-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
189 lines (154 loc) · 6.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import math
import wandb
import torch
import random
import numpy as np
from dotenv import load_dotenv
from transformers import (
Trainer,
HfArgumentParser,
AutoTokenizer,
AutoConfig,
DataCollatorWithPadding,
AutoModelForSequenceClassification,
T5Tokenizer,
)
from functools import partial
from datasets import load_metric
from sklearn.model_selection import StratifiedKFold
from args import (MyTrainingArguments, ModelArguments, LoggingArguments, DataTrainingArguments)
from utils.datasets import KERCDataset
from utils.preprocessor import Preprocessor
from utils.encoder import Encoder
from utils.trainer import R_drop_Trainer, Smart_Trainer, MyTrainer
from models.roberta import RobertaForSequenceClassification
from models.Rbert import RBERT
from utils.preprocessor import Rbert_Preprocessor
from utils.encoder import RBERT_Encoder
def seed_everything(seed):
os.environ["PYTHONHASHSEED"] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
np.random.default_rng(seed)
random.seed(seed)
def compute_metrics(EvalPrediction):
preds, labels = EvalPrediction
preds = np.argmax(preds, axis=1)
f1_metric = load_metric('f1')
f1 = f1_metric.compute(predictions = preds, references = labels, average="micro")
acc_metric = load_metric('accuracy')
acc = acc_metric.compute(predictions = preds, references = labels)
acc.update(f1)
return f1
def main():
print(f"# of CPU : {os.cpu_count()}")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
parser = HfArgumentParser(
(ModelArguments, DataTrainingArguments, MyTrainingArguments, LoggingArguments)
)
model_args, data_args, training_args, logging_args = parser.parse_args_into_dataclasses()
seed_everything(training_args.seed)
tokenizer = AutoTokenizer.from_pretrained(model_args.PLM)
if training_args.use_special_tokens:
if data_args.preprocess_version in ['v6', 'v7']:
special_tokens_dict = {'additional_special_tokens': ['[context]','[past]']}
num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
loader = KERCDataset(tokenizer, data_args.data_dir, data_args.data_type, data_args.use_pykospacing)
if training_args.use_RBERT:
dset = loader.rbert_load_datasets()
else:
dset = loader.load_datasets()
dset = dset['train'].shuffle(training_args.seed)
print(dset)
if training_args.use_RBERT:
preprocessor = Rbert_Preprocessor(tokenizer, train_flag=True)
else:
preprocessor = Preprocessor(tokenizer, train_flag=True)
dset = dset.map(preprocessor, batched=True, num_proc=4,remove_columns=dset.column_names)
print(dset)
config = AutoConfig.from_pretrained(model_args.PLM)
config.num_labels = 3
config.head_class = model_args.head_class
if training_args.use_RBERT:
encoder = RBERT_Encoder(tokenizer, data_args.max_length)
else:
encoder = Encoder(tokenizer, data_args.max_length)
dset = dset.map(encoder, batched=True, num_proc=4, remove_columns=dset.column_names)
print(dset)
data_collator =DataCollatorWithPadding(tokenizer=tokenizer, max_length=data_args.max_length)
skf = StratifiedKFold(n_splits=5, shuffle=True)
for i, (train_idx, valid_idx) in enumerate(skf.split(dset, dset['labels'])):
train_dataset = dset.select(train_idx.tolist())
valid_dataset = dset.select(valid_idx.tolist())
load_dotenv(dotenv_path=logging_args.dotenv_path)
WANDB_AUTH_KEY = os.getenv("DATASETS_AUTH_KEY")
wandb.login(key=WANDB_AUTH_KEY)
if training_args.max_steps == -1:
name = f"EP_Fold{i}:{training_args.num_train_epochs}_"
else:
name = f"MS_Fold{i}:{training_args.max_steps}_"
name += f"LR:{training_args.learning_rate}_BS:{training_args.per_device_train_batch_size}_WR:{training_args.warmup_ratio}_WD:{training_args.weight_decay}_{model_args.head_class}"
training_args.RBERT = False
if training_args.use_RBERT:
training_args.RBERT = True
model = RBERT.from_pretrained(model_args.PLM, config=config)
elif config.head_class != "Org" or training_args.use_Smart_loss:
model = RobertaForSequenceClassification.from_pretrained(model_args.PLM, config=config)
else:
model = AutoModelForSequenceClassification.from_pretrained(model_args.PLM, config=config)
if training_args.use_special_tokens:
model.resize_token_embeddings(len(tokenizer))
tokenizer.save_pretrained("./checkpoints/"+name)
wandb.init(
entity="aroma-jewel",
project="KERC",
name=name
)
wandb.config.update(training_args)
if training_args.use_Smart_loss:
trainer = Smart_Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=valid_dataset,
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
elif training_args.use_rdrop:
trainer = R_drop_Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=valid_dataset,
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
else:
trainer = MyTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=valid_dataset,
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
loss_name = training_args.loss_name
)
trainer.train()
trainer.evaluate()
prev_path = model_args.save_path
model_args.save_path = os.path.join(model_args.save_path, name)
trainer.save_model(model_args.save_path)
model_args.save_path = prev_path
wandb.finish()
if training_args.use_kfold==False:
break
if __name__ == "__main__":
main()