-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathtest_preequilibration.py
360 lines (285 loc) · 12.1 KB
/
test_preequilibration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
"""Tests for preequilibration"""
import itertools
import amici
import numpy as np
import pytest
from test_pysb import get_data
@pytest.fixture
def preeq_fixture(pysb_example_presimulation_module):
model = pysb_example_presimulation_module.getModel()
model.setReinitializeFixedParameterInitialStates(True)
solver = model.getSolver()
solver.setSensitivityOrder(amici.SensitivityOrder.first)
solver.setSensitivityMethod(amici.SensitivityMethod.forward)
edata = get_data(model)
edata.t_presim = 2
edata.fixedParameters = [10, 2]
edata.fixedParametersPresimulation = [3, 2]
edata.fixedParametersPreequilibration = [3, 0]
edata.setTimepoints([1, 5])
edata_preeq = amici.ExpData(edata)
edata_preeq.t_presim = 0
edata_preeq.setTimepoints([np.infty])
edata_preeq.fixedParameters = \
edata.fixedParametersPreequilibration
edata_preeq.fixedParametersPresimulation = ()
edata_preeq.fixedParametersPreequilibration = ()
edata_presim = amici.ExpData(edata)
edata_presim.t_presim = 0
edata_presim.setTimepoints([edata.t_presim])
edata_presim.fixedParameters = \
edata.fixedParametersPresimulation
edata_presim.fixedParametersPresimulation = ()
edata_presim.fixedParametersPreequilibration = ()
edata_sim = amici.ExpData(edata)
edata_sim.t_presim = 0
edata_sim.setTimepoints(edata.getTimepoints())
edata_sim.fixedParameters = \
edata.fixedParameters
edata_sim.fixedParametersPresimulation = ()
edata_sim.fixedParametersPreequilibration = ()
pscales = [
amici.ParameterScaling.log10, amici.ParameterScaling.ln,
amici.ParameterScaling.none,
amici.parameterScalingFromIntVector([
amici.ParameterScaling.log10, amici.ParameterScaling.ln,
amici.ParameterScaling.none, amici.ParameterScaling.log10,
amici.ParameterScaling.ln, amici.ParameterScaling.none
])
]
plists = [
[3, 1, 2, 4], [0, 1, 2, 3, 4, 5], [5, 3, 2, 0, 4, 1],
[1, 2, 3, 4, 5], [1, 1, 1],
]
return (model, solver, edata, edata_preeq,
edata_presim, edata_sim, pscales, plists)
def test_manual_preequilibration(preeq_fixture):
"""Manual preequilibration"""
model, solver, edata, edata_preeq, \
edata_presim, edata_sim, pscales, plists = preeq_fixture
settings = itertools.product(pscales, plists)
for pscale, plist in settings:
model.setInitialStates([])
model.setInitialStateSensitivities([])
model.setParameterList(plist)
model.setParameterScale(pscale)
# combined
rdata_auto = amici.runAmiciSimulation(model, solver, edata)
assert rdata_auto.status == amici.AMICI_SUCCESS
# manual preequilibration
rdata_preeq = amici.runAmiciSimulation(model, solver, edata_preeq)
assert rdata_preeq.status == amici.AMICI_SUCCESS
# manual reinitialization + presimulation
x0 = rdata_preeq['x'][0, :]
x0[1] = edata_presim.fixedParameters[0]
x0[2] = edata_presim.fixedParameters[1]
sx0 = rdata_preeq['sx'][0, :, :]
sx0[:, 1] = 0
sx0[:, 2] = 0
model.setInitialStates(x0)
model.setInitialStateSensitivities(sx0.flatten())
rdata_presim = amici.runAmiciSimulation(model, solver, edata_presim)
assert rdata_presim.status == amici.AMICI_SUCCESS
# manual reinitialization + simulation
x0 = rdata_presim['x'][0, :]
x0[1] = edata_sim.fixedParameters[0]
x0[2] = edata_sim.fixedParameters[1]
sx0 = rdata_presim['sx'][0, :, :]
sx0[:, 1] = 0
sx0[:, 2] = 0
model.setInitialStates(x0)
model.setInitialStateSensitivities(sx0.flatten())
rdata_sim = amici.runAmiciSimulation(model, solver, edata_sim)
assert rdata_sim.status == amici.AMICI_SUCCESS
for variable in ['x', 'sx']:
