYtFIvJbp/emIO+vM0Sxx/63wuc/fNbeObJKfzktE+z48fXA+DJx1/lF6fcxJw35tHQpYHPH7ItH91l/WqcQqfxr7smctopf6e5WGSffbfmkEM/vsTx+fMXcOz3/8zEiS8yYEBvzvzlF1l55UGLjr/y8mvssfspfP2IXfnSlz9a6fA7lczklL8/ybiJ0+nZrYFTDlyfUSP7LtXu0HMfYuqs+TQVk83X6M+P9ivQpSE458ZnuPzelxnYpzsA3/nUGowZNbjSp9EpPP7fKYw9dyLFYrLlJ0ay0/5rLXH83uuf555rnycagh49u7Dvtzdk2IdKffXyM7O48uxHmfdmE9EQfOvsbenWvUs1TqMuXHDwcey24bZMmf06G/7swGqH0yndfdfj/Py0ayg2F9lrn6348qE7LXF8/vwmfnTspTw2YRL9B/Ti9F8czEorDwTgicaXOemEK5nzxlwaGoI//+3b9OjRjSMOO5+pU2fR3Fxkk81W59jj96ZLF79zVudlogJoKGxBw+CVmHvmV2gYuS7d9/oG8357ZItt5//1DIovPbnU/qZH7mTB2HM7OtROr2HNzYiBI5h/7teIldah2ycOZ/5FR7fYdsE1vyRfeWrJnbOmseDaX9F1q09XINr6Mu7ep3n+xde4+fLDeXjCy5xwxk1cdsGXlmq343brcOC+m/OJz/j30F6am4v88tSbOOt3n2PIsH4ceuCFbDtmbVZfc8iiNsOG9+OHJ+7OXy++f4n79lihG8f9bA9Gfmgg06bM5iufu4Att16Dvv16Vvo0OoXm5iIn/exyzr/gCIYPG8D+nzmTHXfcgDXXejtp9/cr7qNf/17cePOPueH6//HLM8fyi7Pe/ls5/bSr2H57k0XtYdzE6Tw/9U1uOn40Dz8/ixMvb+RvR22+VLuzvrQBfXp2JTP59oXjuemhKXxq02EAfOEjq/LlnVatdOidSrE5ueo3EzjslK3oP7gnZ3/rX4waPWxRIgJgk4+sxNaf+hAAE+6dzNjzHuPQk7ekubnIpWc8xGeP2ZiV1ujHnFnzvfjqYBfdez3n3HEFF3/xx9UOpVNqbi5y2slXce75hzFsWH8O3P9XjNlxfdZca/iiNldfeT99+63A2JuO5aYbHuRXv7ye039xME1NzRz/g0v52amfpbDuSsyYMYeuXUtJu9N/eTB9+vQkM/nedy7mHzc/zCc+uUm1TlPqcL4TAF3WH03TA7cCUHzxcWKFPtB3xSpHVZ8a1tmS5kduByBffgJ69oY+re+LnDmFnPI8ZLGjQqxbt457gj133YiIYOMNVmbWG3OZMm32Uu023mBlhg5e+htNvXePjX+ZlUcOZKVVVqRbty58dJf1+dcdTyzRZsTKA1hrnWFExBL7V/3QIEZ+qPQtzeChfVlxYG9mvP5mxWLvbB595HlWXXUII0cOplv3ruz6yU257bZHl2hz222PsueeWwKw8y4bc/99T5BZKsB16z8fYZWRg5b4wKr37rbx09hzi+Gl16XV+jPrrSamzJy3VLs+PUvfyzQVkwXNRWKpFno/XmicweARvRg0ohdduzWw8ZiVmHDv5CXa9OzdbdHt+XObWPhS9cT/pjFi9b6stEY/AHr3605DF3uoI9311EO8NmdWtcPotMY/+gIjRw5ilZGD6Na9K7t8cmPuuH3CEm3uuG0Cu+9ZSqp+bOeN+Pd9T5KZ3HvPE6y9zggK664EwIABvRcl7vr0KX3B0NRUpGlB01Lv9+p4xWJ2yp9a5YgKoKHfIJpnTFu0nTOn0dBvMMXZry/Vtvt+R0KxSNP4u2m67dJF+7tusB1dVt+Q4rSXWHDd78mZ05a6r5Yv+g5aNIUGIGdNK+17Y+m+6LbbNyGLND9+L83/uqySYdalyVNnM2JYv0Xbw4f0Y/LU2SYlKmDqlNkMHf728zxkWD8ee/SlNj/OxEdfomlBMyuPNBH7Xk2ZMoPhwwcs2h42bACPPvL8km0mz2T4iFKbrl270KdvT2bMmEOPHt248A//5PwLjuCPf7y1onF3VpNnzGP4gLdHBw3v34MpM+cxtH+Ppdoecu5DPPr8LLZfbxC7bDx00f5L7prENf9+hQ1W7ccxe61F/17dlrqvlm3W9LkMGLLCou3+g3vyQuOMpdrdPfY5xl31LM0Linz19NEATHtpDhHB+T+8nzkz5/Phj6zEjvutWbHYpfY2ZfJMho1Y8n1i/DvfJ6bMXPReUnqfWIEZM97kheemEgFfP/Q8Xn99DrvsujFf/MqOi+739UPPY/z4F9l2u3X52M4bVeaEpCpZbqIiIq4C3jXVkpl7t2tE1dBCRjJbOOX5fz2DnDUduq9Aj4OOJzf9KM0P3ErzY/fz1kN3QvMCum71Sbp/5rvMO//YSkTe+bSUHc4W+uKaX8Ls16D7CnTb5/vkhjtSfPT2CgRYz5buB7P5FdLSK3Abn/tpU2dz0vFjOe5ne9DQYL+9Vy28HC31d5AtNAqC35xzIwd/4SP06r30RbTem7b8afzh8I2Zt6CZoy+eyH1PvM626w7kgG1X4fBdVieAs294hjOufoqTP7deR4bcKbX8d7H0vm33WI1t91iNB29/iVsvfZIDvrcxzc1Fnp3wGt8+ezu69ejC739wH6us1Z+1N7FWiDqRpd4nWm7S3FzkwQee5c9/+w49e3bjq1/5PeuNWoWtRq8NwG/PP4x58xbww2P+wn/uf4rR26xTieilqmjNiIpz3ssDR8RhwGEAv95lFF/eeOR7eZgO03X0bnTd8hMAFCc9QQwYDOVkZ/QfXEpIvMOiffPfounh22lYZR2aH7gV3nx7+HvTv2+i265f7vD4O5Mum32SLpuUitEVX36K6Dd40YfP6DeYfOO1pe80u7xv/lsUJ4yjYaW1TVR0gEuu+C+Xj30QgA3XW4lXJr89VPTVqbMYOrhPtUKrK0OG9WXKq2+/zkydPIvBQ1r/3M95Yx7HfPNvHHrERxi10codEWLdGDZsAK+++vY3xZMnz2DI0H5Lthk+gFdfmcHw4SvS1NTMG7Pn0n9ALx595Dn+cfND/PLMscye/VapqGCPbnzuwB0qfRofaJfcNYkr7n0ZgA1W7curM+YuOvbqzHkM6ffuiaAe3bqw04aDuW38VLZddyCD+3VfdGy/rVfia+c90nGBd2L9B/dkxtS3Fm3PnDaXfgPfvQ7Oh8esxN9/PR6AAYNXYI0NB9G7f6kv1t1iKC89NdNEhT6whg7rz+RXlvM+Maw/r746g2HDB5TfJ96if/9eDB3Wn802X5MVV+wNwHbbr8vjEyctSlQA9OjRjTE7rs8dt403UaFObbmJisx8T+NTM/M84DyAN3+wa81Nfmm67zqa7rsOKBXT7LbN7jQ/fCcNI9cl586Bd077aGiAnn3gzVnQ0IUu625F8anSBRx9V1zUvsv6oylOebGSp/KB1/y/G2j+3w0ANKy1GV02/xTFiXcRK60D8+bAO6d9REOpdsVbs6GhCw1rbUHxuYerEHnnd+C+m3PgvqU5lHfc/SSXXPFfPvXx9Xl4wsv07d3DaR8Vsu6olZj0wmu8/NIMhgzty603T+Qnp+zVqvsuWNDMD4+6gk/sthE77uw3xe/XBhuuygvPT2XSpOkMG9qfG294gDN+/oUl2uy44wZcc82/2XiT1bnl5ofYavTaRAQX//k7i9r85pwb6NWrh0mK9+DA7VfhwO1XAeCOCdP4y12T+OSmw3j4+Vn07dllqWkfc+Y1MWduM0P796CpucidE6ez+RqlIdeLTxP5xyNTWXtE78qeTCcxstCfaS/P4bVX36TfoJ48dOfLfO77Sxb5m/rSHIasXHp+H//3FAaXb6+z2RDuuPxp5s9tpku34JlHp7PDp1ev+DlI7WXUBiN54YVpvDRpOkOH9ufmGx7i1J8vubrKmB1Hce01/+XDG6/GP295hC22WouIYJttC/zpwjt46635dOvWhf/99xkO+vz2vDlnHnPenMeQIf1oamrm7rseZ5NN/TuptGyuuUvaTq3VNSoiYk3gZGB9YFGaPDM/8Km8YuN/KK67BT2PvhAWzGX+5WctOtbzW+cw9+xvQJdu9PzySdAqxmgOAAAgAElEQVSlKzQ00PzUgzT9+yYAum2zJ13WHw3FZvLN2cy//BfVOpUPvOJT/6Nhzc3p/vXflZcn/fWiY90POYv5fzgSunaj+2d/Cg2lvig++zDND94CQIxYi+77Hgs9+9Cw9hbkDp9l/nnfrNLZdC5jtlmLcfc8zc77/ZaePbpxyvG7LTq21+fP5+qLDwXg5+fcynW3TOCtuQsYs8fZ7LvHxnzzEC/G3o+uXRs48ge78N3DL6VYLPKpPT/M6msN4Q+/vZN11x/Bdh9Zh8fGv8xxR13B7FlzuWfck1x47jj+39+/ym23TOThB15g1ow3uXFsKaH3wxN3Z+11Leb4XnTt2oUfHr8vXz3ktzQXi3x679GstfYIzjn7ekZtsCo77rQhe++7Ncd+//+x6y4n0r9/L37+iy9WO+xOa8z6gxg3cTq7/OxeenbvwimLTdv49Bn/5qpjtuSteUWOOP8R5jcVaU4YvfaK7L9tqVDdmWOf4vGX3iCAlQetwE8/U6jSmXywdenSwF5f34Dzj/t3aXnSnVdh+Gp9ufniRlZZewCjth7GPWOf48kHp9HQtYFefbqy/3c/DECvvt3Yfu/VOftb/4IojahYb6thVT6jzu0vXz6Rj6yzKYP7DODFU8byk+vO58J7rq12WJ1G165d+P5xn+brh51PsZjs+ektWHOt4fz21zex/qiRfGSnUey1z5Yc/4NL2eMTp9Kvfy9OO/MgAPr178VBX9iBg/b/FRGw3fbrsf2Y9Zk+bTbfOeJCFixoprm5yBZbrcW++29d5TOVOla0NJe2xYYRdwEnAWcCewFfAoqZudy1jWpxREW9aujbffmNVBE9Dt+n2iGobOoKy2+jylixhxcotaTLLVdXOwSVXVfwhapW7HnGPdUOQWVzfn1ctUPQYnp13b1TF8F6ZoeNOuU17RrjHqnJfmvL8qS9MvNmgMx8OjOPB3Zczn0kSZIkSZJarS3Lk86LUmnzpyPia8BLwNDl3EeSJEmSpA+0LHbKARU1qy2JiiOBPsC3KNWq6A+4vIUkSZIkSWo3rU5UZOb95ZuzgYM7JhxJkiRJklTP2rLqxz+Apca7ZObO7RqRJEmSJEmqW22Z+nH8Yrd7AvsA89o3HEmSJEmSaks2W6Oikt7L1I+F7oyIO9s5HkmSJEmSVMfaMvWj32KbDcBmwIh2j0iSJEmSJNWttkz9mECpRkUATcCzwKEdEZQkSZIkSapPbZn6MbIjA5EkSZIkSVpuoiIi9ljW8cwc237hSJIkSZJUW7JoMc1Kas2Iiv3KvwcD2wB3lLfHAHcCJiokSZIkSVK7WG6iIjMPBoiIscD6mflSeXtl4OyODU+SJEmSJNWThja0XWNhkqLsZaDQzvFIkiRJkqQ61pZVP8ZFxPXApZRW/zgAGNchUUmSJEmSVCOsUVFZbUlUHEGpXsX25e2LgSvaPSJJkiRJklS32rI8aQKXlX8kSZIkSZLaXWuWJ70zM8dExOuUpnwsOkQpfzGww6KTJEmSJEl1pTUjKnYs/x7ckYFIkiRJklSLstkaFZW03FU/MrNYvnkGsGlmNi/+07HhSZIkSZKketKW5UknAidHxBMRcWpEbNxRQUmSJEmSpPrU6kRFZl6QmTsD2wIvAP8XEY93WGSSJEmSJKnutGV50oVGAqsBKwNPtWs0kiRJkiTVmGLRGhWV1OpERUScDOwLvAj8DdgqM1/rqMAkSZIkSVL9acuIileAHTJzckcFI0mSJEmS6ttyExURsXZmPgmMA4ZFxLDFj2fmIx0VnCRJkiRJqi+tGVHxA+ArwG9aOJbADu0akSRJkiRJqlvLTVRk5lfKv7fv+HAkSZIkSaotxWK1I6gvrZn6sceyjmfm2PYLR5IkSZIk1bPWTP3Yr/x7MLANcEd5ewxwJ2CiQpIkSZIktYuG5TXIzIMz82BgAbB+Zu6ZmXsCo4Cmjg5QkiRJkiTVlogYGBH/iIgny79XfJd2Z0TEhIh4LCLOjohY3mMvN1GxmDUy86XFtl8GCm24vyRJkiRJHzjFYuf8eZ9+ANyamWsDt5a3lxAR2wDbAhsBGwBbUJqdsUytmfqx0LiIuB64lNJqHwdQWrJUkiRJkiTVlz2Bj5Rv/4lSmYjvv6NNAj2B7kAA3YDJy3vgtiQqjqBUr2Lh6h8XA1e04f6SJEmSJKlzGJaZrwBk5isRMfSdDTLz3oi4HXiFUqLinMx8bHkP3OpERWYmcFn5R5IkSZIkfYBFxGHAYYvtOi8zz1vs+D+B4S3c9bhWPv5awHrAKuVd/4iIHTJzmbMzWp2oiIg9gdOAlShlQoJS/qJfax9DkiRJkqQPmnao51CTykmJ85Zx/GPvdiwiJkfEiPJoihHAlBaafRq4LzPfKN/nRmA0yykj0ZZimr8APpOZ/TOzX2b2NUkhSZIkSVJdGgt8oXz7C8A1LbR5ARgTEV0johulQprLnfrRlkTF5Mx8tA3tJUmSJElS53Qa8PGIeBL4eHmbiNg8Iv5QbnMF8DTwKPAw8HBmXru8B25LMc3/RMQlwNXAvIU7M3NsGx5DkiRJkiR9wGXmdOCjLez/L3BI+XYz8NW2PnZbEhWDgCKwx+IxUBruIUmSJElSp1TMakdQX9qy6sfBHRmIJEmSJEnSchMVEXEWpZETLcrMo9o1IkmSJEmSVLdaM6JifIdHIUmSJEmSRCsSFZl5QWseKCL+LzO/8/5DkiRJkiRJ9aotxTSXZ4d2fCxJkiRJkmpCsVjtCOpLQ7UDkCRJkiRJWshEhSRJkiRJqhntmaiIdnwsSZIkSZJUh9pcoyIiemTmvBYOndMO8UiSJEmSVFOsUVFZrR5RERFbRsSjwJPl7Q9HxK8XHm/t6iCSJEmSJEnvpi1TP84GdgOmA2Tmw8COHRGUJEmSJEmqT21JVDRk5vPv2NfcnsFIkiRJkqT61pYaFS9GxJZARkQX4JvAEx0TliRJkiRJtcEaFZXVlhEVhwNHAasCU4DR5X2SJEmSJEntotUjKjJzCnBAB8YiSZIkSZLqXFtW/VgtIq6KiFfLP1dGxGodF5okSZIkSao3balRcSlwHrB/eftz5X1bt3dQkiRJkiTVCmtUVFZbV/34Y2bOL/9c1Mb7S5IkSZIkLVNbRlTcFhHfA/4KJKWRFddGRD+AzJzVAfFJkiRJkqQ60pZExUHl399+x/6vUkpcrNouEUmSJEmSpLrVllU/RnZkIJIkSZIk1SJrVFRWW1b9uC8iDouIvh0ZkCRJkiRJql9tKYb5RWBN4OGI+HNEfLRjQpIkSZIkSfWq1YmKzHw8M78PrA1cCVwcEc9GxI8iYkCHRShJkiRJkupGW4ppEhHrA18CdgeuAS4BtgNuAzZ9t/v13M7yFjWja5dqR6CF3ppR7QhUNnSFD1U7BC3SprcldbDccutqh6CyHXqvUO0QVDbn1ztWOwSV9f7mydUOQYvJc3evdgjqRFr9iTAi7gfeAi4EfpyZb5UP3R0R23ZEcJIkSZIkVZvFNCtruYmKiNg7M/8OHJyZT7TUJjP3aPfIJEmSJElS3WlNjYrjAd4tSSFJkiRJktRe2rLqhyRJkiRJUodqTY2KdSPikRb2B5CZuVE7xyRJkiRJUs2wRkVltSZR8SylVT4kSZIkSZI6VGsSFfMz8/kOj0SSJEmSJNW91tSouLs1DxQRX3ifsUiSJEmSpDq33BEVmfmNVj7Wt4E/vb9wJEmSJEmqLdaoqKz2XPUj2vGxJEmSJElSHWrPREW242NJkiRJkqQ65IgKSZIkSZJUM1qz6gcR0QDsm5mXLaNZq4puSpIkSZL0QZLpBIJKatWIiswsAsssqtmGopuSJEmSJEktasvUj39ExPciYmREDFz402GRSZIkSZKkutOqqR9lXy7/PmKxfQms0X7hSJIkSZKketbqREVmrt6RgUiSJEmSJLU6URERvYCjgFUz87CIWBsoZOZ1HRadJEmSJElVVixWO4L60pYaFX8E5gPblLcnASe1e0SSJEmSJKlutSVRsWZmngEsAMjMt4DokKgkSZIkSVJdakuiYn5ErECpgCYRsSYwr0OikiRJkiRJdaktq378BLgJGBkRlwDbAl/siKAkSZIkSaoV1qiorLas+vGPiHgAGE1pyse3M3Nah0UmSZIkSZLqznITFRGx6Tt2vVL+vWpErJqZD7R/WJIkSZIkqR61ZkTFL5ZxLIGd2ikWSZIkSZJU55abqMjMHSsRiCRJkiRJtcgaFZXVmqkfey/reGb+vf3CkSRJkiRJ9aw1Uz92X8axBExUSJIkSZKkdtGaqR9fqkQgkiRJkiRJrV6eNCKGAacAK2XmrhGxPrB1Zl7QYdFJkiRJklRl1qiorIY2tL0IuBlYqbz9BPCd9g5IkiRJkiTVr7YkKgZn5mVAESAzm4DmDolKkiRJkiTVpbYkKuZExCBKBTSJiNHAzA6JSpIkSZIk1aVW16gAjgLGAmtGxN3AEGDfDolKkiRJkiTVpeUmKiJiC+DFzHwgIsYAXwX2AW4BJnVwfJIkSZIkVZXFNCurNVM/fg/ML9/eBjgO+A3wOnBeB8UlSZIkSZLqUGumfnTJzNfKt/cHzsvMK4ErI+KhjgtNkiRJkiTVm9aMqOgSEQsTGh8FblvsWFtqXEiSJEmSJC1TaxINlwJ3RsQ04C3gLoCIWAtX/ZAkSZIkdXLWqKis5SYqMvPkiLgVGAHckplZPtQAfLMjg5MkSZIkSfWlVVM3MvO+FvY90f7hSJIkSZKketaaGhWSJEmSJEkVYTFMSZIkSZKWwRoVleWICkmSJEmSVDNMVEiSJEmSpJphokKSJEmSJNUMa1RIkiRJkrQMxax2BPXFERWSJEmSJKlmmKiQJEmSJEk1w0SFJEmSJEmqGSYqJEmSJElSzbCYpiRJkiRJy1AsVjuC+uKICkmSJEmSVDNMVEiSJEmSpJphokKSJEmSJNUMa1RIkiRJkrQM1qioLEdUSJIkSZKkmmGiQpIkSZIk1QwTFZIkSZIkqWZYo0KSJEmSpGWwRkVlOaJCkiRJkiTVDBMVkiRJkiSpZjj1A8hMTrn6acY9Np2e3btwygEFRq3Sd6l2h573CFNnzaepmGy+Rn9+tPfadGkIjrx4Is9NfROAWW810W+Frlz13c0rfRqdRmZyyt+fZNzE6fTs1sApB67PqJEt9Me5Dy3ZH/sV6NIQnHPjM1x+78sM7NMdgO98ag3GjBpc6dPoFDKTk8+5i3H3P0/Pnt049ZiPMmqdIUu1O+uC+7jmlkZmzZ7LAzd8dYljN97xJOf86T8EUFhzML84fucKRd+5ZCYnnzGWO//1OD17duO0Ez/DqPVWWard+ImTOPbHlzF33gLGbLcuxx2zBxHBr8+9hcv+/m8GrtgbgKO++QnGbL9epU+j5mUmJ59yOXeOm1B6nk/5PKNGrbpUu/ETXuDYYy8uPc87jOK4H+5HRDBjxhyOPOoCXnppOiuvPIj/O+sQ+vfv9a6P+9JL0/nmt86juZg0LWjmoIPG8NkDdgDghhv+y7m/v4liczJmzCiOOXrvSj8dNSkzOfmsWxh3z9Ol16Uf7caowoil2o1//BWO/dm1zJvXxA7brMlxR+5MRPD4k5P5yRk38uab81l5RH/OPGEv+vTuwfwFzfzk9BsY/9grNDQEPzxyZ7ba9ENVOMMPjnv/9QS/PP0GisUie+y9GV/4ypgljs+f38QJx13B4xNfpn//Xpz08/1ZaeUVWbCgiVNPvIbHJ7xMNARHff+TbLbFGgCce/Y/uOHaB5k9ay533P/japzWB9bddz3Oz0+7hmJzkb322YovH7rTEsfnz2/iR8deymMTJtF/QC9O/8XBrLTyQACeaHyZk064kjlvzKWhIfjz375Njx7dOOKw85k6dRbNzUU22Wx1jj1+b7p08XvO9nLBwcex24bbMmX262z4swOrHY5UU3ylAcY9/hrPT3uTm47dkhP2W4cTr3yyxXZnfX59rv7e5lx79Oa89sYCbnp46qL9V313c6767ubsvNEQPrahF8Xvx7iJ03l+6pvcdPxoTjhgXU68vLHFdmd9aQOu/v6WXPuDLUv98dCURce+8JFVueqYLbnqmC1NUrwP4+5/nudfmsnN/+8gTjzqI5zwf3e02G7HrVfjst/uu9T+5ybN4Ly/PMBfzt6b6/74OX54xHYdHHHnNe5fj/PcC9O4Zewx/OxH+/DTk69qsd1PT76KE3+0D7eMPYbnXpjGuLvf/vv54kHbc81lR3LNZUeapHgX48ZN4Lnnp3DLTT/lZyccyE9P/GuL7X56wqWceMLnuOWmn/Lc81MYd9dEAM47/2a23rrALTefwNZbFzjv/JuX+bhDhvTnr5d+j2uu+iGX/e1ozj//FiZPmcHrr7/BGWdexZ/++G2uv+5HTJ8+m3vvfbwyT0KNG3fv0zz/4mvcfPnhnPiDT3LCGTe12O6EM27kxB98kpsvP5znX3yNu+57GoDjT72e7x6+I9dechgfH1Pggj/fC8Dl1zwIwLWXHMaFv/ocp5/9T4rFrMxJfQA1Nxf5+SnX8n/nfp6/Xv0tbrnxUZ55esoSbcb+/X/07bcCV15/FAccvA2/+b/S38PVV/4XgL/8/Zv8+vdf5Fdn3kSxPPl7uzHr8se/HF7Zk+kEmpuLnHbyVZzzu0O4cuzR3HTDgzz91KtLtLn6yvvp228Fxt50LAd+fgd+9cvrAWhqaub4H1zKcT/ehyvHHs35Fx1O165dADj9lwdz2VXf5Yprvsfrr83hHzc/XPFz68wuuvd6PvHrI6sdhlqpWOycP7XKRAVw2/jp7LnZcCKCjT/Uj1lvNTFl1ryl2vXpWRqA0lRMFjQXiXccz0xuemgqn9pkaAWi7rxuGz+NPbco98dq/Uv9MbPt/aH379Z7nmXPjxdKfbH+cGa9MZ8p0+cs1W7j9YczdFDvpfZffv1EPrfnhvTv2xOAQSv26vCYO6tb75jIXrttWuqLjT7ErNlvMWXqrCXaTJk6izfmzGWTD3+IiGCv3Tbl1tsnVCniD6Zbb3uEvfbcqvQ8b7w6s2a9yZQpM5doM2XKTN54Yy6bbLJG6XnecytuvfXhxe4/GoC99hzNP5fYv/Tjdu/ele7duwGlbzuLWbowfnHSNFb70FAGDiyNJtt663W5+ZYHK/Ic1Lpbxz3BnrtuVHouN1iZWW/MZcq02Uu0mTJtNm/Mmc8mG65CRLDnrhvxzzufAODZ56ezxSalUTLbbLkGt9xRSuY9/ew0tt58NQAGDexNvz49Gf/Yy5U7sQ+YieMnscqqg1h5lYF069aVj39iQ8bd/tgSbcbd8Rif2mMTAHb6+Cj+c/8zZCbPPj2VLbZaE4CBg/rQt29PHptQeq43/PBIBg9ZehSllm38oy8wcuQgVhk5iG7du7LLJzfmjne8/t9x2wR237M04vdjO2/Ev+97kszk3nueYO11RlBYdyUABgzovWjURJ8+pffvpqYiTQuaiPDTVnu666mHeG3OrOU3lOrQMhMVEXFVRPz93X4qFWRHmzxzHsMH9Fi0Pbx/D6bMnN9i20N+/wjb/eReevfoyi4fXnII/H+fmcmgvt1YbYgXY+/H5BnzGD6g56LtUn8snagAOOTch9juuH+V+mPjtxNEl9w1iT1Pu5/j/vIYM99c0OExd1aTp81hxNA+i7aHD+nN5GlLJyrezXOTZvDcpBl89ptXsv8RV3DXv5/viDDrwuQpMxk+fMCi7eHDBjD5HRfQk6fMZPiw/u/a5pK/3sPu+/2SY39yGTNnvdnxQX8ATZ48g+HDV1y0PXz4ikyeMmPJNlNmMHzY4n2xIpMnl9pMnz6boUNLfTB0aH9ee232ch/3lVdeY/c9T+IjOx3HoV/ZmWFDB/ChVYfyzLOTmfTSdJqamrn11od59dXXO+akP2AmT53NiGH9Fm0PH9KPyVNnL9Vm+NC3L3aHD+27qM3aawzhtrtKSYubbnuMV6aULhIKaw/l1nFP0NRUZNLLM5jQ+AqvTFnycfW2KZNnMWyx15uhw/oxdcqSF1xTJ89iaLlN165d6NOnBzNnvMnaheGMu/0xmpqaeXnSazz+2MtMfnXJ1zO1zZTJMxk24u3XpWHDBjB18tJJ1oXvI127dqFP3xWYMeNNXnhuKhHw9UPP47P7nsVFF9y+xP2+fuh5fHSHn9Krd08+tvNGHX8yksTya1ScU5EoqqylgZ3vli/+w1c3Yt6CIkdf8hj3Pfk62xYGLjp2/YNTHE3RDlrsj3fpkD8cvjHzFjRz9MUTue+J19l23YEcsO0qHL7L6gRw9g3PcMbVT3Hy5xzm/p600Blt+TKlqbnI85NmcPFZezF56hwO/PbfufbCz9KvT4/l31lLyBb7Ilrd5rOf2ZqvH/YxIuBXv7mF035xHaee8JmOCPUDLVt4Epd+nltq894fd8SIgVx7zfFMnjKDI77xe3bZZRMGD+7HT39yAEcedQENEWyyyRq8+OK0NpxJZ7b8PlrWa9cpx+3GSWfdwm8u/Bc7bb823cpD3PfZbWOeeW46+375AlYa3p9NNlyFrl389rgtlvpbeZc2u++1Kc89M5UvfvZcho8YwIYfXpUuXR3k2+5a9R5Rmjby4APP8ue/fYeePbvx1a/8nvVGrcJWo9cG4LfnH8a8eQv44TF/4T/3P8XobdapRPSS6ly09OGpXR444jDgsPLmeZl5Xof8Q+9RoVA4Aji0vPkf4LbGxsZLy8cagY80Nja+svh9IuKwhedRKBS+AGzR2Nj4jfJ2V+AlYLPGxsZJFTqNTqOt/bF4X5TbLNEfi+1fDbiusbFxgw4+hU7j/fRFoVB4o7Gxsc9ij/U74L7GxsaLytu3Aj9obGz8T0VO5gOurX2xwgorHL3qqqt+pbGxcd1ym8+W23z1HY+7Gv5dLNLW57lQKIwAbm/peV68fbk/DmlsbCwUCoXfA3cs732mUCj8Ebi+sbHxinfsPwxYq7Gx8ZgOeApq3vvto6FDh56/4oorFlv4W1gH+HNjY+OWLfyb9wCHNDY2TuyQk/qAKxQKWwM/bWxs3KW8fSxAY2PjqYu1ubnc5t7y56RXn3jiiR++8zNhS8/1O99PtGzvpT+KxeLrDQ0N/YD9gU80NjZ+sdzuR8DcxsbGn7/j32jxs5bet9WmTZt29+DBg1eudiBSLWlV+joi1oyIv0bEIxHxxMKfZd0nM8/LzM3LPzWVpABobGz8TWNj48aNjY0bA1cDny8UClEoFEYDM1v48Nina9euR5RvdwU+CSxe2exjwOMmKd6btvZHQ0PD18ofRJfqj4X7yz4NjK/ISXQSbe0L3k5ItuRqYEeAQqEwGFgHeKYj4u6M2toXc+fO3R+YXSgURhcKhQA+D1wD/l0sS1uf5/J2i88zMBb4AkDv3r2//Y79Sz1uoVBYpVAorABQKBRWBLYFGsvbQxfb/3XgDx31HNS699tHPXr0+Axv/y0sfF4bgOOB35W3exUKhd7l2x8HmkxSLNN/gLULhcLqhUKhO3AApf/ni1v09wDsC9wGHOZz3SHa3B9vvfXWgsbGxgRuBjYq90tXYAwwsVAo9Hm3z1pqX6+//vrA5beS6ktrx9ldBPyR0oyIXYHLgJZLoX8w3UDp4ukp4HxKHwgBKBQKD5Vv9l555ZXXKhQKjwAPA1Mof7gpOwC4tDLhdnrL7Y+GhoYGYOy79McZhULh0fKxHQHLKb93rfnboFAonFEoFCYBvQqFwqRCofDT8qGbgemFQmEicDtwdGNj4/RKBd/JtKovgMMpXdA+BTwN3Fje799F67zf5/k04OOFQuHJXr169StvL+tx1wPuLxQKDwN3Amc2NjY+Wj72q/Lfzt3AaY2Njcv8gqCOtLmPmpqa5vF2H322UCg8QemC62VKn28AhgIPFAqFx4DvAwd35El80DU2NjYB36D0Ov8YcFljY+OEQqFwYqFQ2KPc7AJgUKFQeAo4CvhBef+7PtfLeD/RMryX/pg6deqk8n1fB35JKdnxEPBAY2Pj9UBv3v2zltrHpcC9q6++eg9gEvCVKscj1YxWTf2IiP9l5mYR8Whmbljed1dmbt/hEdaQiPhvZm5e7ThkX9QS+6J22Be1xf6oHfZF7bAvaod9UTvsC2lpyyumudC8KFVIejoivkapFkM9Vo2suSksdcy+qB32Re2wL2qL/VE77IvaYV/UDvuidtgX0ju0dkTFVsBEYEXgZKA/cHpm3t2x4UmSJEmSpHrSYat+SJIkSZIktVWrpn5ExD9oYTnszNy53SOSJEmSJEl1q7U1Ko5f7HZPYB9gXvuHI0mSJEmS6tl7nvoREXdm5ph2jkeS1EoR0QX4VmaeVe1YtKg//pSZB1U7FklSbYqIq2hhpPpCmbl3BcORalZrp370W2yzAdgMGNEhEdWYiBgGnAKslJm7RsT6wNaZeUGVQ6s7EbEOcC4wLDM3iIiNgD0y86Qqh1aXImIIcCiwGou9lmTml6sVU73JzOaI2BMwUVEDyv0xJCK6Z+b8asdTryLiW8s6nplnVyqWemdf1A4vjmvKOdUOQPogaO3UjwmUXtwCaAKepXSBUg8uAv4IHFfefgL4G2CiovLOB44Gfg+QmY9ExF8AExXVcQ1wF/BPoLnKsdSzuyPiHEqvS3MW7szMB6oXUl17jlKfjGXJ/vhl1SKqP0OqHYAWsS9qhxfHNSIzb612DNIHQasSFZk5sqMDqWGDM/OyiDgWIDObIsKLsurolZn/jojF9zVVKxjRKzO/X+0gxDbl3ycuti+BnaoQi+Dl8k8D0LfKsdSlzPxRtWNQiX1RO7w4rj0RsSZwMrA+pRqAAGTmOlULSqohrR1RQURsydJDvP/SATHVmjkRMYjycLmIGA3MrG5IdWta+UV9YV/sC7xS3ZDq2nUR8cnMvKHagdSzzNyx2jHobZl5QrVjUElErAX8BhiemR8uTxf8VGaeWuXQ6k5ErAT8CtiuvGfR9scAACAASURBVGsccGRmvly9qOqTF8c15SJKo4LPBHYFvgQUqxmQVEtaVUwzIi6i9IL2EG8P8c7M/HrHhVYbImJT4NfABsB4SsMY983MR6oaWB2KiDWA8yh9g/w6pSlIB2Xmc9WMq15FxGygNzC//BOUXhf6LfOOalfW0akt5dotxwCjWPIiwBEuFRYRdwA/BH6TmZtEaTje+MwcVd3I6k9E3AxcAVxc3nUwsF9m7lK9qOpTRNzF2xfHe1G+OM7MH1c1sDoUEf/LzM0i4tHM3LC8767M3L7asUm1oLUjKkYD62dm3WX5MvOBiBgDFChdiDVm5oIqh1WXMvMZ4GMR0RtoyMzZ1Y6pnmWmw9prw0VYR6eWXELp+d8N+BrwBWBqVSOqX70z856F0wUzMyPC9+/qGJaZ5y+2/YeI+EbVoqlvvTLz5og4MzOfBo4vJy9UefPKCdSnI+JrwEvA0CrHJNWMhla2mwAM7shAalVEHAH0ycwJmTke6BMRnX4kSS2KiFMiYkBmzsnM2RGxYkRYSLNKouSgiPhReXtkeYqYKmtwZl5GebhoZjZhcdNqGlQezbIgM+8sr4IzutpB1anpEbE6b08X3At4tboh1a3XIuKAeNv+wGvVDqpOLXFxHBG748VxtRwJ9AG+BWxLaaECV06Tylo79eOfwCbAfcC8hfvrYSmjiHgoMzd+x74HM3OTasVUr1p63iPigczctFox1bOIOJfSxfFOmbleRKwI3JKZW1Q5tLpSHt6+D/CPzNy0XEfn9MwcU93I6lNE3JeZo8tD3c+mVFjzisxcs8qh1Z1yjYrzKCWKplKqafTZzHy2qoHVoYhYDfgtsBWlxNF9wDfti8qLiK2AicCKlGpV9Kf0nnF3VQOTpHdo7dSPei481RARkeWMTkR0AbpXOaZ61SUiemTmPICIWAHoUeWY6tlW5QvjBwEy8/WI8G+j8o4CxgJrRsTdlOvoVDekunZSRPQHvkupvlE/St+aqcIy8ylgp3J/RGbOqHZM9aj8uWmPzPxktWMRZOb95ZuzKdUKUZVExD8oj/haXGbuXIVwpJrT2uVJ63lJo5uByyLid5ReTL4G3FTdkOrWn4FbI+KPlPriy8CfqhtSXVtQ/gC6MIk3BKtVV5x1dGpLZl5XvjkTcEWWKirXQLg4M2dGxO/KxbGPrfPPNBWXmc0RsQ+lEUaqMi+Oa8rxi93uSWl05Lx3aSvVndZO/diC0jdD61H6BjuAefVQ3T8iGoCvAh+ldN63AH/ITOeAV0FE7MpifZGZN1c5pLoVEQcC+wObUkoY7Qscn5mXVzWwOhQR27D08tEXv+sd1GEiYh3gXErFAzcoL4m5R2ZaT6fCIuKRzNwoInamNAf8J8B5mblZlUOrO+V6Un2BvwJzFu53BbXKK0/9WGjRxXFmHl2lkLSYiLjTqZtSSWsTFf8BDqL0BrMl8EVgpEsZSfUtItbl7cTRrZn5WJVDqjsR8f+ANVl6+ehvVS+q+hURdwJHA79fWFMnIsZn5gbVjaz+RMTDmfnhiDgL+FdmXmmNqep4l1UlMjN3qHgwWooXx9UREYt/4dsAbAacm5nrVCkkqaa0tkZFQ2Y2RkTX8pDi8yPiHqDTJioi4rLM/ExEPErLQ+Q2qkJYdSki/pWZ20XEbJbsi6D0QafTj+ypRRHxK+BvmfmbasdS5zantHz08rPOqoRemfnvhUtiljVVK5g693BE3ACsAxwXEX1o4f1cFXFQZj6/+I6I+FC1gqln73JxPKJK4dS7CZRek4LS+8SzlFb+kETrExVzykXyHo6IUyhVzu7TcWHVhG+Xf+9W1ShEZm5X/t232rFoCQ9QWn99HeAqSkmL/1Y5pno0HhhO6XVZ1TctItbk7dot+2LfVMuXKF2EPZWZb0bEYOArVY6pXl1FaZrg8vap43lxXCMyc2S1Y5BqWWsTFV+klHX9BqVK5mvTyavKZ+Yr5UKBF2Tmx6odT70r1wp5xOHTtSMz/wT8KSIGUprjenpErJqZa1c5tHozGJgYEf9myeWj96heSHXtCEpLYq4bES9Rugg4sLoh1adyEcc1