-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathloss.py
81 lines (67 loc) · 2.78 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch
import torch.nn as nn
class Loss(nn.Module):
def __init__(self, batch_size, class_num, temperature_f, temperature_l, device):
super(Loss, self).__init__()
self.batch_size = batch_size
self.class_num = class_num
self.temperature_f = temperature_f
self.temperature_l = temperature_l
self.device = device
self.mask = self.mask_correlated_samples(batch_size)
self.similarity = torch.nn.CosineSimilarity(dim=-1)
self.criterion = nn.CrossEntropyLoss(reduction="sum")
self.criterion1 = nn.CrossEntropyLoss()
def mask_correlated_samples(self, N):
mask = torch.ones((N, N))
mask = mask.fill_diagonal_(0)
for i in range(N//2):
mask[i, N//2 + i] = 0
mask[N//2 + i, i] = 0
mask = mask.bool()
return mask
def forward_feature(self, h_i, h_j):
batch = h_i.shape[0]
N = 2 * batch
h = torch.cat((h_i, h_j), dim=0)
sim = torch.matmul(h, h.T) / self.temperature_f
sim_i_j = torch.diag(sim, batch)
sim_j_i = torch.diag(sim, -batch)
positive_samples = torch.cat((sim_i_j, sim_j_i), dim=0).reshape(N, 1)
mask = self.mask_correlated_samples(N)
negative_samples = sim[mask].reshape(N, -1)
labels = torch.zeros(N).to(positive_samples.device).long()
logits = torch.cat((positive_samples, negative_samples), dim=1)
loss = self.criterion(logits, labels)
loss /= N
return loss
def forward_feature1(self, h_i, h_j):
batch = h_i.shape[0]
N = 2 * batch
h = torch.cat((h_i, h_j), dim=0) # 按行拼接;行数翻倍
nmse_matrix = torch.zeros((N, N))
for i in range(N):
for j in range(N):
nmse_matrix[i, j] = torch.nn.functional.mse_loss(h[i], h[j])
sim = nmse_matrix / self.temperature_f
sim_i_j = torch.diag(sim, batch)
sim_j_i = torch.diag(sim, -batch)
positive_samples = torch.cat((sim_i_j, sim_j_i), dim=0).reshape(N, 1)
mask = self.mask_correlated_samples(N)
negative_samples = sim[mask].reshape(N, -1)
labels = torch.zeros(N).to(positive_samples.device).long()
logits = torch.cat((positive_samples, negative_samples), dim=1)
loss = self.criterion(logits, labels)
loss /= N
return loss
def forward_model(self, glob_h, h, zs):
N = glob_h.size(0)
pos = self.similarity(glob_h, h)
logits = pos.reshape(-1, 1)
nega = self.similarity(h, zs)
logits = torch.cat((logits, nega.reshape(-1, 1)), dim=1)
logits /= self.temperature_l
labels = torch.zeros(glob_h.size(0)).cuda().long()
loss = self.criterion1(logits, labels)
# loss /= N
return loss