assert np.isclose(
rdata_auto[variable],
rdata_sim[variable],
1e-6, 1e-6
).all(), dict(pscale=pscale, plist=plist, variable=variable)
def test_parameter_reordering(preeq_fixture):
"""Test parameter reordering"""
model, solver, edata, edata_preeq, \
edata_presim, edata_sim, pscales, plists = preeq_fixture
rdata_ordered = amici.runAmiciSimulation(model, solver, edata)
for plist in plists:
model.setParameterList(plist)
rdata_reordered = amici.runAmiciSimulation(model, solver, edata)
for ip, p_index in enumerate(plist):
assert np.isclose(
rdata_ordered['sx'][:, p_index, :],
rdata_reordered['sx'][:, ip, :],
1e-6, 1e-6
).all(), plist
def test_data_replicates(preeq_fixture):
"""Test data replicates"""
model, solver, edata, edata_preeq, \
edata_presim, edata_sim, pscales, plists = preeq_fixture
sensi_meth = amici.SensitivityMethod.forward
solver.setSensitivityMethod(sensi_meth)
# add infty timepoint
y = edata.getObservedData()
stdy = edata.getObservedDataStdDev()
ts = np.hstack([*edata.getTimepoints(), np.inf])
edata.setTimepoints(sorted(ts))
edata.setObservedData(np.hstack([y, y[0]]))
edata.setObservedDataStdDev(np.hstack([stdy, stdy[0]]))
rdata_single = amici.runAmiciSimulation(model, solver, edata)
# duplicate data and timepoints
y = edata.getObservedData()
stdy = edata.getObservedDataStdDev()
ts = np.hstack([*edata.getTimepoints(), *edata.getTimepoints()])
idx = np.argsort(ts)
edata.setTimepoints(sorted(ts))
edata.setObservedData(np.hstack([y, y])[idx])
edata.setObservedDataStdDev(np.hstack([stdy, stdy])[idx])
rdata_double = amici.runAmiciSimulation(model, solver, edata)
for variable in ['llh', 'sllh']:
assert np.isclose(
2*rdata_single[variable],
rdata_double[variable],
1e-6, 1e-6
).all(), dict(variable=variable, sensi_meth=sensi_meth)
def test_parameter_in_expdata(preeq_fixture):
"""Test parameter in ExpData"""
model, solver, edata, edata_preeq, edata_presim, \
edata_sim, pscales, plists = preeq_fixture
rdata = amici.runAmiciSimulation(model, solver, edata)
# get initial states will compute initial states if nothing is set,
# this needs go first as we need unmodified model. Also set to
# preequilibration fixpars first as this is where initial states would be
# computed otherwise
model.setFixedParameters(edata.fixedParametersPreequilibration)
edata.x0 = model.getInitialStates()
edata.sx0 = model.getInitialStateSensitivities()
# perturb model initial states
model.setInitialStates(rdata['x_ss'] * 4)
model.setInitialStateSensitivities(rdata['sx_ss'].flatten() / 2)
# set ExpData plist
edata.plist = model.getParameterList()
# perturb model parameter list
model.setParameterList([
i for i in reversed(model.getParameterList())
])
# set ExpData parameters
edata.parameters = model.getParameters()
# perturb model parameters
model.setParameters(tuple(
p * 2 for p in model.getParameters()
))
# set ExpData pscale
edata.pscale = model.getParameterScale()
# perturb model pscale, needs to be done after getting parameters,
# otherwise we will mess up parameter value
model.setParameterScale(amici.parameterScalingFromIntVector([
amici.ParameterScaling.log10
if scaling == amici.ParameterScaling.none
else amici.ParameterScaling.none
for scaling in model.getParameterScale()
]))
rdata_edata = amici.runAmiciSimulation(
model, solver, edata
)
for variable in ['x', 'sx']:
assert np.isclose(
rdata[variable][0, :],
rdata_edata[variable][0, :],
1e-6, 1e-6
).all(), variable
def test_raise_presimulation_with_adjoints(preeq_fixture):
"""Test simulation failures with adjoin+presimulation"""
model, solver, edata, edata_preeq, \