gI9TWoZxBUqfZVQh5UT2ekD/iFj8NakfpfoIqjAvjmtLRGzJ0jWm/lK1gKQa0tpVP54p35wL/Kjjwqkt5Q85b0ZE/8ycWe146llmFiPi4fKF8AvVjkdLWAtYl9Ib7cTqhlKXflrtALSE5zPzYxHRm9K0ydnVDqheRcQ5QDdgB0qJijnA74AtqhlXnRkF7A0MAPZbbP9sSoXKVSHvSBQtJTPHVioWlUTERcD6vKPGFGCiQmI5iYqIeGBZxzOzHobszQUeLS/ntHilagvVVd4IYEL5m+PF+8JvjqsgIk6n9AH0aeAy4GeZOaO6UdWlNYG7MvPJagciAJ6KiCuACy0uW3XbZOamEfEgQGa+Vp7GqgrJzKuAqyJiu8z8V7XjqXMLE0WDgW2AO8rbY4A7ARMVlTeaUo0pl3aXWrC8ERXdgQWUMnvXU59r+15f/lH1nVDtALSEZ4GtM3NatQOpc6sBB5UL0/0PuItS4uKhqkZVvzYCDgAuKE9ZuxD4a2bOqm5YdWlBuQ8W1gsZBHhBUB2vRsTNwPDySiwbAZ/KzFOrHVi9yMyDASJiLKWL45fK2ysDZ1cztjo2gVLiaEq1A5Fq0XKXJ42IDYDPAp8EHqaUtPhnPWT/ImITSt9WTvCbseqKiL0oTTF4NDNvrnY89Swi1s3MxyOixRFVmbnMkVjqGBGxAqWCaN8DVs7MLlUOqe5FxA7ApZSGvV9BadTRU9WNqn5ExOeBT1NaGedC4DPACZn516oGVoci4g7gh8BvMnOTKC2LMz4zR1U3svrzzuWSy33xqDXAKi8i/glsAtzHkjWm9q5aUFINWW6iYonGEfsDvwFOz8yfd1hUNSAifgwcROkbyq2AUzPz/OpGVZ8i4reU5rneA3wUuDYzf1bdqOpXRJyXmYdFxO0tHM7M3KniQdWxiDge2JbSSkwPAv+iNKLClSaqoFyE+VOUVpxYDfh/wCXA9sApmblO9aKrPxExCvgYpRUO/pmZ46scUl2KiP9k5hYR8WBmblLe91Bmblzt2OpN+TPVhyglUZPSCLAXM/PrVQ2sDkXER1van5m3VjoWqRa1ZkTFcGB/Sqt8vEFpLvqVnX0Ya0RMALYoL2k2CLgpMy3AVQURMR74cLm4aS9KF2GbVTuuelYeTr11Zt5d7VjqXbmWUBOlKWp3Avdl5tzqRlW/IuIZ4HZKK0bd845jZ1vfqONFRO/MnBMR/Vo63tk/v9SiiLgJOJzS58dNy6Mkv5aZn6hyaHWnPIJiP0rJU4BxwBXZlm8uJakClpmoiIhbKQ1Zvbz8M3Xx4535zT4i/rf4xfA7t1U5EfHA4oVb37mt6oiIezNz62rHIYiIvsB25Z/PAJMzc7vqRlWfIqJPZr6xjOPHOi+/Y0XEjZm5a0S8SOkb41j8d2auWtUA61BErEVp2d7RlD5LvgIckJnPVTMuqZoiYgvg15SW8O1B6TVqXma2mGSV6s3yEhWTKBehWuw31MGbfUTMoJRlhtL5br/YtitNVFBEvAksnNcdlOqGPMXb/w83qlZs9SwiTgAeAf7uNzHVU64jtD2lyu2bAy9SGnX046oGphaZaFU9i4j+lD57ukJUhUXEnZk5JiJep+XP9AOrFFrdiv/f3p1H21nX9x5/fxJUQAYtUHEgIqBgBAIoFEFxAS0uueIAtBjKJFAciuLNrdqKw6VVLtUrDtCqaIigENGLA8oVsSKDIAgkTFJwZlDUi1KDEIaEz/3j95xkJ55zsoHs5/fkPJ/XWmfts3/PPlkfcsgefsP3K11NOWb+BWAX4Ahgs7x+RxSPqkbFhH9IU1xvNeTpDEkvm+y67UvaytJ3TTeDCdm+ra0ssZyke4EnU3p/L2b5m52sBLSoKcZ1MeXYx8LJVvOjvsEz+jE6Ta2QfYBtmqGbKTUqltZL1T/NivEnKQsMNwJH2761bqp+kjTN9iPNv40/kX8b7RvbrS3pRtvbNWNX2N6tdraILlhdExW9XSGSdK7tA2rniBxFiH6RtBZwInAkcDtlouhZwDzgeNsPV4wXE+jz62VbJD0duAj4HaXArIAdgD8D9rL964rxeqVZMX4vZUfqq4DDU5eiLkkfprRMvrp2lr6TdCml2O/plNfxu4C/y07hiGLaavpztJr+nDXRFrUDxDJr1w7QF5LWkrSfpLc3X/+t+eAc7fkQ5YPXc2zv1KzSb0mpK/S/qyaLyfT59bItJwKfsf0S22+xfWxTs+XTQOqDtGu67W/avs/2fODPawcKbgY+IOlHkv6XpHReqecIymexYym7U59LaV4QEWRHxePW5//2rsnvoh2SnkHpanAXy1crdwQ2Bfa0/auK8XpD0o+B561cH6TZ1nuL7efWSRaTkfQu2yfWzjGVSbrF9jaP9lqsfk0XnLcNDH108L7t81oPFQBI2oTyofggYNP8u4iIrskKaEQ8WicCn7D90cFBSW+lrFYeXiVV/3i8IqZNG98UN61E0rMoVdxfAjwCfA84zvadAJmkaMXix3gtVr/LKa0wx7tvIBMV9WwGbA48k+UFy6MFTVvxCWXRLaJYXRMVfS7Ak2283ZHfRTt2tX3EyoO2Py4pRdLac7Okw2yfOTgo6RBgShU3XsPMA85m+YexQ5qxv6qWqH82lDReZy4BKfbbItuHDvM4SYfY/vyo8wRI+gBlJ8UdwDnAX9j+fd1UvfNE4GHKa8X5wIN140R009BHPyRtCsxgYHLD9hUjyrXGkLSP7Qtr5+gDSf9q+50TjUna1vZNddL1x2RdC9LRoD2Sngl8mbJCfC1ldXJnYB3gtbZ/WTFeb0m6zvYOqxqL0ZH0ucmuD/vhOdqTo5vtkXQs8CXbv6mdpc+a1uKzgX2B6ymTFv9h+5GqwSI6ZKiJCkknUlaFbmH57gnb3neE2TpB0o2s2G8a4A/ANcD7bf+u/VT9NN4bGUk3pDpyu5ozx/8w3iXgg7a3bDlSr0naC3gB5e//h7a/UzlSrzXtYj8LzG+GZgOvt713tVAxrqzid0cmuUdP0nNt/1jSuO+ZbN/QdqYoJB0E/Bvwr7Y/VDtPRFcMO1FxKzDL9gOjj9Qtkj5ImZw5uxl6XXO7CHiJ7f2qBOsRSW8C3kzpsPLTgUvrA5fbPqRKsJ6SNG+y67Zf31aWiK6RNAM4FXgxZZL7CkqNituqBos/kVX87sjvYvQkzbV9lKTLxrls23u0HqrHmp3qB1GO4fwR+CJwru1FVYNFdMiwExUXAPvbvn/0kbpF0uW2dx9vTNKNtrerla0vJG0IPJVSqPEfBy7dm3OV3SXpcNtn1M4RETGerOJ3R34X0SeSvkNpJf6l5uv/DV7PZEVEMWwxzXuBhc2W1mUFX2zPGUmqbllP0l/YvgpA0i7Aes21JfVi9YftP1CO28xuWi8+jfL/7nqS1rN9e9WAMZHjgExURC9Ieu8kl237X1oLE8NKd5zuuLJ2gKluggKzy6RVbKu2pjz//D1lx/AYNeMzaoSK6JphJyouaL766GjgdEnrUZ5AFgFHS3oyZYU/WtIUgPqfwG8obf+gPKGnRkU3pQtL9Ml944w9GTgK2AjIREX35DmqJZI2Ad4PPNP2KyXNBHax/VkA22+qma8nxjoRbQzsBlzc3H8ZcAlpFdsa288a5nGStrGdLl7RW4+m68dawFbN3Z/Y7tVugub4gWz/V+0sfSXpJ5Q2WilgugbImePoK0nrU3YUHUU5d/xh27+tmypWJukT+YDcDknnA2cB77Q9S9ITgAU5Pts+SecBbxrrDNV0kPq47QPqJouV5X1U9N1QOyokvRT4HPBLygrEppIOtX35KMN1gaQnAQcAmwNrSWUBxvY/V4zVV3dQjoDEmiGrldErkv4MmAP8LeXY006276mbqr+yit8pf277bElvB7D9sKSlq/qhGIktVmpf/SvKUYTonryPil4b9ujHR4B9bd8MIOn5lImLF40qWId8jfLh+FoG6nNEFT8DLm5WZgZrpZxcL1JMYspPZEaMkfQhYH/gNGA723+sHClKm9izgHc2938MnNOMR7vuaybyDCBpZ0r9s2jfpc37qPmU38frgEvrRooJpI5O9NqwXT9usL39qsamIkk32d62do4ASe8bb9z2CW1nCZB0HDCP8mbzM8COwD/avrBqsIgKJD1CmUBdwopvLkUpprlBlWA9Julq2zsPdpSQdJ3tHWpn6xtJLwI+BrwAuB54JnCg7euqBushla3Bfw28tBm6FPg/HvYseLQmRz+i74bdUbFA0qcouyigbGtdOJpInXOFpO1s31g7SN+NTUhIerLt8QrXRbuOtP0xSS8HNgFeT5m4yERF9I7tabUzxJ/IKn5H2L5G0p7A8ymTdzfbfqhyrF5qJiS+2HxFt+V4VPTasDsq1gbeCryE8gJzKXCK7QdGG68+STdTioj+nLJaNrY6NuV3k3SNpBcDc4H1bM+QNAt4g+03r+JHYwTGdlVJ+hhwse2vDK5cRkTUlFX87mjqfb2B8j7SwGXAp23nSG3LJL0aOAl4BuU9bXZ9VSRpU0o70mWLx7avqJcoojuG7vrRV5KePd647dvaztJ3kq4CDgTOG9jGm6M5lUiaR3nj/xxgFjCdMmHxwqrBIiIakp5IVvGrk/QFymLP55uh2cC6tl9XL1U/NR3UXpudwvVJOhE4BLiF5bsnbHvfeqkiumPSox+S5tueLWkh4xR0mcrnpiRtYHsR2SbaKbbvGOu80si2uHqOAnYAfmb7fkkbUY5/RERUN94qvqSs4tcxc6WdqN+WdH21NP32m0xSdMYBwPP6sEM94rFYVY2Ktze3B446SAedDbyS0u3DrNgiyMAWNUL13B2SdgPcrJK9FfjPypl6y/YjkpYAe0gafC65oVamiIgBZ1BW8T/d3J/djGUVv33XSdrZ9tUAkl4IfL9ypr66WtJZwFdZsYPaefUi9dbPgdQ3ipjAsDUq1gEesG1JW1L6LV9oe8moA0aMkbQx5bzxX1Imji4EjrP9u6rBekrS6cD2wA+BR5ph2z6yXqqIiGKCjmXX255VK1NfSboJmElpMw7lyOAPKbsiPZV36HaNpM+NM2zbh7UepuckfYnyPuo/WHHSaE61UBEdMmzXj8soq6YbApdQOn68DpiyT2qSJn3RtL2grSxR2L6b0nEmumFX2zNrh4iImEBW8bvj1bUDRGH70NoZYpkLmq+IGMewOyoW2N5J0rGUjgsnTfVe5JK+O8ll296rtTABgKQPAu8HFlOe2GcBb7P9+Ul/MEZC0lzgw7Zvrp0lImJlWcXvDkknAfNs31o7S19J+gjj1Jsbk1X8Opqjs1s1d3+S3eoRyw27o2Ja03/8YOCYZmz6aCJ1g+09a2eIP7GP7XdIei1wJ/DXwHdZXkU82nUG8H1JvyateyOie7KK3x2/AM5s6hrNA86xnWLl7bqpdoBYkaSXAp8Dfkl5D7WppENtX143WUQ3DDtRMQc4ATjf9k2StqAcB5myJO0/2XXbX24rSyzzhOZ2X2C+7d+v1AEk2nU6cChwI8trVEREdMXfkVX8TrD9SeCTkmYCRwI3SroU+LTtKf1+sitszx3mcZI+avtto84TAHwE2HdsZ6qk51MmLl5UNVVERww1UWH7IuAiAJVPhr+x/eZRBuuA/Sa5ZiATFe37uqRbKEc/3ixpEyAtneq5PVXCI6LDfkFW8TtD0jTK8ZvNgXuAW4F3Sfqd7UNqZosV7FE7QI88cfD4rO3/bLraRQTD16g4EzgWWAJcA2wMnGT75NHGi1iRpKcCi2wvlfRkYH3bv66dq48k/TvwFODrrFitOpN4EdEZA6v4BwJZxa+gqTG1P6Ug+1zbVwxcu9X21tXCxQrG6tLVztEHkj5Lef801onlb4F1bR9eLVREhwzbu3c724uA11BaQj4LOGJUobpE0tMkzZX0zeb+TElH1c7VR5LWBf4e+EQz9AyyPa6mdSgvsPtQdiDtB7yyaqKIiAGTrOKntlELJM1ovv0JsIPtowYnKRovbjlWRFe8Efgp8A7gnZTCv2+omiiiQ4bdUfFDSoeFs4BP2L54qnf9GNNMUMwDjrc9q6nOu9D2dpWj9Y6kc4BrgcNsbytpHeD7ffj/sEskPcv2nRNc28/219vOFBGxsqzi15fV+TWPpIW2d6ydIyJi2B0VnwFuB54KXNLMkP9xZKm6ZWPbX6QpFti0DVpaN1JvbWn7g8DDALYXU6okR7u+I2nzlQclvR74aOtpIiIGZBW/U/Ia3VGSnjTBpVNbDdJDkuY3twslLVj5q3a+iK4YtpjmRyiVaQGQdAew16hCdcx9kjai6T0taVfgD3Uj9dZDzS6Ksd/FlgzURojW/Hfg25L2tf1jAEn/RGlf/LKqySIi4KvATrZPm+gBtn/fYp4+e6akj0900fZb2wwTIGkXYC6wITBD0izgaNtvgeG7g8Tj8vbm9sCqKSI6btKJCkmzbc+XNNELyYQvPlPIHOA8YEtJlwObkCeWWt4HXABsJuksYHd6UiulS2z/X0kPAt+U9BrgaGBnYA/b99RNFxGRVfwOWUw5shnd8XFKPamvAti+XtKedSP1y8Dx2V8BD9h2s/i2NaUWYESw6h0VT21uNxl1kK6RtDNwh+0Fkl5GKW5zAOUJZNzz+TE6TVvcWyjnjXelvBE9zvbdVYP1lO3vSDoCuBi4AtjbdlrFRkQXZBW/O35n+4zaIWIF02zfVt5WLZMjzXVcBuwhaUNKLZ2FwOuAw6qmiuiISScqbP97c/ueduJ0yqeAv2y+3w04HngLsANwGtlV0apmtvmrtl8InF87T59Jupdy/EbAk4C9gd82k0m2vUHNfBHRe1nF746HhnmQpBfY/uGowwQAdzTHPyxpOuW97Y8qZ+qrabbvl3QkcKrtkyRdVztURFcMVaOiKUx1LKW917Kfsb3/aGJ1wvSBM6wHAafZPhc4N08i1VwpaWfbV9cO0me216+dISJiElnF7wjbuw750M8B6Q7SjjdRjn/MAH4LfLsZi/ZNa3ZwHwwc04xNr5gnolOGmqig1Gg4k/Jk9sjo4nTKdElrNV0+9mb5EwgM//cWq9eewBsl/QK4j7Kib9vbV00VERFdklX8NU/qirTE9m8pxwuivjnACcD5tm+StAXlOEhEALK96gdJP7C9Swt5OkPS8cC+wN2UWeedmuMHWwFn2N69asAekvTs8cZt39Z2loiIWLNJWmA7q/gdkN9Fe5r24h9heYvey4H/YfsXlSIFy2qxrWv7vtpZIrpi2ImKQ4FnA99ioB2k7RtGF62+phXp04ELx544JD0PWM92+hy3RNLawBuBrYAbgbnNTpeIiIjHRNJC2zvWzhGZqGiTpO9Taq2d1QwdDLzB9osn/qkYBUlnUo7WLwGuATYGTrJ9ctVgER0x7BGG51FaEL6C5Uc/DOwxilBdYfvKccZScKh9ZwAPU7bDvQKYCRxXNVFERKzpVr1SE20Z6rhOrBbTbM8buP9ZSalRUcd2thdJOpjSVfAdlAmLTFREMPxExd8Am9t+cJWPjFj9ZtreDkDSXOAHlfNERETEKkiadJfE2O7UR1F0Mx6/iyT9A/AFymTdQcDXJW0AYHtRzXA980RJawGvBj5h+yFJfakFGLFKw05U3ACsz8Cxj4gWPTz2je0lK/X+joiIeCyyij96H57kmoG92goSyxzS3K68M/UNlN/JjHbj9NpngNuBm4BLmi6Lf6wbKaI7hq1RcRGwPXAVK9aomMrtSaMjJC2ldPmAUhl8HeB+lnf92KBWtoiI6JZhV/EjIrqkKaj5BNuZRI1g+ImKvccbt/2d1Z4oIiIi4jGS9N1JLtt2VvFbJmldSivGGbaPkfRcYGvb36gcrXckXQmcDsy3fW/tPH0kabbt+ZLeOt512x9vO1NEFw179OMK4IGmPeeWwNaUoi8RERERnWF7z9oZ4k/MA64Fdmvu3wl8CchERfuOAF4PXC/pCmBeFh5b99TmdpOqKSI6btgdFddQOnxsCFwNLATusX3YaONFREREPHpZxe8OSdfYftFgS1hJ19ueVTtbX0maDrwKOJVSr+V04BTb/1U1WEREY9gdFdNs3y/pSOBU2ydJum6UwSIiIiIeh6zid8dDktahaQnb7M5NgfZKJM2k7KrYD/gacBbwEuAiYNIaL7H6NMUzjwU2Z+AzWWoARhRDT1RI2hk4GDimGZs+mkgRERERj9uWtg+SNBvA9mKlbVQt7wMuADaTdBawO+UIQrRM0lXAYsoOivfaXtxculzS7vWS9dJ5wJnAt4G0JY1YybATFXOAE4Dzbd8kaQvgstHFioiIiHhcsorfEba/LWkBsCulY9dxtu+uHKtXJO1v+8vAobZ/NN5jbL+q5Vh995Dtk2uHiOiqoWpURERERKxJJP0V8G5gJqUA+O7AEbYvrpmrjyTtMd647UvbztJXkhbYzrGODpF0KPBs4FsMTKLavqFaqIgOGbaY5laUXRWbs+IZqn1GliwiIiLicZC0EctX8a/MKn4dkr4+cHdtYBfg2rSKbU8mKrpH0r8ARwM/Y/nRD9sed2Ivom+Gnai4DphLKUq1dGzc9lWjixYRERHx