-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsha204_library.cpp
659 lines (556 loc) · 18.9 KB
/
sha204_library.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
#include "Arduino.h"
#include "sha204_library.h"
#include "sha204_includes/sha204_lib_return_codes.h"
// atsha204Class Constructor
// Feed this function the Arduino-ized pin number you want to assign to the ATSHA204's SDA pin
// This will find the DDRX, PORTX, and PINX registrs it'll need to point to to control that pin
// As well as the bit value for each of those registers
atsha204Class::atsha204Class(uint8_t pin)
{
device_pin = digitalPinToBitMask(pin); // Find the bit value of the pin
uint8_t port = digitalPinToPort(pin); // temoporarily used to get the next three registers
// Point to data direction register port of pin
device_port_DDR = portModeRegister(port);
// Point to output register of pin
device_port_OUT = portOutputRegister(port);
// Point to input register of pin
device_port_IN = portInputRegister(port);
}
/* Puts a the ATSHA204's unique, 4-byte serial number in the response array
returns an SHA204 Return code */
uint8_t atsha204Class::getSerialNumber(uint8_t * response)
{
uint8_t readCommand[READ_COUNT];
uint8_t readResponse[READ_4_RSP_SIZE];
/* read from bytes 0->3 of config zone */
uint8_t returnCode = sha204m_read(readCommand, readResponse, SHA204_ZONE_CONFIG, ADDRESS_SN03);
if (!returnCode) // should return 0 if successful
{
for (int i=0; i<4; i++) // store bytes 0-3 into respones array
response[i] = readResponse[SHA204_BUFFER_POS_DATA+i];
/* read from bytes 8->11 of config zone */
returnCode = sha204m_read(readCommand, readResponse, SHA204_ZONE_CONFIG, ADDRESS_SN47);
for (int i=4; i<8; i++) // store bytes 4-7 of SN into response array
response[i] = readResponse[SHA204_BUFFER_POS_DATA+(i-4)];
if (!returnCode)
{ /* Finally if last two reads were successful, read byte 8 of the SN */
returnCode = sha204m_read(readCommand, readResponse, SHA204_ZONE_CONFIG, ADDRESS_SN8);
response[8] = readResponse[SHA204_BUFFER_POS_DATA]; // Byte 8 of SN should always be 0xEE
}
}
return returnCode;
}
/* SWI bit bang functions */
void atsha204Class::swi_set_signal_pin(uint8_t is_high)
{
*device_port_DDR |= device_pin;
if (is_high)
*device_port_OUT |= device_pin;
else
*device_port_OUT &= ~device_pin;
}
uint8_t atsha204Class::swi_send_bytes(uint8_t count, uint8_t *buffer)
{
uint8_t i, bit_mask;
// Disable interrupts while sending.
noInterrupts(); //swi_disable_interrupts();
// Set signal pin as output.
*device_port_OUT |= device_pin;
*device_port_DDR |= device_pin;
// Wait turn around time.
delayMicroseconds(RX_TX_DELAY); //RX_TX_DELAY;
for (i = 0; i < count; i++)
{
for (bit_mask = 1; bit_mask > 0; bit_mask <<= 1)
{
if (bit_mask & buffer[i])
{
*device_port_OUT &= ~device_pin;
delayMicroseconds(BIT_DELAY); //BIT_DELAY_1;
*device_port_OUT |= device_pin;
delayMicroseconds(7*BIT_DELAY); //BIT_DELAY_7;
}
else
{
// Send a zero bit.