edata_presim, edata_sim, pscales, plists = preeq_fixture
# preequilibration and presimulation with adjoints:
# this needs to fail unless we remove presimulation
solver.setSensitivityMethod(amici.SensitivityMethod.adjoint)
rdata = amici.runAmiciSimulation(model, solver, edata)
assert rdata['status'] == amici.AMICI_ERROR
# add postequilibration
y = edata.getObservedData()
stdy = edata.getObservedDataStdDev()
ts = np.hstack([*edata.getTimepoints(), np.inf])
edata.setTimepoints(ts)
edata.setObservedData(np.hstack([y, y[0]]))
edata.setObservedDataStdDev(np.hstack([stdy, stdy[0]]))
# remove presimulation
edata.t_presim = 0
edata.fixedParametersPresimulation = ()
# no presim any more, this should work
rdata = amici.runAmiciSimulation(model, solver, edata)
assert rdata['status'] == amici.AMICI_SUCCESS
def test_equilibration_methods_with_adjoints(preeq_fixture):
"""Test different combinations of equilibration and simulation
sensitivity methods"""
model, solver, edata, edata_preeq, \
edata_presim, edata_sim, pscales, plists = preeq_fixture
# we don't want presim
edata.t_presim = 0.0
edata.fixedParametersPresimulation = ()
# add infty timepoint
y = edata.getObservedData()
stdy = edata.getObservedDataStdDev()
ts = np.hstack([*edata.getTimepoints(), np.inf])
edata.setTimepoints(sorted(ts))
edata.setObservedData(np.hstack([y, y[0]]))
edata.setObservedDataStdDev(np.hstack([stdy, stdy[0]]))
rdatas = {}
equil_meths = [amici.SteadyStateSensitivityMode.newtonOnly,
amici.SteadyStateSensitivityMode.integrationOnly,
amici.SteadyStateSensitivityMode.integrateIfNewtonFails]
sensi_meths = [amici.SensitivityMethod.forward,
amici.SensitivityMethod.adjoint]
settings = itertools.product(equil_meths, sensi_meths)
for setting in settings:
# unpack, solver settings
equil_meth, sensi_meth = setting
model.setSteadyStateSensitivityMode(equil_meth)
solver.setSensitivityMethod(sensi_meth)
solver.setNewtonMaxSteps(0)
# add rdatas
rdatas[setting] = amici.runAmiciSimulation(model, solver, edata)
# assert successful simulation
assert rdatas[setting]['status'] == amici.AMICI_SUCCESS
for setting1, setting2 in itertools.product(settings, settings):
# assert correctness of result
for variable in ['llh', 'sllh']:
assert np.isclose(
rdatas[setting1][variable],
rdatas[setting2][variable],
1e-6, 1e-6
).all(), variable
def test_newton_solver_equilibration(preeq_fixture):
"""Test data replicates"""
model, solver, edata, edata_preeq, \
edata_presim, edata_sim, pscales, plists = preeq_fixture
# we don't want presim
edata.t_presim = 0.0
edata.fixedParametersPresimulation = ()
# add infty timepoint
y = edata.getObservedData()
stdy = edata.getObservedDataStdDev()
ts = np.hstack([*edata.getTimepoints(), np.inf])
edata.setTimepoints(sorted(ts))
edata.setObservedData(np.hstack([y, y[0]]))
edata.setObservedDataStdDev(np.hstack([stdy, stdy[0]]))
rdatas = {}
settings = [amici.SteadyStateSensitivityMode.integrationOnly,
amici.SteadyStateSensitivityMode.newtonOnly]
for equil_meth in settings:
# set sensi method
sensi_meth = amici.SensitivityMethod.forward
solver.setSensitivityMethod(sensi_meth)
model.setSteadyStateSensitivityMode(equil_meth)
if equil_meth == amici.SteadyStateSensitivityMode.newtonOnly:
solver.setNewtonMaxSteps(10)
# add rdatas
rdatas[equil_meth] = amici.runAmiciSimulation(model, solver, edata)
# assert successful simulation
assert rdatas[equil_meth]['status'] == amici.AMICI_SUCCESS
# assert correct results
for variable in ['llh', 'sllh', 'sx0', 'sx_ss', 'x_ss']:
assert np.isclose(
rdatas[settings[0]][variable],
rdatas[settings[1]][variable],
1e-6, 1e-6
).all(), variable