2GQVv7skbQZ80Pbs2ln6QtL9wE/Gu0T5cLx9y5F6T9KtwPa2cyQtYhzD1qh4xPYpI00SERERsfq8feD7Zav4QFbx67sT2LZ2iJ75OaXLR3THDcD6pHZOxLiGnaj4mqRjgK+w4hmqRSNJFREREfE42F7hQ9nYKn6lOL0m6RSaoqbANGAH4Pp6iXrpIdu31Q4RK9gIuKXpxDL4+SrtSSMYfqLi6Ob2PQNjBmas3jgRERERI5FV/HquGfh+CTDf9uW1wvTUUH/fkg63fcaowwQAH6gdIKLL0vUjIiIippwJVvF/YfuQeqn6RdIM27fXzhHDS9HNygnLsgAABaNJREFU9jTtkx+w7aZ98tbAhbaXVI4W0QlDT1RI2obS4mvtsTHbZ48oV0RERMRjJunwgbtLKJMUWcVv0eCHXknn2j6gdqaYnKSFtnesnaMPJF0D7AFsCFwNLATusX1Y1WARHTHU0Q9J7wb2Abah9Pp9OfA9IBMVERER0Rljq/jZvt4JGvh+i2op4tHIVuv2TLN9v6QjgVNtn9R0WowIylbIYRwE7AncZftQYBbD17eIiIiIaMtXx76RdG7NILHCh958AF4zaNUPidVkmqSdgYOBbzRj0yvmieiUYScqFtteCiyRtD7wazIzHhEREd2TVfzumCVpkaR7ge2b7xdJuldSOse1TNI0SX+ziofleFR75gAnAOfbvknSFsBllTNFdMawuyIWSnoKcDqlcvMiYMHIUkVEREQ8NlnF7wjbWR3uENuPSDoW+OIkjzm2xUi9Zvsi4KKB+z8D3lwvUUS3rLKYpiQBm9q+q7m/FbCB7UxURERERKdIWgrcR9lZsQ5w/9glwLY3qJUtojZJ7wEWA+dQ/p0AYPv31UL1VPOZag6wOQOLx7b3qZUpokuG6voh6VrbL2whT0REREREjICkn48zbNs5JtWypnDmXOBaYOnYuO2rqoWK6JBhj378QNJO2UUREREREbFmsv2c2hlimUdsn1I7RERXTbqjQtJatpdIuhF4PvBTlm+n9Fhv7IiIiIiI6DZJ61KOG8ywfYyk5wJb2/7GKn40VjNJ7wPuAr4CPDg2bjuFZiNY9UTFAts7SdpyvOu2fzqyZBERERERsdpIOody1OAw29tKWgf4vu0dKkfrHUl3jDNs2zNaDxPRQas6+iHIhERERERExBSwpe2DJM0GsL24KZwfLbO9We0MEV22qomKTSTNmeii7ZNXc56IiIiIiBiNh5pdFAZodk0/OPmPxKhI2gaYCaw9Nmb77HqJIrpjVRMV04H1aHZWRERERETEGut9wAXAZpLOAnYHjqiaqKckvRvYB9gG+BbwcuB7QCYqIhiyRkWLeSIiIiIiYkQkbQTsSlmIvNL23ZUj9VLTrGAHYIHtWZKeDnzK9qsqR4vohKFqVERERERExJpJ0soLj3c1tzMkzbC9oO1MwWLbSyUtkbQ+8Gtgi9qhIrpiVRMVe7eSIiIiIiIiRuXDk1wzsFdbQWKZhZKeApwOXAMsAjJhFNGY9OhHRERERERErD5Np5VNbd/V3N8K2CA7WyKWy0RFRERERMQUJmn/ya7b/nJbWaKQdK3tF9bOEdFVqzr6ERERERERa7b9JrlmIBMV7fuBpJ2yiyJifNlRERERERER0QJJa9le0nT9eD7wU+A+ShMDp+NiRJEdFRERERERPSDpacCJwDNsv0LSTODFtudWjtYnPwB2Al5TO0hEl2VHRURERERED0j6JjAPON72LElrAQttb1c5Wm9IWmh7x9o5IrouOyoiIiIiIvphY9tflPRPAM0RhKW1Q/XMJpLmTHTR9slthonoqkxURERERET0w32SNqIU0ETSrsAf6kbqnenAepSaFBExgRz9iIiIiIjoAUk7AacA2wI3AZsAB9q+oWqwHpG0IAUzI1ZtWu0AERERERExOpJ2lrRp0wrzZcC7gAeBC4E7q4brn+ykiBhCJioiIiIiIqa2TwEPNd/vBhwP/BtwD3BarVA9tXftABFrgtSoiIiIiIiY2qbb/n3z/UHAabbPBc6VdF3FXL0z8HuIiElkR0VERERExNQ2vWlFCmVF/6KBa1m4jIjOyRNTRERERMTUNh+4RNLdwGLgMgBJW5GuHxHRQen6ERERERExxTWtSJ8OXGj7vmbsecB6TZHNiIjOyERFRERERERERHRGalRERERERERERGdkoiIiIiIiIiIiOiMTFRERERERERHRGZmoiIiIiIiIiIjOyERFRERERERERHTG/wc4m/PxvT/tywAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 1440x1440 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#plot heatmap\n", "corrmat=final_df.corr() \n", "top_corr_features=corrmat.index\n", "plt.figure(figsize=(20,20))\n", "g=sns.heatmap(final_df[top_corr_features].corr(),annot=True,cmap=\"RdYlGn\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Train -test split" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "#independent and dependent features\n", "x=final_df.iloc[:, 1:]\n", "y=final_df.iloc[:, 0] " ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 3.35\n", "1 4.75\n", "2 7.25\n", "3 2.85\n", "4 4.60\n", "Name: Selling_Price, dtype: float64" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y.head()" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "ExtraTreesRegressor()" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "###Feature Importance-- since its a Regressor model\n", "from sklearn.ensemble import ExtraTreesRegressor\n", "model= ExtraTreesRegressor()\n", "model.fit(x,y)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.38884305 0.04472866 0.00042956 0.07515236 0.22917119 0.00766662\n", " 0.11291905 0.14108951]\n" ] } ], "source": [ "print(model.feature_importances_)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdgAAAD4CAYAAABPAvcbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAZ+0lEQVR4nO3deZxkZX3v8c+XQTZBQCG+QNFRQFkFZARc4haiYmLc0IDGAFFxQYkar5ro9U6ueF3jClzuBBcQBRz0qlcjm4ogAtozDDMMBkXACBijuCHCKPC7f9TTWrQ909XL6SpmPu/Xq1596jnPOc+vTk/Nt59zTlenqpAkSXNro2EXIEnS+siAlSSpAwasJEkdMGAlSeqAAStJUgc2HnYBGo7tttuuFi5cOOwyJOkeZdmyZT+tqu0H6WvAbqAWLlzI2NjYsMuQpHuUJD8YtK+niCVJ6oABK0lSBwxYSZI6YMBKktQBA1aSpA4YsJIkdcCAlSSpAwasJEkdMGAlSeqAn+S0gfqvH9zCCS//6rDLmFfHnPTkYZcgaQPiDFaSpA4YsJIkdcCAlSSpAwasJEkdMGAlSeqAAStJUgcMWEmSOmDASpLUAQN2FpJUkn/pe/76JIuHWJIkaUQYsLOzBnhOku2GXchESfyULkkaIgN2du4AlgCvnbgiyYOTfCXJyvb1QZPtIMlWSa5Lcq/2/D5Jrk9yryQ7Jzk7ybIkFyXZrfV5RpLLklye5Pwk92/ti5MsSXIucOokYx2dZCzJ2K9v/8UcHgZJ0kQG7OydALwwydYT2o8HTq2qRwCfBD402cZVdQtwAfAXrekw4DNV9Tt64f3qqtofeD1wYuvzDeCgqtoPOAN4Q98u9weeWVUvmGSsJVW1qKoWbbnZNtN/pZKkgXkacZaq6ldJTgWOBW7rW/Vo4Dlt+RPAu9exm5PpheTngKOAlybZEngMsDTJeL9N29cHAmcm2QHYBLiub19fqKr+OiRJQ+AMdm58AHgxcO919Km1rqi6GFiY5AnAgqq6kt735hdVtW/fY/e2yYeB46tqb+BlwGZ9u7t1Ni9EkjQ3DNg5UFU/Az5NL2THfZPe6V6AF9I7rbsupwKnAx9r+/wVcF2S5wGkZ5/Wd2vgxrZ8xKxfgCRpzhmwc+dfgP67iY8FjkqyEngR8PdTbP9JYFt6ITvuhcCLk1wBrAae2doX0zt1fBHw09mXLkmaa16DnYWq2rJv+cfAFn3Prwem8xe+HwecVVW/v723qq4DnjbJuJ8HPj9J++JpjCdJ6pABOwKSfBg4BHj6sGuRJM0NA3YeJXkz8LwJzUur6tXDqEeS1B0Ddh5V1duBtw+7DklS97zJSZKkDjiD3UD9yYO34piTpnMPliRpOpzBSpLUAQNWkqQOGLCSJHXAgJUkqQMGrCRJHTBgJUnqgAErSVIHDFhJkjpgwEqS1AEDVpKkDhiwkiR1wICVJKkDBqwkSR0wYCVJ6oABK0lSBwxYSZI6YMBKktQBA1aSpA4YsJIkdcCAlSSpAwasJEkd2HjYBWg4br9yNd/Zbfdhl7HB2P3fvzPsEiTNM2ewkiR1wICVJKkDBqwkSR0wYCVJ6oABK0lSBwxYSZI6YMBKktSBgQI2yZuTrE6yMsmKJAeuo+/Hkxzali9Ismg2BSY5oY15VZLb2vKK8TG6kuQlST4wzW1OS/KstvyxJA9fR98FSS6aaj/TleTgJJ+bybaSpLkz5QdNJHk08JfAI6tqTZLtgE26KCbJgqq6s7+tqo5p6xYCX6yqfbsYe65V1VFTrL8T+NN5KkeSNM8GmcHuAPy0qtYAVNVPq+qmJPsn+XqSZUnOSbLDunaS5ClJLkmyPMnSJFu29uuTvDXJN4DnDVp4kocn+Vbf893Hnye5Ick7k3wryWVJHtra75/ks0nG2rqDBhzrtCQfTPLNJNcmeXZr3yjJiW12/f+A7fq2+UaSfZO8Osn/6mt/SZL3J9k4yS8G2M8NSbZpywclOb9v+ZIklye5OMmugx47SVL3BgnYc4Gdkny3hcATktwL+DBwaFXtD3wUePvadtBmvW8BDq6qRwJjwOv6utxeVY+rqjMGLbyqrgZuT7JXazoK+Fhfl59X1QHA/wHe19o+BLy7qhYBzwdOHnQ84E+AxwLPAt7R2g4FHgLsBbwCeMwk2y1t/cb9NXDmhD6D7Gei7wCPq6r9gLcBx021QZKj2w8XYz+7844BhpAkzdSUp4ir6tdJ9qd3OvNJ9MLhOHphcF4SgAXAj9axm4OAPYCLW/9NgEv61k8MnEF9BDgqyRvpzX7361t3evv6SeCdbflg4OGtBoBtk2xeVbcNMNbnqqqAlUke0NoeD5xeVXcBNyS5YOJGVfWfbRa6CPgPekF6Gb1jxqD7mcQ2wKlJdh6g73gtS4AlAHtttnkNup0kafoG+rD/dr3wAuCCJKuAY4DVVfXoAccJcF5VHb6W9bcOuJ+JlgL/BFwMXFJVv+hbN1mABDigqn47g7HWTNjPusaZ6Ex6M+brgc9UVfWF/FT7uYM/nGnYrK/97cA5VXVikl2AsweoQ5I0T6Y8RdyudfZf39uX3unJ7dsNUCS5V5I917GbS4HHtiAgyRZJHjaLugGoqt8AXwWO5+6nh6F3KhbgcHoBDHA+vR8OaHXM9oapC4HD2jXUBwBPWEu/s4DnAIcx+Wx9Xfu5Hti/LT+3r31r4Ma2fOSMqpckdWaQa7BbAqe0G3BW0jvV+1Z61w3fleQKYAXruG5YVT+hFwKnt31cCuw2y9rHfRL4HfCVCe1btJueXgH8Q2s7hl7Qr0xyFfDSWY59Fr3TvlfSC/kLJ+tUVTcD1wA7VNXyae5nMXBi+5We/pn3u4D3JLkYSdLISe+y4j1XkjcBm1bVP/e13QDsNeGUsfrstdnmtXThwmGXscHw78FK64cky9qNslO6R//B9fYrLTsBTx52LZIk9RupgE1yAr1fhen3waqaeH0VgKp6xlraHziNMV8CvGpC84VVdeyg+5AkaaKRCtjxT22a5zFPZnq/DytJ0pT8sH9JkjowUjNYzZ/N9tqT3cfGhl2GJK23nMFKktQBA1aSpA4YsJIkdcCAlSSpAwasJEkdMGAlSeqAAStJUgcMWEmSOmDASpLUAQNWkqQOGLCSJHXAgJUkqQMGrCRJHTBgJUnqgAErSVIHDFhJkjpgwEqS1AEDVpKkDhiwkiR1wICVJKkDBqwkSR3YeNgFaDhW37yavU/Ze9hlaI6sOmLVsEuQNIEzWEmSOmDASpLUAQNWkqQOGLCSJHXAgJUkqQMGrCRJHTBgJUnqgAErSVIHphWwSe6XZEV7/GeSG/ueb9JVkQPUdUySF05zm52SnDnHddyQ5GsT2q5MsmIux5mihoOTfG6+xpMkTW5an+RUVTcD+wIkWQz8uqre298nSYBU1V1zVeQAdZ0wg21+CPx1B+Vsk2THqropyd7AHR2MIUkacXNyijjJLm2mdhKwHNghyZIkY0lWJ3lrX98bkixOcnmSlUke1tqfnOSKNhtenuTebTb2tSRnJflekuOS/G2Sb7dtF7Ztj0vymrb82iRXtX2dto597zI+s0yyeZJTkqxq6x/f2l/Sxj6njf+OAQ7HUuD5bflw4PS+175zkovaa1+W5MDWfnCSryT5bJKrk5w64Xht05YPSnJ+3/IlbV8XJ9l1gO/T0e17MnbnLXcO8FIkSTM1l9dg9wA+UlX7VdWNwJuqahGwD/DnSfbo6/vjqtoPOBl4XWv7b8DRVbUv8Hjg9ta+D3AMsDfwEmBhVT0KOAV41SR1vAHYt6r26Vu/tn2POxb4bVXtDbwI+ETfKe99gEOBRwB/k2THKY7D0tYf4OnAl/rW/Qj48/baXwh8qG/dI9vr3APYPclBU4zzHeBxbV9vA46boj9VtaSqFlXVogVbLZiquyRpFuYyYL9fVd/ue354kuX0ZrS70wuOcZ9tX5cBC9vyxcAHkrwauE9VjU+xLquqH1fV7cC1wDmtfVXftv1WA6e1a7K/m2Lf4x4HfAKgqlYDNwG7tHXnV9UtVXUb8O/Ag9Z9GPgJcGuSw4CV3D3MNwU+kuRK4AzufkwuraoftdpWrOW19dsG+Gzb13uBPafoL0maR3MZsLeOL7TTlX8PPLmqHgGcDWzW13dN+3on7TpwVR0HvAzYEvh23ynPNX3b3dX3/C4mv4b8VOAk4ABgLMmCdez79yWv43X1j//7eqdwJnACfaeHm38AfkhvNn4AvcCdapw7+MP3qf8Yvh04p6r2Ap41YZ0kaci6+jWd+wC3AL9KsgO90FunJDtX1cqqegdwOfDw6Q6aZAHwwKr6Kr3TwtsDWwyw7wvpnbIlye7ADsA10x2/z2eAdwPnTWjfGvhRVRVwBOsO9nHXA/u35edO2NeNbfnImRYqSepGVwG7HLgKuBL4V3qnaKfy+naj1ErgF8C5Mxh3Y+BTbR/LgXdV1S0D7PvDwOZJVgGfBP62qn47g/EBqKpfVtW7qmriHcTHAy9JcinwYO4+a12bxcCJSS4C+mt6F/CeJIMcW0nSPEtvMqUNzeYP2bx2WbzL1B11j+AfXJfmR5Jl7QbeKflJTpIkdWBaHzShniRj/PGxe0FVXTWMeiRJo8eAnYFBTw9IkjZcniKWJKkDzmA3UHveb0/GjhgbdhmStN5yBitJUgcMWEmSOmDASpLUAQNWkqQOGLCSJHXAgJUkqQMGrCRJHTBgJUnqgAErSVIHDFhJkjpgwEqS1AEDVpKkDhiwkiR1wICVJKkDBqwkSR0wYCVJ6oABK0lSBwxYSZI6YMBKktQBA1aSpA4YsJIkdWDjYRegIbnpcli89bCrkObH4l8OuwJtgJzBSpLUAQNWkqQOGLCSJHXAgJUkqQMGrCRJHTBgJUnqgAErSVIHRiJgk9yZZEXfY+EM93NBkkVrWXdZ2/d/JPnJbMeaRk2nJbkuyRVJvpvklCQ79q0/J8lWczjecUleM1f7kyTNzKh80MRtVbVvlwNU1YEASY4EFlXVq7ocb4LXVtXnkmwEvA74apK9q+p3VfXUeaxDkjRPRmIGO5kkRyY5vu/5F5M8sS0/JcklSZYnWZpky1mM87Ik7+l7/ook706yS5LVST6RZFWSTyfZvPV5VJKvJ1mW5MtJ7j/IWFV1V1W9F/gZ8JS2rxuSbNOWj0jyrTazPjHJRkk27qvhyiTHtr67ttnvsiQXJnnYTI+BJGnujUrAbt53yvb/rqtjku2AtwAHV9UjgTF6s8KZ+hTwnCTjs/mjgI+35T2AE6pqb+B24GVJNgU+CDy3qvYHTgPeNs0xlwO79Tck2Qt4NvCYNpvfGDgM2B/Yrqr2rqq9gFPbJkuAV7Ya/hE4nikkOTrJWJKxn/ymplmyJGk67omniA+iF3wXJwHYBLhkpgNX1S1JLgQOSXItcGdVXZVkF+C6qrq0dT0NOBq4ANgTOL+NvwC4YZrDZpK2g4FHAWNtv5sDPwTOAR6e5IPAvwHnthnvQcBnWl8Y4HtZVUvoBTOLdlxgwkpSh0YlYCdzB3efYW/WvgY4r6oOn8OxTqY3C74e+Fhf+8QQqjb+yqr601mMty/wpQltAT5aVf99YuckjwAOAY4Fngu8Efhp19etJUkzNyqniCdzPbBvuw65E3BAa78UeGybYZJki9lef6yqi4GdgecBZ/atekiSR7Xlw4FvAFcBD0hyQBt/kyR7DjJOel4L3A84b8Lq84Hnt1PgJLlfkgcl2R5IVS0F/gfwyKr6OfCjJM9ufTdKss/0X7kkqSujHLAXA9cBq4D30rtuSVX9BDgSOD3JSnqBu9ta9jEdZwEXVlX/37VaDby0jXNvYElVrQEOBd6X5ArgcuDAKfb9/tb3anqz1ydX1e/6O1TVKuCf6Z16XgmcC9wf2Am4MMkK4F+Bf2qbHAa8vO13NfCXM3zdkqQOpMpLcQBJzgbeUVVfb893Ac5aX0/DLtpxQY0dPeObr6V7Fv8erOZIkmVVNennLUw0yjPYedFOxX4X+Pl4uEqSNFujfJPTjCW5DNh0QvOL2mnYu6mqm4E/uoZbVdfQO5076Jgn0buzt9/7qurUyfpLktZv62XAjn9q0zyP+fL5HlOSNLo2+FPEkiR1Yb2cwWoAO+4Hi8eGXYUkrbecwUqS1AEDVpKkDhiwkiR1wICVJKkDBqwkSR0wYCVJ6oABK0lSBwxYSZI6YMBKktQBA1aSpA4YsJIkdcCAlSSpAwasJEkdMGAlSeqAAStJUgcMWEmSOmDASpLUAQNWkqQOGLCSJHXAgJUkqQMGrCRJHdh42AVoOFbd+EsWvulLwy5DkubV9e/8i3kbyxmsJEkdMGAlSeqAAStJUgcMWEmSOmDASpLUAQNWkqQOGLCSJHXAgJUkqQPrXcAmuTPJiiRXJlmaZIsh1LBNkldO0WdhkttarVclOSnJpN+PJN/splJJUlfWu4AFbquqfatqL+C3wMv7V6an69e9DbDOgG2+X1X7Ao8A9gCe1b8yyQKAqnrMnFcoSerU+hiw/S4Cdmmzxe8kORFYDuyU5ClJLkmyvM10twRI8s42o1yZ5L2tbfskn0ny7fZ4bGtfnOSjSS5Icm2SY9u47wR2brPT90xVZFXdAXyz1frEJF9L8ilgVRvn1+N9k7whyaokVyR5Z2vbOcnZSZYluSjJbpONk+ToJGNJxu78zS9ndkQlSQNZbz+LOMnGwCHA2a3p4cBRVfXKJNsBbwEOrqpbk7wReF2S44FnA7tVVSXZpm37QeD9VfWNJA8CzgF2b+t2A54EbAVcneR/A28C9mqz00Fq3QL4M+CtremAtv11E/odQm+We2BV/SbJfduqJcDLq+p7SQ4ETgSePHGcqlrS+rLpDrvWILVJkmZmfQzYzZOsaMsXAR8BdgR+UFWXtvaD6J2SvTgJwCbAJcCvgNuBk5N8Cfhi638wsEfrC3CfJFu15S9V1RpgTZL/Au4/jVp3brUW8Pmq+nKSJwLfmhiufXV8rKp+A1BVP2sz78cAS/vq23QaNUiSOrA+BuxtE2eOLXhu7W8CzquqwydunOQAerPJw4BX0ZsJbgQ8uqpum2S/a/qa7mR6x/T7a5nl3jpJ23jdE2eeGwG/GHS2LEmaH+v7Ndi1uRR4bJJdoHeKNsnD2mxw66r6N+A1wHhonUsvbGn9pwqzW+idMp5r5wJ/N35ndJL7VtWvgOuSPK+1Jck+HYwtSZqGDTJgq+onwJHA6UlW0gvc3eiF4hdb29eB17ZNjgUWtRufrmLCncmT7P9meqefrxzkJqdp1H028AVgrJ1afn1b9ULgxUmuAFYDz5yrMSVJM5Mq73XZEG26w661wxEfGHYZkjSvZvsH15Msq6pFg/TdIGewkiR1bX28yWmkJNkb+MSE5jVVdeAw6pEkzQ8DtmNVtYo/3CwlSdpAeIpYkqQOOIPdQO39gK0Zm+XFfknS2jmDlSSpAwasJEkdMGAlSeqAAStJUgcMWEmSOmDASpLUAQNWkqQOGLCSJHXAgJUkqQMGrCRJHfDvwW6gktwCXD3sOqawHfDTYRcxBWucG9Y4N6xxbqyrxgdX1faD7MTPIt5wXT3oHw0eliRj1jh71jg3rHFubEg1eopYkqQOGLCSJHXAgN1wLRl2AQOwxrlhjXPDGufGBlOjNzlJktQBZ7CSJHXAgJUkqQMG7HomydOSXJ3kmiRvmmT9pknObOsvS7Kwb90/tvarkzx11GpMsjDJbUlWtMdJQ6zx8UmWJ7kjyaET1h2R5HvtccSI1nhn33H8whBrfF2Sq5KsTPKVJA/uWzcqx3FdNY7KcXx5klWtjm8k2aNv3ai8ryetcZTe1339Dk1SSRb1tU3/OFaVj/XkASwAvg88FNgEuALYY0KfVwInteXDgDPb8h6t/6bAQ9p+FoxYjQuBK0fkOC4EHgGcChza135f4Nr2ddu2vO0o1djW/XpEjuOTgC3a8iv6vtejdBwnrXHEjuN9+pb/Cji7LY/S+3ptNY7M+7r12wq4ELgUWDSb4+gMdv1yAHBNVV1bVb8FzgCeOaHPM4FT2vJZwJ8lSWs/o6rWVNV1wDVtf6NU43yZssaqur6qVgJ3Tdj2qcB5VfWzqvo5cB7wtBGrcb4MUuPXquo37emlwAPb8igdx7XVOF8GqfFXfU/vDYzfvToy7+t11DhfBvm/B+BtwLuB2/vaZnQcDdj1ywOAH/Y9v6G1Tdqnqu4Afgncb8Bth10jwEOSXJ7k60n+tIP6Bq2xi22nY7bjbJZkLMmlSZ41t6X93nRrfDHw5RluO1OzqRFG6DgmOSbJ9+mFw7HT2XbINcKIvK+T7AfsVFVfnO62k/GjEtcvk83yJv6UuLY+g2w7F2ZT44+AB1XVzUn2Bz6XZM8JPxnPV41dbDsdsx3nQVV1U5KHAl9Nsqqqvj9HtY0buMYkfwMsAp4w3W1naTY1wggdx6o6ATghyQuAtwBHDLrtHJhNjSPxvk6yEfB+4Mjpbrs2zmDXLzcAO/U9fyBw09r6JNkY2Br42YDbDrXGdnrmZoCqWkbvOsjDhlRjF9tOx6zGqaqb2tdrgQuA/eayuGagGpMcDLwZ+KuqWjOdbYdc40gdxz5nAOOz6ZE6jn1+X+MIva+3AvYCLkhyPXAQ8IV2o9PMjmPXF5Z9zN+D3hmJa+ldhB+/iL/nhD7HcPcbiD7dlvfk7hfxr6WbmyFmU+P24zXRu1HhRuC+w6ixr+/H+eObnK6jd2POtm151GrcFti0LW8HfI9JbvaYp+/1fvT+Q911QvvIHMd11DhKx3HXvuVnAGNteZTe12urceTe163/BfzhJqcZHcc5fQE+hv8Ang58t/2H8ObW9j/p/eQNsBmwlN5F+m8BD+3b9s1tu6uBQ0atRuC5wOr2D3058Iwh1vgoej/V3grcDKzu2/bvWu3XAEeNWo3AY4BV7TiuAl48xBrPB34MrGiPL4zgcZy0xhE7jh9s740VwNfoC44Rel9PWuMova8n9L2AFrAzPY5+VKIkSR3wGqwkSR0wYCVJ6oABK0lSBwxYSZI6YMBKktQBA1aSpA4YsJIkdeD/A8uUbrxbwmPiAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#plot graph of feature importance for better visualization\n", "feat_imp= pd.Series(model.feature_importances_, index=x.columns)\n", "feat_imp.nlargest(5).plot(kind='barh')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split\n", "x_train, x_test, y_train, y_test= train_test_split(x, y, test_size=0.2)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(240, 8)" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_train.shape" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "from sklearn.ensemble import RandomForestRegressor\n", "rf_random= RandomForestRegressor()" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200]\n" ] } ], "source": [ "#HyperParameters\n", "n_estimators = [int(x) for x in np.linspace(start = 100, stop = 1200, num = 12)]\n", "print(n_estimators)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import RandomizedSearchCV" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "#Randomized Search CV\n", "\n", "# Number of trees in random forest\n", "n_estimators = [int(x) for x in np.linspace(start = 100, stop = 1200, num = 12)]\n", "# Number of features to consider at every split\n", "max_features = ['auto', 'sqrt']\n", "# Maximum number of levels in tree\n", "max_depth = [int(x) for x in np.linspace(5, 30, num = 6)]\n", "# max_depth.append(None)\n", "# Minimum number of samples required to split a node\n", "min_samples_split = [2, 5, 10, 15, 100]\n", "# Minimum number of samples required at each leaf node\n", "min_samples_leaf = [1, 2, 5, 10]" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'n_estimators': [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200], 'max_features': ['auto', 'sqrt'], 'max_depth': [5, 10, 15, 20, 25, 30], 'min_samples_split': [2, 5, 10, 15, 100], 'min_samples_leaf': [1, 2, 5, 10]}\n" ] } ], "source": [ "# Create the random grid\n", "random_grid = {'n_estimators': n_estimators,\n", " 'max_features': max_features,\n", " 'max_depth': max_depth,\n", " 'min_samples_split': min_samples_split,\n", " 'min_samples_leaf': min_samples_leaf}\n", "\n", "print(random_grid)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "# Use the random grid to search for best hyperparameters\n", "# First create the base model to tune\n", "rf = RandomForestRegressor()" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "# Random search of parameters, using 3 fold cross validation, \n", "# search across 100 different combinations\n", "rf_random = RandomizedSearchCV(estimator = rf, param_distributions = random_grid,scoring='neg_mean_squared_error', n_iter = 10, cv = 5, verbose=2, random_state=42, n_jobs = 1)" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fitting 5 folds for each of 10 candidates, totalling 50 fits\n", "[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_split=5, n_estimators=900; total time= 0.5s\n", "[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_split=5, n_estimators=900; total time= 0.5s\n", "[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_split=5, n_estimators=900; total time= 0.4s\n", "[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_split=5, n_estimators=900; total time= 0.4s\n", "[CV] END max_depth=10, max_features=sqrt, min_samples_leaf=5, min_samples_split=5, n_estimators=900; total time= 0.4s\n", "[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=1100; total time= 0.6s\n", "[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=1100; total time= 0.6s\n", "[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=1100; total time= 0.6s\n", "[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=1100; total time= 0.6s\n", "[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=1100; total time= 0.6s\n", "[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=100, n_estimators=300; total time= 0.1s\n", "[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=100, n_estimators=300; total time= 0.1s\n", "[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=100, n_estimators=300; total time= 0.1s\n", "[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=100, n_estimators=300; total time= 0.1s\n", "[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=100, n_estimators=300; total time= 0.1s\n", "[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=5, n_estimators=400; total time= 0.2s\n", "[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=5, n_estimators=400; total time= 0.2s\n", "[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=5, n_estimators=400; total time= 0.2s\n", "[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=5, n_estimators=400; total