*device_port_OUT &= ~device_pin;
delayMicroseconds(BIT_DELAY); //BIT_DELAY_1;
*device_port_OUT |= device_pin;
delayMicroseconds(BIT_DELAY); //BIT_DELAY_1;
*device_port_OUT &= ~device_pin;
delayMicroseconds(BIT_DELAY); //BIT_DELAY_1;
*device_port_OUT |= device_pin;
delayMicroseconds(5*BIT_DELAY); //BIT_DELAY_5;
}
}
}
interrupts(); //swi_enable_interrupts();
return SWI_FUNCTION_RETCODE_SUCCESS;
}
uint8_t atsha204Class::swi_send_byte(uint8_t value)
{
return swi_send_bytes(1, &value);
}
uint8_t atsha204Class::swi_receive_bytes(uint8_t count, uint8_t *buffer)
{
uint8_t status = SWI_FUNCTION_RETCODE_SUCCESS;
uint8_t i;
uint8_t bit_mask;
uint8_t pulse_count;
uint8_t timeout_count;
// Disable interrupts while receiving.
noInterrupts(); //swi_disable_interrupts();
// Configure signal pin as input.
*device_port_DDR &= ~device_pin;
// Receive bits and store in buffer.
for (i = 0; i < count; i++)
{
for (bit_mask = 1; bit_mask > 0; bit_mask <<= 1)
{
pulse_count = 0;
// Make sure that the variable below is big enough.
// Change it to uint16_t if 255 is too small, but be aware that
// the loop resolution decreases on an 8-bit controller in that case.
timeout_count = START_PULSE_TIME_OUT;
// Detect start bit.
while (--timeout_count > 0)
{
// Wait for falling edge.
if ((*device_port_IN & device_pin) == 0)
break;
}
if (timeout_count == 0)
{
status = SWI_FUNCTION_RETCODE_TIMEOUT;
break;
}
do
{
// Wait for rising edge.
if ((*device_port_IN & device_pin) != 0)
{
// For an Atmel microcontroller this might be faster than "pulse_count++".
pulse_count = 1;
break;
}
} while (--timeout_count > 0);
if (pulse_count == 0)
{
status = SWI_FUNCTION_RETCODE_TIMEOUT;
break;
}
// Trying to measure the time of start bit and calculating the timeout
// for zero bit detection is not accurate enough for an 8 MHz 8-bit CPU.
// So let's just wait the maximum time for the falling edge of a zero bit
// to arrive after we have detected the rising edge of the start bit.
timeout_count = ZERO_PULSE_TIME_OUT;
// Detect possible edge indicating zero bit.
do
{
if ((*device_port_IN & device_pin) == 0)
{
// For an Atmel microcontroller this might be faster than "pulse_count++".
pulse_count = 2;
break;
}
} while (--timeout_count > 0);
// Wait for rising edge of zero pulse before returning. Otherwise we might interpret
// its rising edge as the next start pulse.
if (pulse_count == 2)
{
do
{
if ((*device_port_IN & device_pin) != 0)
break;
} while (timeout_count-- > 0);
}
// Update byte at current buffer index.
else
buffer[i] |= bit_mask; // received "one" bit
}
if (status != SWI_FUNCTION_RETCODE_SUCCESS)
break;
}
interrupts(); //swi_enable_interrupts();
if (status == SWI_FUNCTION_RETCODE_TIMEOUT)
{
if (i > 0)
// Indicate that we timed out after having received at least one byte.
status = SWI_FUNCTION_RETCODE_RX_FAIL;
}
return status;
}
/* Physical functions */
uint8_t atsha204Class::sha204p_wakeup()
{
swi_set_signal_pin(0);
delayMicroseconds(10*SHA204_WAKEUP_PULSE_WIDTH);
swi_set_signal_pin(1);
delay(SHA204_WAKEUP_DELAY);
return SHA204_SUCCESS;
}
uint8_t atsha204Class::sha204p_sleep()
{
return swi_send_byte(SHA204_SWI_FLAG_SLEEP);
}
uint8_t atsha204Class::sha204p_receive_response(uint8_t size, uint8_t *response)
{
uint8_t count_byte;
uint8_t i;
uint8_t ret_code;
for (i = 0; i < size; i++)
response[i] = 0;
(void) swi_send_byte(SHA204_SWI_FLAG_TX);
ret_code = swi_receive_bytes(size, response);
if (ret_code == SWI_FUNCTION_RETCODE_SUCCESS || ret_code == SWI_FUNCTION_RETCODE_RX_FAIL)
{
count_byte = response[SHA204_BUFFER_POS_COUNT];
if ((count_byte < SHA204_RSP_SIZE_MIN) || (count_byte > size))
return SHA204_INVALID_SIZE;
return SHA204_SUCCESS;
}
// Translate error so that the Communication layer
// can distinguish between a real error or the
// device being busy executing a command.