time= 0.2s\n", "[CV] END max_depth=15, max_features=auto, min_samples_leaf=5, min_samples_split=5, n_estimators=400; total time= 0.2s\n", "[CV] END max_depth=20, max_features=auto, min_samples_leaf=10, min_samples_split=5, n_estimators=700; total time= 0.4s\n", "[CV] END max_depth=20, max_features=auto, min_samples_leaf=10, min_samples_split=5, n_estimators=700; total time= 0.4s\n", "[CV] END max_depth=20, max_features=auto, min_samples_leaf=10, min_samples_split=5, n_estimators=700; total time= 0.4s\n", "[CV] END max_depth=20, max_features=auto, min_samples_leaf=10, min_samples_split=5, n_estimators=700; total time= 0.4s\n", "[CV] END max_depth=20, max_features=auto, min_samples_leaf=10, min_samples_split=5, n_estimators=700; total time= 0.4s\n", "[CV] END max_depth=25, max_features=sqrt, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.7s\n", "[CV] END max_depth=25, max_features=sqrt, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.7s\n", "[CV] END max_depth=25, max_features=sqrt, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.7s\n", "[CV] END max_depth=25, max_features=sqrt, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.6s\n", "[CV] END max_depth=25, max_features=sqrt, min_samples_leaf=1, min_samples_split=2, n_estimators=1000; total time= 0.6s\n", "[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=10, min_samples_split=15, n_estimators=1100; total time= 0.6s\n", "[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=10, min_samples_split=15, n_estimators=1100; total time= 0.6s\n", "[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=10, min_samples_split=15, n_estimators=1100; total time= 0.6s\n", "[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=10, min_samples_split=15, n_estimators=1100; total time= 0.6s\n", "[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=10, min_samples_split=15, n_estimators=1100; total time= 0.5s\n", "[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=1, min_samples_split=15, n_estimators=300; total time= 0.1s\n", "[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=1, min_samples_split=15, n_estimators=300; total time= 0.1s\n", "[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=1, min_samples_split=15, n_estimators=300; total time= 0.1s\n", "[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=1, min_samples_split=15, n_estimators=300; total time= 0.1s\n", "[CV] END max_depth=15, max_features=sqrt, min_samples_leaf=1, min_samples_split=15, n_estimators=300; total time= 0.1s\n", "[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=700; total time= 0.3s\n", "[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=700; total time= 0.3s\n", "[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=700; total time= 0.3s\n", "[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=700; total time= 0.3s\n", "[CV] END max_depth=5, max_features=sqrt, min_samples_leaf=2, min_samples_split=10, n_estimators=700; total time= 0.3s\n", "[CV] END max_depth=20, max_features=auto, min_samples_leaf=1, min_samples_split=15, n_estimators=700; total time= 0.4s\n", "[CV] END max_depth=20, max_features=auto, min_samples_leaf=1, min_samples_split=15, n_estimators=700; total time= 0.4s\n", "[CV] END max_depth=20, max_features=auto, min_samples_leaf=1, min_samples_split=15, n_estimators=700; total time= 0.4s\n", "[CV] END max_depth=20, max_features=auto, min_samples_leaf=1, min_samples_split=15, n_estimators=700; total time= 0.4s\n", "[CV] END max_depth=20, max_features=auto, min_samples_leaf=1, min_samples_split=15, n_estimators=700; total time= 0.4s\n" ] }, { "data": { "text/plain": [ "RandomizedSearchCV(cv=5, estimator=RandomForestRegressor(), n_jobs=1,\n", " param_distributions={'max_depth': [5, 10, 15, 20, 25, 30],\n", " 'max_features': ['auto', 'sqrt'],\n", " 'min_samples_leaf': [1, 2, 5, 10],\n", " 'min_samples_split': [2, 5, 10, 15,\n", " 100],\n", " 'n_estimators': [100, 200, 300, 400,\n", " 500, 600, 700, 800,\n", " 900, 1000, 1100,\n", " 1200]},\n", " random_state=42, scoring='neg_mean_squared_error',\n", " verbose=2)" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rf_random.fit(x_train, y_train)" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'n_estimators': 700,\n", " 'min_samples_split': 15,\n", " 'min_samples_leaf': 1,\n", " 'max_features': 'auto',\n", " 'max_depth': 20}" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rf_random.best_params_" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "-3.8959446708062027" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rf_random.best_score_" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "y_predict=rf_random.predict(x_test)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\User\\Anaconda3\\lib\\site-packages\\scipy\\stats\\stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n", " return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n" ] }, { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x2c7d690a860>" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEHCAYAAAC+1b08AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXhdV33u8e9POprnyYMsyVMcj7FjRzhxEppQUghJSICEkuQCgYa6XEqHB7i3cKEUaO9zmW5pL02HlEIgQCFtGBISSELBkME2ke3Y8SjLkmXJsmXJkqx5POv+cY6MYkv2kXR09jn7vJ/nyfOcYXnvn06kV0trr72WOecQEZHEl+J1ASIiEh0KdBERn1Cgi4j4hAJdRMQnFOgiIj4R8OrEpaWlbsmSJV6dXkQkIe3atavdOVc22XueBfqSJUuoqanx6vQiIgnJzBqnek9DLiIiPqFAFxHxCQW6iIhPKNBFRHxCgS4i4hMKdBERn1Cgi4j4hAJdRMQnFOgiIj5x2TtFzezrwB3AGefcukneN+DvgduAfuB9zrnd0S5Uktd3d56YVvv7r62ao0pE4lskPfRHgFsv8f5bgBXh/7YC/zT7skREZLouG+jOuV8DHZdochfwLReyAyg0s4XRKlBERCITjTH0RUDThOfN4dcuYmZbzazGzGra2tqicGoRERkXjUC3SV6bdOdp59zDzrlq51x1Wdmkqz+KiMgMRSPQm4HKCc8rgJYoHFdERKYhGoH+BPBeC7kOOOecOxWF44qIyDREMm3x34GbgVIzawb+CkgDcM79M/A0oSmLdYSmLb5/rooVEZGpXTbQnXP3XeZ9B/xx1CoSEZEZ0Z2iIiI+oUAXEfEJBbqIiE8o0EVEfEKBLiLiEwp0ERGfUKCLiPiEAl1ExCcU6CIiPqFAFxHxCQW6iIhPKNBFRHxCgS4i4hMKdBERn1Cgi4j4hAJdRMQnFOgiIj6hQBcR8QkFuoiITyjQRUR8QoEuIuITCnQREZ9QoIuI+IQCXUTEJxToIiI+oUAXEfEJBbqIiE8o0EVEfEKBLiLiEwp0ERGfUKCLiPiEAl1ExCciCnQzu9XMjphZnZl9fJL3q8zsl2a2x8z2mdlt0S9VREQu5bKBbmapwEPAW4A1wH1mtuaCZp8CHnPObQTuBf4x2oWKiMilRdJD3wzUOefqnXPDwPeAuy5o44D88OMCoCV6JYqISCQiCfRFQNOE583h1yb6DPBuM2sGngb+ZLIDmdlWM6sxs5q2trYZlCsiIlOJJNBtktfcBc/vAx5xzlUAtwGPmtlFx3bOPeycq3bOVZeVlU2/WhERmVIkgd4MVE54XsHFQyoPAo8BOOe2A5lAaTQKFBGRyEQS6C8DK8xsqZmlE7ro+cQFbU4AbwQws9WEAl1jKiIiMXTZQHfOjQIfBp4BDhGazXLAzD5nZneGm30U+EMz2wv8O/A+59yFwzIiIjKHApE0cs49Tehi58TXPj3h8UHghuiWJiIi06E7RSWh9QyO0DM44nUZInEhoh66SLz5TUMHuxo7aOocoCArjY+9aSWpKZNNyBJJHuqhS8I5dW6AH71yktGg45rFRZwbGOFAyzmvyxLxnHroknBeOdFFisGDNywlMz2VhvY+Xjp2lvUVhV6XJuIp9dAloQSdY29zFyvn55GdESDFjC3LSjjR0c/JzgGvyxPxlAJdEkp9Wx/dg6NcXVV0/rVrFheRnprC9vp2DysT8Z4CXRLKK02dZARSWLUg7/xrmWmpbKwqZG/zOXqHRj2sTsRbCnRJGMOjQfa3dHPVogLSUl/7rXvN4iLGgo5jZ3o9qk7Eewp0SRiHT3czPBrk6sqLL34uLMgiLdVo7uz3oDKR+KBAl4RR395HRiCFJaU5F72XmmKUF2TRpAujksQU6JIwmjv6qSjKIsUmv4Gosjiblq4BRsaCMa5MJD4o0CUhDI8GOd09SGVR9pRtKoqyGA06jpzuiWFlIvFDgS4JoaVrgKAL9cKnUhEO+1eaumJVlkhcUaBLQmgKX+ysKMqask1RdhrZ6ansVaBLklKgS0Jo6hygMDuNvMy0KduYGZVF2eqhS9JSoEtCaO7ov+T4+biK4izq2nq1pK4kJQW6xL2ewRG6BkaovMRwy7jKomycg1dPavVFST4KdIl7TR2hueWXuiA6rqIwFPp7mxToknwU6BL3mjr7SbHQ3aCXk50RoKo4m/3qoUsSUqBL3Gvq7GdBfibpgci+XVfMy+VYm9Z0keSjQJe45pzjVNcg5YWX752PW1aWQ0N7H2NBN4eVicQfBbrEtbbeIQZGxpifnxnxv1lWlsvQaJCWLq3rIslFgS5x7WhraOhkOoG+vCwXQMMuknQU6BLXaltD67LMy8+I+N8sKwutxljf1jcnNYnEKwW6xLXa1l6y0lLJy4h8P/OSnHTyMwPqoUvSUaBLXKtt7WF+fgY2xZK5kzEzls/LVQ9dko4CXeKWc47a1h7mTWP8fNyy0lzq29VDl+SiQJe41do9RM/gKPPzIh8/H7esLIfW7iFtGi1JRYEuceu3F0Sn30Mfn+lSr3F0SSIKdIlb44E+nSmL45ZrposkIQW6xK2jrb0U56STO40ZLuOqSrJJMfXQJblEFOhmdquZHTGzOjP7+BRtft/MDprZATP7bnTLlGR0pLWHK+fnzujfZgRSqSrO5ph66JJELtv1MbNU4CHg94Bm4GUze8I5d3BCmxXAJ4AbnHOdZjZvrgqW5OCco+5ML+/YtGjGx1hWpkW6JLlE0kPfDNQ55+qdc8PA94C7Lmjzh8BDzrlOAOfcmeiWKcmm5dwgvUOjrJifN+NjLCsNLdIV1CJdkiQiCfRFQNOE583h1ya6ErjSzF40sx1mdmu0CpTkNH5B9Mp5MxtyAVhalsPQaJDWnsFolSUS1yIJ9Mlu0buwyxMAVgA3A/cBXzOzwosOZLbVzGrMrKatrW26tUoSOToe6LPooY/vQXribH9UahKJd5EEejNQOeF5BdAySZsfO+dGnHMNwBFCAf8azrmHnXPVzrnqsrKymdYsSaC2tZfS3AyKctJnfIyq8JZ1TZ1aRleSQySB/jKwwsyWmlk6cC/wxAVtfgS8AcDMSgkNwdRHs1BJLrWtPaxcMPPhFoDywizM4ESHeuiSHC4b6M65UeDDwDPAIeAx59wBM/ucmd0ZbvYMcNbMDgK/BP6Hc+7sXBUt/hYMOo629rJi3syHWwDSAymUF2TRrECXJBHRHRvOuaeBpy947dMTHjvgI+H/RGblZNcAAyNjMx4//+7OE+cfpwdS2NXY+ZrXJrr/2qoZnUMkHulOUYk752e4zPCmoomKs9Pp6B+e9XFEEoECXeJObXjbudnMQR9XlJNOz+AoI2PBWR9LJN4p0CXuHA1valGQlTbrYxXnhI7R2adeuvifAl3iTu2ZnlnNP5+oODs07bFTwy6SBBToElfGwjNcohXo4/PYO9RDlySgQJe40tTRz9BoMCoXRAFyMwKkpZoCXZKCAl3iyvgMl2hcEIXQhtFF2el09o9E5Xgi8UyBLnHl6JnwDJdZLMp1oeKcdPXQJSko0CWu1Lb2UF6QSV7m7Ge4jCvKSaezf5jQ/W8i/qVAl7hS29obteGWccXZ6QyNBukfHovqcUXijQJd4sboWJBjZ3pZuSDKga6ZLpIkFOgSNxo7+hkeC0Z1/Bx+O3VRc9HF7xToEjeisanFZIqyQ+Px6qGL3ynQJW6Mr+FyRZR76BmBVHIyAuqhi+8p0CVu1Lb2UFGURU5GRKs6T0txdpp66OJ7CnSJG9G85f9CRZqLLklAgS5xYWQsSH17LyuidMv/hYpz0jk3MMJYUHPRxb8U6BIXjrf3MTLmWDlHPfTi7HSCDs4NaAkA8S8FusSF8QuicznkApq6KP6mQJe4UNvagxksL5u7IRfQ1EXxNwW6xIWjZ3qoKs4mKz11To5fkJVGiinQxd8U6BIXalt7WTFvboZbAFLMKMxO15CL+JoCXTw3NDrG8fa+qG1qMZXibE1dFH9ToIvnjp3pYzToWLUwf07PU5STrs2ixdcU6OK5w6e7AVgd5VUWL1Sck07f8BhDI1pGV/xJgS6eO3y6h/TUFJaW5szpec4v0qVxdPEpBbp47tCpblbMzyWQOrffjuNTFzv7dHOR+JMCXTx3+HQPqxbM7fg5hC6Kgnro4l8KdPFUe+8QbT1DrF44t+PnAFnpqWQEUnRhVHxLgS6eOnI6tKlFLHroZkaxVl0UH1Ogi6cOnQrNcFkVgx46QFF2uoZcxLcU6OKpw6d7KMvLoDQ3IybnKw7PRXdOy+iK/0QU6GZ2q5kdMbM6M/v4JdrdY2bOzKqjV6L42eHT3aya4/nnExXlpDMadPQMjcbsnCKxctlAN7NU4CHgLcAa4D4zWzNJuzzgT4Gd0S5S/Gl0LEhtay+r5/gO0YnGZ7rowqj4USQ99M1AnXOu3jk3DHwPuGuSdn8NfBEYjGJ94mMN7X0MjwZj2kPXMrriZ5EE+iKgacLz5vBr55nZRqDSOfeTSx3IzLaaWY2Z1bS1tU27WPGXQzGc4TKuUHeLio9FEug2yWvnryiZWQrwFeCjlzuQc+5h51y1c666rKws8irFlw60nCMt1Vg+b25v+Z8oLTWF/MyA7hYVX4ok0JuBygnPK4CWCc/zgHXANjM7DlwHPKELo3I5B052s3JBHhmBudnUYipFmosuPhWIoM3LwAozWwqcBO4F7h9/0zl3Digdf25m24CPOedqoluq+Ml3djSyq7GTteX5fHfniZieuzg7nfr2vpieUyQWLttDd86NAh8GngEOAY855w6Y2efM7M65LlD8qat/hIGRMRYVZcX83MU56XQPjDA6Foz5uUXmUiQ9dJxzTwNPX/Dap6doe/PsyxK/O9k1AEB5QewDvSgnHUfol4qIn+hOUfFES9cAKQYLCjJjfm6tuih+pUAXT7ScG2BeXiZpc7wG+mQ0F138SoEuMeec42TnAIsKYz/cApCbGSCQYnSqhy4+o0CXmDvdPUjf8BjlHlwQBUgxC626qB66+IwCXWJu/8nQkrmLPBg/H1eUk6b1XMR3FOgSc6+ePIcBCzyY4TKuOEfroov/KNAl5g6cPEdZXgbpAe++/Yqz0xkcCXJOUxfFRxToElPOOfY2d1Hh0fj5uKLwTJcTHf2e1iESTQp0iammjgHae4epLM72tI6SnNAOSQ1ntQSA+IcCXWJq94lOAKq8DvTcdAxoaFOgi38o0CWmdp/oJCc9lfn53s1wgdAyugXZadS393pah0g0KdAlpnaf6GRDZSEpNtky+7FVlptBg1ZdFB9RoEvM9A+PcuhUD5uqirwuBYCS3Awa2vpwzl2+sUgCUKBLzOxrPsdY0LFpcaHXpQBQmptOz9Aobb1DXpciEhUKdImZ8QuiV1fGRw+9LDc800UXRsUnFOgSM7sbu1hamnN+tUOvlY4HusbRxScU6BITzjn2nOhkY1V8DLcAFGSnkR5I0XZ04hsKdImJEx39nO0bjpsLohBadXFpSQ71GnIRn1CgS0zsqD8LwOuWFHtcyWstLc3RXHTxDQW6xMQLdWcpy8vgyvm5XpfyGkvLcjhxtl8bRosvKNBlzgWDjpfq2rlheQkWBzcUTbSsNIfRoKO5c8DrUkRmTYEuc+5Iaw9n+4a54YpSr0u5yLKyHAANu4gvKNBlzr1Y1w4Ql4G+tDQ0BKQLo+IHCnSZcy/WtbOsNIdyjzaFvpTinHQKs9M0dVF8QYEuc2pkLMjOho647J2PWzEvl9rTPV6XITJrCnSZU680ddE/PBbXgb5qQT5HTvdokS5JeAp0mVMv1rWTYrBlWYnXpUxp5YI8eoZGOdmlmS6S2BToMqeeOdDKxqoiCrLTvC5lSqsX5gFwRMMukuAU6DJnjrX1cuhUN7dftdDrUi7pyvmhQD+sQJcEp0CXOfOTvacwg9vXx3eg52WmUVGUpUCXhKdAlznzk30tvG5Jsef7h0Zi1YJ8Dp/q9roMkVlRoMucOHK6h6NnenlrnPfOx61akEd9ex9Do2NelyIyYxEFupndamZHzKzOzD4+yfsfMbODZrbPzP7LzBZHv1RJJD/Z10KKwa3rEiTQF+YxFnTUndESAJK4LhvoZpYKPAS8BVgD3Gdmay5otgeods6tB/4T+GK0C5XE4ZzjJ/tOcd2yEsryMrwuJyKrFmimiyS+SHrom4E651y9c24Y+B5w18QGzrlfOuf6w093ABXRLVMSybbaNhra+3jHpsT5NlhSkkN6IEUXRiWhRRLoi4CmCc+bw69N5UHgp5O9YWZbzazGzGra2toir1IShnOOf/hFHYsKs7hzQ7nX5UQskJrCinm5CnRJaIEI2ky2gPWk90ib2buBauCmyd53zj0MPAxQXV2t+6wTwHd3noi47f3XVrGjvoNdjZ389V1rSQ8k1jX3VQvyef6oOhqSuCL5iWsGKic8rwBaLmxkZrcAnwTudM4NRac8STT/8MujlOVl8M7qyss3jjOrF+ZxpmeIMz2DXpciMiORBPrLwAozW2pm6cC9wBMTG5jZRuBfCIX5meiXKYmg5ngHL9adZevrl5GZlup1OdO2MbyB9Z4TXR5XIjIzlw1059wo8GHgGeAQ8Jhz7oCZfc7M7gw3+xKQC/yHmb1iZk9McTjxqYHhMT7y2F7KCzK5/9oqr8uZkbXl+aSlGrtPdHpdisiMRDKGjnPuaeDpC1779ITHt0S5Lkkgzjke391MS9cA3/+jLeRkRPRtFXcy01JZW17Ankb10CUxJdZVK4lLzx9t5+Cpbj7+llVcs7jI63JmZWNVIftOdjEyFvS6FJFpU6DLjI0FHU/ta+FnB06ztjyfB29c6nVJs7apqojBkSCHT2n6oiSexPzbWDzX1T/M47ubOdbWxw3LS7h13ULMJpvhmlg2hf/C2H2ik6sqCjyuRmR6FOgyLSNjQZ4/2savakPzte/eVJHwwywTlRdkMi8vgz0nOnng+iVelyMyLQp0iYhzjkOnenjq1RY6+0dYV57PW65aSFF2utelRZWZsamqiN2auigJSIEul9UzOMIPdp/kSGsP8/Iy+IMblnLFvFyvy5ozG6sK+dmB07T3DlGamxiLi4mAAl0uo+5ML4/VNDE0OsZtVy1ky7ISUlMSf6z8Us6Pozd28qa1CzyuRiRymuUiU/r6Cw1848UGstJS+e83X8GNV5T6PswBrlpUQEYghZeOnfW6FJFpUQ9dLuKc42+fq+Wrv6hjzcJ83lldQUYg8W7ln6nMtFSuW1Zy/sKvSKJQD11ewznHZ588yFd/Uce7qiu5b3NVUoX5uJtXltHQ3kfj2T6vSxGJmAJdznPO8fmfHeaRl47z4I1L+fzdVyXFEMtkbl45D4BtR9RLl8ShQJfzHvplHf/yq3refV0Vn7p9tS9uFJqppaU5LCnJZtsRLR4qiUOBLgA88mIDX362lndsXMTn7lyX1GE+7uaV89hef5bBkTGvSxGJiAJd+I+aJj7z5EHevHY+X7xnPSlJOsxyoZtWljE4EmRnQ4fXpYhERLNcYqRvaJTnj7bx3MEzHDrVTUoKBFJSuHJ+Lpuqirh+eSlVJdkxr+unr57iLx7fx+tXlPL/7ttIIFW/48dtWVZCRiCFbUfOcNOVZV6XI3JZ5pw3W3tWV1e7mpoaT84dLZHst+mcY1/zOZ7Y28LAyBgFWWlsrCok1YzB0TEOtHTT1T8CwIbKQt52dTnv2FjBU6+eiriO6WwoMbHm2tYeHt3eyKKiLP7ghqUJtwdoLDzyUgNtPUN89E0refd1i70uB5j+Pq/iL2a2yzlXPdl76qHPocGRMR7f3cyBlm4qi7L4wj3r2byk+DW9YOcc9e19/PxgKz9+pYXPPnmQL/7sCOsrCrjxilJK5ujW84b2Pr6zs5F5+Rk8sGWJwnwKV1cW8lhNMw3tmr4o8U+BPkeGR4N886XjNHX28+a1C7jxilKuX156UTszY3lZLstvyuWPblrO/pPneOSl4/xwz0lePt7BNYuLeMPKeRRGcRGso2d6+O7OExRkpfP+G5aSlZ5888wjtba8gMy0FnY3als6iX8K9DkwGgzynZ2NnOjo597NVVy1KPJ1tdctKuDL79zAFfNy2XakjZcbOthzootrlxZz08p55M5ye7ddjZ38cE8z8/IyeeD6JbM+nt+lpaawflEhe5o66R4cIT8zzeuSRKakv7OjLOgcj9U0c/RML2/fuGhaYT5RfmYad24o5yNvupINlYW8dOwsX37mCM8eOM3A8PSn0fUNjfKXP9rP47ubWVaay9bfWUZBlsIpEtcsLmJkzPHUvsiva4h4Qd2zKHLO8aM9J9l/8hy3rVtA9ZLiWR+zKDuduzdVcNOKMp471Mq22jZ2NJzlhitK2bykmLzL9Bidc2yrbePTP95Pc+cANywv4c3rFhBI0e/ySFUUZTEvL4PHapq4b7MuMkr8UqBHiXOOn+4/TU1jJ29YWcaNK6I7za00L4P7NldxU9cAPz/Uyn8dOsO2I22sLc8nOz2VLctLmJ+fCcDoWJD69j52NnTw6Pbj1Lb2srgkm+9v3ULdmd6o1pUMzIxrFhfx0/2nOXSqm9UL870uSWRSCvQo2Vbbxgt17Vy3rIRbVs+fs/OUF2bx3i1LaOsZYkf9WV5p6uLPv/8KAOmBFLLSUhkaHWNwJLRr/ZqF+Xz5nRt464aFZARSFegzdM3iIl442s7f/byWf3nPpDPGPOeco294jJHRIEHnKMrx125ScnkK9CjYfqyd5w62cnVlIXesj81myWV5Gbx1Qzm3r1/I1ZWF7Kg/S1vvEAPDY6SnprCmPJ91iwpYMS9Xt/FHQXZ6gA+8fhlf+Xkte5u62FBZ6HVJ540Gg+xrOsevj7Zxpmfo/OvFOel0D47wrurKOZv+KvFFgT5LOxvO8uS+U6xekMfdmypIiXF4ppixblEB62Z48VUi9+Drl/LN7cf58rNHePTBa70uB4DT3YN8e0cjHX3DLMjP5LZ1C8hKT2U0GLqh7Ys/O8K//rqeL92zgVvWzN1fjhIfFOgXiPQuvLGg4+n9p9h+7CxXzs/l3s1Vl11qdjp3+E3HXB1XXis3I8CHbl7O3zx1iJeOtU96X0EsHTrVzfdrmsgIpPDeLYtZOT/vNX+NXbu0hE2LC/noY3v5wLdqeO+WxXzq9jVJexPZdH9OEvEu2+T8PztLTR39fP3FBrYfO8sNy0t4z3VLSNMaKEnh3dctprwgk0/9aD99Q6Oe1OCcY9uRM3x7RyNluRl86OYrWLUgf9KhtVUL8vnBh67nAzcu5VvbG3ng67/hXHipCfEfpdAknHOMBR1Do2P0D43SPTDCiY5+th9r5xsvNvBPvzpGa/cgd29axO3ry5N2E4hklJmWyv/9/as53t7HX/54f8zPPzgyxmM1TTx7sJWrKgoiup8gI5DKp+5Yw1fetYFdjZ28459epKmjP0YVSywl/ZDLuYERXqpr59dH2zna2kNtaw89g6NMtWRZfmaAN69dwHXLipNyazaBLctL+JPfXcHf/9dRrl9eyj3XVMTkvK3dg2z9Vg17m8/xpjXzuenKsmld8H77xgoWFmTxR4/u4m0PvcjXHqhmY1XRHFacWLoHRjjZNcCpc4OMBR1tPUOU5qWzqaqIK+fnJUTHLSkD3TlHTWMnj7x0nGf2n2Y06MjLCLCmPJ8r5uWRnxkgkJpCIMUIpBqpKUZeRoBFRdnkZwY0a0T40zeuYGfDWT75w1cpyk7jjXM4VRVgb1MXWx+toXdwlHdfu5g15TObC3/dshJ+8KHref83Xubeh3fwlXddzW1XLYxytYljZCzIqyfPsbP+LE2dA69575cTdqvKzwxwx4Zyfr+6kg0VBXGbAUm1fO7A8BhP7D3JIy81cuhUN/mZAd5ZXcmt6xZwdWUhaakpusAoU7rwItnZ3iHe942XOXiqmy/cvX5OeupjQcfXX2jgS88eYV5eBl97oJrdjV0R//upLuyd7R3iD79Vw+4TXfy3a6v45O2ryU73d/9u4s92e+8Qv2noYFdjJwMjY5TmZlC9uIjFJdksLMgiPZDCu15XSXNnPzXHO3mhrp2f7j/F4EiQ1Qvzef/1S7jz6nIy02L/V/qlls9NikBv6ujn2zsa+X5NE139I6xakMcD1y/hrqvLL/omVqDLVCYLx96hUT746C5eqGvn/mur+NibVlIcpRt6Dp3q5i9/tJ+axk5uWT2fL9x9FSW5GVFbD31odIy/fbaWh5+vZ2lJDp+6YzVvWDkvbnufs/Xo9kYOn+5mZ0MHdWd6STFYU17AtUuLWVaac9HXfeFn1z04wpN7W8LH6aEoO437NleFLpQXZsXs65h1oJvZrcDfA6nA15xzn7/g/QzgW8A1wFngXc6545c65lwHelvPEM8dbOWpV1vYfuwsZsab187ngS1L2Ly0eMpvWgW6TGWqcBweDfL5nx7mm9uPk5OeytbfWcbbNi6iomj6O1CNjgX5zfEOvvZ8A784fIb8zACfvWstb7t60fnv2WhvcLH92Fn+4vF9nOjoZ0NlIVtfv4w3rCrzRY99ZCzInhNdPLWvhf/c1UzfcGiTmdctKaZ6SdElV8+c6rNzzrGjvoNHXmrguYOtmBk3XlHK7esXcsvq+VH7hT6VWQW6maUCtcDvAc3Ay8B9zrmDE9p8CFjvnPugmd0LvN05965LHXe2gT40Okbv4Cg9g6P0Do3S2j1IQ3sfR1t7ebmxg/q20IYES0tzeOv6hdy7uSqi36IKdJnK5cLxaGsPf/3UIX5d2waENsfYWFXImoX5VBZnU5qbTn5mGikphgF9Q2N0D47Q0jXAsbY+DrSc4/mj7ZwbGKE4J533X7+E925ZQkH2a0NnLnYsGhkL8viuZr76izpOdg2QmZbCjVeUctWiQlYvzKOiKJuyvAyKstPibpvCwZExuvpHODcQ+q+po5+6tl4OtHRTc7yD/uExMgIprJifx8bKwogvcEby2TV19PPvvznBk/taaOoIjcFfOT+XaxYXc8W8XJaV5lCWl0FeZoDcjAB5mWmzvg9gtoG+BfiMc+7N4eefAHDO/Z8JbZ4Jt9luZgHgNFDmLnHwmQb6v73QwBd+dpjh0eCk71434BEAAAajSURBVBdmp7GpqojXLSnmd64sZc3CyefnTkWBLlOJNBybOvp5Ym8LPz/UyuFTPQyMRLbc8YL8TG5cUcobV83jppVT95Dncgu68b8Qntl/ml/VttHY0c+FP8WpKUZGIIX0QAoZgZRLrtw58UfvNY+xSV+H0BLUwWCoJ+zGn7vwc/fb50HnGBoNTpoFgZTQxjHXLitmy7ISblxRypN7p7f88XQ+u/GtJl+oa+c3DR3sOdFJ9+Dk9ymkB1L47J1rZ7xy52wD/R7gVufcB8LP3wNc65z78IQ2+8NtmsPPj4XbtF9wrK3A1vDTlcCRGXw9pUD7ZVslB30WIfocQvQ5/JafP4vFzrlJl3ONZJBssu7thb8FImmDc+5h4OEIzjl1MWY1U/12Sjb6LEL0OYToc/itZP0sIhnMaQYqJzyvAFqmahMecikAOqJRoIiIRCaSQH8ZWGFmS80sHbgXeOKCNk8AD4Qf3wP84lLj5yIiEn2XHXJxzo2a2YeBZwhNW/y6c+6AmX0OqHHOPQH8G/ComdUR6pnfO4c1z2rIxmf0WYTocwjR5/BbSflZeHZjkYiIRFd8TSgVEZEZU6CLiPhEQge6mX3MzJyZebt1jEfM7EtmdtjM9pnZD80sfja6jBEzu9XMjphZnZl93Ot6vGBmlWb2SzM7ZGYHzOzPvK7JS2aWamZ7zOwnXtcSawkb6GZWSWg5gmS+tfM5YJ1zbj2h5Rk+4XE9MRVeluIh4C3AGuA+M1vjbVWeGAU+6pxbDVwH/HGSfg7j/gw45HURXkjYQAe+AvxPJrmBKVk45551zo3fX7yD0D0CyWQzUOecq3fODQPfA+7yuKaYc86dcs7tDj/uIRRmi7ytyhtmVgHcDnzN61q8kJCBbmZ3Aiedc3u9riWO/AHwU6+LiLFFQNOE580kaZCNM7MlwEZgp7eVeObvCHX0Jl/syefidn1MM/s5sGCStz4J/C/gTbGtyBuX+hyccz8Ot/kkoT+7vxPL2uJAREtOJAszywUeB/7cOdftdT2xZmZ3AGecc7vM7Gav6/FC3Aa6c+6WyV43s6uApcDe8CqKFcBuM9vsnDsdwxJjYqrPYZyZPQDcAbwxCe/OjWRZiqRgZmmEwvw7zrkfeF2PR24A7jSz24BMIN/Mvu2ce7fHdcVMwt9YZGbHgeoLV3ZMBuGNR/4WuMk51+Z1PbEWXjeoFngjcJLQMhX3O+cOeFpYjFmoZ/NNoMM59+de1xMPwj30jznn7vC6llhKyDF0Oe8fgDzgOTN7xcz+2euCYil8QXh8WYpDwGPJFuZhNwDvAX43/H3wSriXKkkm4XvoIiISoh66iIhPKNBFRHxCgS4i4hMKdBERn1Cgi4j4hAJdRMQnFOgSt8zsk+HlYPeF51Zfe4m2j5jZPeHH28ysOvz46WguK2xmN5vZufDyrIfM7K+maFduZv8ZrfOKRCJub/2X5GZmWwgtabDJOTcUXvM+fbrHcc7NxQ02zzvn7jCzHOAVM/uJc27X+JtmFnDOtRDaMF0kZtRDl3i1EGh3zg0BOOfanXMtZnaNmf3KzHaZ2TNmtvBSBzGz42ZWamZLwj3qfw33+p81s6xwm9eF/wrYHt40ZH8kBTrn+oBdwHIze5+Z/YeZPQk8Gz7f/vDxU83sy2b2avg8fxJ+fVpfi8jlKNAlXj0LVJpZrZn9o5ndFF6A6qvAPc65a4CvA/97GsdcATzknFsLdAF3h1//BvBB59wWYCzSg5lZCaENJcaXG9gCPOCc+90Lmm4ltKDcxvBmJN+JwtcichENuUhccs71mtk1wOuBNwDfB/4GWEdo7RqAVODUNA7b4Jx7Jfx4F7AkPL6e55x7Kfz6dwkN9VzK681sD6E1tz/vnDtgZq8DnnPOdUzS/hbgn8c3I3HOdZjZull+LSIXUaBL3HLOjQHbgG1m9irwx8CBcE96JoYmPB4Dsph8TfXLeX6KVfz6pmhvXLxOuzG7r0XkIhpykbhkZivNbMWEl64mtKJiWfiCKWaWZmZrZ3Me51wn0GNm14Vfunc2x5vCs8AHw8v9YmbFwBGi/LWIKNAlXuUC3zSzg2a2j9Am0J8mNHPkC2a2F3gFuD4K53oQeNjMthPqOZ+LwjEn+hqhzcz3heu+P7wH6lx8LZLEtHyuJD0zy3XO9YYffxxY6Jz7M4/LEpk2jaGLwO1m9glCPw+NwPu8LUdkZtRDF5mEmb0Z+MIFLzc4597uRT0ikVCgi4j4hC6Kioj4hAJdRMQnFOgiIj6hQBcR8Yn/DydxxOxKviMNAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sns.distplot(y_test-y_predict)" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.collections.PathCollection at 0x2c7d7a8b5c0>" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAARyUlEQVR4nO3dcYic9Z3H8c/XdUvHtrgRV0n2kksrktZe6G5ZbI4cohaN7dG6FXo2nEf+KJf+oVBLCReLnClYDBes/nOUS1HMYfQs13RNOWErKngnVbp2c93kcoulaMwkJFt0ra1zuNl874+d2cxO5plnZp6Zeeb3PO8XyMw+M7Pz22H8+PP7fJ/fz9xdAIDwXJL2AAAA7SHAASBQBDgABIoAB4BAEeAAEKhLe/lmV155pW/cuLGXbwkAwXv99dd/7+7Dtcd7GuAbN27U9PR0L98SAIJnZm/VO04JBQACRYADQKAIcAAIFAEOAIEiwAEgUD3tQgGQT5MzRe2bmtOphZLWDRW0a9smTYyNpD2sruv2302AA+iqyZmi7js0q9LikiSpuFDSfYdmJSnTId6Lv5sSCoCu2jc1txJiFaXFJe2bmktpRL3Ri7+bAAfQVacWSi0dz4pe/N2UUAB01bqhgop1QmvdUCGF0XRHvVp3L/5uZuAAumrXtk0qDA6sOlYYHNCubZtSGlFnVWrdxYWSXBdq3Td9erjrfzcBDqCrJsZG9NAdmzUyVJBJGhkq6KE7NmfmBGZUrful/53v+t9NCQVA102MjWQmsGs1qnV3++9mBg4ACUTVtHtR4yfAASCBNGv8lFAAIIFKiSSNK00JcABIKK0aPyUUAAhUbICb2Xoze8nMjpvZMTP7dvn4FWb2vJm9Ub5d0/3hAgAqmpmBn5P0XXf/jKQtku42s+sk7Zb0grtfK+mF8s8AgB6JDXB3P+3uvy7ff1/ScUkjkm6XdKD8tAOSJro1SADAxVqqgZvZRkljkl6TdLW7n5aWQ17SVRGv2Wlm02Y2PT8/n2y0AIAVTQe4mX1c0k8l3evuf2j2de6+393H3X18eHi4nTECAOpoKsDNbFDL4X3Q3Q+VD58xs7Xlx9dKOtudIQIA6mmmC8UkPSbpuLv/sOqhw5J2lO/vkPRs54cHAIjSzIU8WyX9naRZMztSPvY9SXsl/cTMvinphKSvd2eIAIB6YgPc3f9LkkU8/MXODgcA0CyuxASAQBHgABAoAhwAAkWAA0CgCHAACBQBDgCBIsABIFAEOAAEigAHgEAR4AAQKAIcAAJFgANAoAhwAAgUAQ4AgSLAASBQBDgABIoAB4BAEeAAECgCHAACRYADQKAIcAAIFAEOAIEiwAEgUAQ4AASKAAeAQBHgABAoAhwAAkWAA0CgCHAACBQBDgCBIsABIFAEOAAEigAHgEAR4AAQKAIcAAJFgANAoAhwAAgUAQ4AgYoNcDN73MzOmtnRqmN7zKxoZkfK/3y5u8MEANRqZgb+hKTb6hx/xN1Hy/8819lhAQDixAa4u78s6Z0ejAUA0IIkNfB7zOw35RLLmqgnmdlOM5s2s+n5+fkEbwcAqNZugP9I0jWSRiWdlvRw1BPdfb+7j7v7+PDwcJtvBwCo1VaAu/sZd19y9/OSfizp+s4OCwAQp60AN7O1VT9+TdLRqOcCALrj0rgnmNnTkm6UdKWZnZT0gKQbzWxUkkt6U9K3ujhGAEAdsQHu7tvrHH6sC2MBALSAKzEBIFAEOAAEigAHgEAR4AAQKAIcAAJFgANAoAhwAAgUAQ4AgSLAASBQBDgABIoAB4BAEeAAECgCHAACRYADQKBil5MFkB+TM0Xtm5rTqYWS1g0VtGvbJk2MjaQ9LEQgwAFIWg7v+w7NqrS4JEkqLpR036FZSSLE+xQlFACSpH1TcyvhXVFaXNK+qbmURoQ4BDgASdKphVJLx5E+AhyAJGndUKGl40gfAQ5AkrRr2yYVBgdWHSsMDmjXtk0pjQhxOIkJQNKFE5V0oYSDAAewYmJshMAOCCUUAAgUAQ4AgSLAASBQBDgABIoAB4BAEeAAECgCHAACRR84eo4lS4HOIMDRU0mXLCX8gQsooaCnkixZWgn/4kJJrgvhPzlT7NJogf7GDBwddf/krJ5+7W0tuWvATNu/sF4PTmxeeTzJkqWNwp9ZOPKIGTg65v7JWT356gktuUuSltz15KsndP/k7MpzkixZynrVwGoEODrm6dfejj2eZMlS1qsGViPA0TGVmXej4xNjI3rojs0aGSrIJI0MFfTQHZubKoGwXjWwGjVwdMyAWd0QHzBb9XO7S5ayXjWwGgGOjtn+hfV68tUTdY93CutVAxfEllDM7HEzO2tmR6uOXWFmz5vZG+XbNd0dJkLw4MRm3bVlw8qMe8BMd23ZsKoLBUDnmEfULVeeYHaDpD9K+ld3/4vysX+S9I677zWz3ZLWuPs/xL3Z+Pi4T09Pd2DYAJAfZva6u4/XHo+dgbv7y5LeqTl8u6QD5fsHJE0kHiEAoCXtdqFc7e6nJal8e1XUE81sp5lNm9n0/Px8m28HAKjV9TZCd9/v7uPuPj48PNzttwOA3Gg3wM+Y2VpJKt+e7dyQAADNaDfAD0vaUb6/Q9KznRkOAKBZzbQRPi3pl5I2mdlJM/umpL2SbjGzNyTdUv4ZANBDsRfyuPv2iIe+2OGxAABawFooABAoAhwAAsVaKBnHFmRAdhHgGZZ0/0kA/Y0AD0irs2m2IAOyjQAPRDuzabYgA7KNk5iBaGc3d7YgA7KNAA9EO7NptiADso0AD0Q7s+kk+08C6H/UwAOxa9umVTVwqbnZdNItyGhDBPpX7I48ncSOPMn0OkxrT5xKkklyLc/mCXOgN6J25GEGHpBez6brnTit/OeennIgfdTAc6Iymy4ulOS6EMCTM8XI18S1G8Z1wQDoLgI8JzrZhliNnnIgPQR4DkzOFFXsUBtiLXrKgfRQA8+4SukkSlwborQ8ey8ulFZOYFbQUw6kiwDPuHqlk4pWAtgkDV02KHfpvdIiLYVAHyDAM65RiSTuop7aNsJ3P1hUYXBAj9w5SnADfYAaeMZFlUhGhgqxIdzOiU8AvUOAZ1yS9VBYzRDobwR4xiVZD4XVDIH+Rg08B9q9grPd9VcA9AYBjkjVbYQsZgX0HwIcDSVdfwVA9xDgGcPyr0B+EOAZwi70QL7QhZIh9G0D+UKAZwh920C+EOAZQt82kC8EeIawCz2QL5zEDEhch0m9vu2bPj2sfVNz+s4zR+hKATKGTY0D0c4Gw/VeUxgcaPpSegD9IWpTY0oogWhmg+Ha/S3pSgGyjQAPRDMbDN/7zBFt3fviSpDTlQJkGzXwQAxdNqh3P1iMfV71xTvrhgp198KkKwXIBmbggWjlVEWlTEJXCpBtzMBTVOkqKS6UNGCmJffIE5LvleJn39VOLZRYTRDIuEQBbmZvSnpf0pKkc/XOkqK+2g6RpfIUO2r9kmZLKBWVMgmrCQLZ1YkSyk3uPkp4t6bRbvG1nSKTM0X98f/ONf27KZMA+UAJpUNaXcY1rhOk+vF9U3NaPB9dBDeTLv/ooN4rLVImAXIkaYC7pF+YmUv6F3ffX/sEM9spaackbdiwIeHb9ad6y7je+8wR7Tl8THu++tm6YRrVIVL9eEVs259LRx64tb3BAwhW0hLKVnf/vKQvSbrbzG6ofYK773f3cXcfHx4eTvh2/SmqHLJQWqx7gY1Uf92SitoSSFzbH22BQD4lCnB3P1W+PSvpZ5Ku78SgQtNohlypZ0/OFLV174v65O7/0Na9L0rSym7xkjRgJqn+rvGthD2A/Gg7wM3sY2b2icp9SbdKOtqpgYUkbgZcXCjpO88cUXGhJNfqTpNXdt+sN/f+tR7+m89pZKigUwullcCvmBgbaTrsAeRH24tZmdmntDzrlpZr6U+5+w8avSari1nVWzSqGSNDBb2y+2YWnQLQUNRiVm2fxHT330n6XKJR9VA3N/ut/J7v//zYRb3alRUD66mUXhotOkWAA4iSi0vpKzPc2hJGvZOL7ZoYG9HMP96qR+8c1chQQablGXaj/7+plF5YdApAO3LRB97LGW7tlY9b975Yt13QpJWTjyw6BaAduZiBpznDrddBYpL+dsuGlaBn0SkA7cjFDLwTM9x2a+jNLCjFolMA2pGLLdWSdnnQJQIgTVFdKLkIcClZF0pUHXvATOfdmTED6KqOtxGGJsmyqlG18rglYAGgm3JxEjOpZmrlbBYMoNcI8CY0WoukGn3bAHopNyWUJKq7RJpdAhYAuo0ZeJMmxkb0yu6bVxaUqlV9YQ4A9EKuA7x2iddmLq2PKqd8dDDXHyWAFOS2hFJvF53aTpKo1sPpt97RU6+dUPUuZ6XF83SiAOip3PSB14rq7W60xOvgJaaPXHqJ/vRh9LKxldcDQKfkvg+8Vtz6KPUWwFo871psEN6Nfi8AdFpuC7dRHSNxS7y2+3sBoNNyG+BxKwC2E8SsIAigl3Ib4NX7TFY2X6henKrZi3cqhgqDLG4FoKdyWwOXGq+PUrvE6+WFQf3pw3NaXFp90neoMKg9X/0swQ2g53Id4HFqA76b+2oCQKsI8BYkWdEQADqNAG+AGTeAfkaAR2jmSk0ASFNuu1DiNNrJHgD6AQEeIc2d7AGgGQR4hLgrNQEgbZkP8HaWjJXir9QEgLRl6iTm5ExR3//5Mb37wWLdx1s5EVl7IQ9dKAD6TWYCfHKmqF3//t8XXSlZq3Iispkgpu8bQD/LTAll39RcbHhXcCISQBZkJsBbCWVORALIgmBLKLVXSV5eGNRCqX7tuxonIgFkRZABfv/krA6+ekKVgkm9rdHqWXPZoB74CisHAsiGoAI8rsukkUfvHCW4AWRKMAFeO+tuxYAZ4Q0gc4II8PsnZ/Xkqyfafv2StxP7ANDf+r4LJWl4S8vbpQFA1vR1gE/OFHUwYXjTdQIgqxIFuJndZmZzZvZbM9vdqUFV7Juaa6nmPWC26rZ2o2IAyJK2a+BmNiDpnyXdIumkpF+Z2WF3/59ODa7Zi3O2XnOFDv79X3bqbQEgCElm4NdL+q27/87dP5T0b5Ju78ywlsVdMWmS7tqygfAGkEtJAnxE0ttVP58sH1vFzHaa2bSZTc/Pz7f0BvWWdF1586GCHrlzVA9ObG7pdwJAViRpI7Q6xy4qWbv7fkn7JWl8fLylfj6WdAWAaEkC/KSk9VU//5mkU8mGczGWdAWA+pKUUH4l6Voz+6SZfUTSNyQd7sywAABx2p6Bu/s5M7tH0pSkAUmPu/uxjo0MANBQokvp3f05Sc91aCwAgBb09ZWYAIBoBDgABMq8hyv1mdm8pLdafNmVkn7fheGEhM+Az6CCzyGfn8Gfu/tw7cGeBng7zGza3cfTHkea+Az4DCr4HPgMqlFCAYBAEeAAEKgQAnx/2gPoA3wGfAYVfA58Biv6vgYOAKgvhBk4AKAOAhwAAtXXAd7tLdtCYGZvmtmsmR0xs+m0x9MLZva4mZ01s6NVx64ws+fN7I3y7Zo0x9htEZ/BHjMrlr8LR8zsy2mOsdvMbL2ZvWRmx83smJl9u3w8V9+FRvo2wKu2bPuSpOskbTez69IdVWpucvfRHPW+PiHptppjuyW94O7XSnqh/HOWPaGLPwNJeqT8XRgtr0WUZeckfdfdPyNpi6S7yxmQt+9CpL4NcPVgyzb0J3d/WdI7NYdvl3SgfP+ApImeDqrHIj6DXHH30+7+6/L99yUd1/KuX7n6LjTSzwHe1JZtOeCSfmFmr5vZzrQHk6Kr3f20tPwvtqSrUh5PWu4xs9+USyy5KR2Y2UZJY5JeE9+FFf0c4E1t2ZYDW93981ouJd1tZjekPSCk5keSrpE0Kum0pIfTHU5vmNnHJf1U0r3u/oe0x9NP+jnAe7JlW79z91Pl27OSfqbl0lIenTGztZJUvj2b8nh6zt3PuPuSu5+X9GPl4LtgZoNaDu+D7n6ofDj334WKfg7w3G/ZZmYfM7NPVO5LulXS0cavyqzDknaU7++Q9GyKY0lFJbTKvqaMfxfMzCQ9Jum4u/+w6qHcfxcq+vpKzHKb1KO6sGXbD1IeUk+Z2ae0POuWlndPeioPn4GZPS3pRi0vG3pG0gOSJiX9RNIGSSckfd3dM3uSL+IzuFHL5ROX9Kakb1VqwVlkZn8l6T8lzUo6Xz78PS3XwXPzXWikrwMcABCtn0soAIAGCHAACBQBDgCBIsABIFAEOAAEigAHgEAR4AAQqP8HruMVZQFrI8cAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.scatter(y_test, y_predict)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Linearity in the scatterplot shows how that model is good" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [], "source": [ "from sklearn import metrics" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "MAE: 0.725320076435229\n", "MSE: 1.4111265228590966\n", "RMSE: 1.1879084656904741\n" ] } ], "source": [ "print('MAE:', metrics.mean_absolute_error(y_test, y_predict))\n", "print('MSE:', metrics.mean_squared_error(y_test, y_predict))\n", "print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, y_predict)))" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": [ "import pickle\n", "# open a file, where you ant to store the data\n", "file = open('random_forest_regression_model.pkl', 'wb')\n", "\n", "# dump information to that file\n", "pickle.dump(rf_random, file)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.1" } }, "nbformat": 4, "nbformat_minor": 2 }