if (ret_code == SWI_FUNCTION_RETCODE_TIMEOUT)
return SHA204_RX_NO_RESPONSE;
else
return SHA204_RX_FAIL;
}
uint8_t atsha204Class::sha204p_send_command(uint8_t count, uint8_t * command)
{
uint8_t ret_code = swi_send_byte(SHA204_SWI_FLAG_CMD);
if (ret_code != SWI_FUNCTION_RETCODE_SUCCESS)
return SHA204_COMM_FAIL;
return swi_send_bytes(count, command);
}
/* Communication functions */
uint8_t atsha204Class::sha204c_wakeup(uint8_t *response)
{
uint8_t ret_code = sha204p_wakeup();
if (ret_code != SHA204_SUCCESS)
return ret_code;
ret_code = sha204p_receive_response(SHA204_RSP_SIZE_MIN, response);
if (ret_code != SHA204_SUCCESS)
return ret_code;
// Verify status response.
if (response[SHA204_BUFFER_POS_COUNT] != SHA204_RSP_SIZE_MIN)
ret_code = SHA204_INVALID_SIZE;
else if (response[SHA204_BUFFER_POS_STATUS] != SHA204_STATUS_BYTE_WAKEUP)
ret_code = SHA204_COMM_FAIL;
else
{
if ((response[SHA204_RSP_SIZE_MIN - SHA204_CRC_SIZE] != 0x33)
|| (response[SHA204_RSP_SIZE_MIN + 1 - SHA204_CRC_SIZE] != 0x43))
ret_code = SHA204_BAD_CRC;
}
if (ret_code != SHA204_SUCCESS)
delay(SHA204_COMMAND_EXEC_MAX);
return ret_code;
}
uint8_t atsha204Class::sha204c_send_and_receive(uint8_t *tx_buffer, uint8_t rx_size, uint8_t *rx_buffer, uint8_t execution_delay, uint8_t execution_timeout)
{
uint8_t ret_code = SHA204_FUNC_FAIL;
uint8_t ret_code_resync;
uint8_t n_retries_send;
uint8_t n_retries_receive;
uint8_t i;
uint8_t status_byte;
uint8_t count = tx_buffer[SHA204_BUFFER_POS_COUNT];
uint8_t count_minus_crc = count - SHA204_CRC_SIZE;
uint16_t execution_timeout_us = (uint16_t) (execution_timeout * 1000) + SHA204_RESPONSE_TIMEOUT;
volatile uint16_t timeout_countdown;
// Append CRC.
sha204c_calculate_crc(count_minus_crc, tx_buffer, tx_buffer + count_minus_crc);
// Retry loop for sending a command and receiving a response.
n_retries_send = SHA204_RETRY_COUNT + 1;
while ((n_retries_send-- > 0) && (ret_code != SHA204_SUCCESS))
{
// Send command.
ret_code = sha204p_send_command(count, tx_buffer);
if (ret_code != SHA204_SUCCESS)
{
return ret_code;
/* DISABLED
if (sha204c_resync(rx_size, rx_buffer) == SHA204_RX_NO_RESPONSE)
return ret_code; // The device seems to be dead in the water.
else
continue;
*/
}
// Wait minimum command execution time and then start polling for a response.
delay(execution_delay);
// Retry loop for receiving a response.
n_retries_receive = SHA204_RETRY_COUNT + 1;
while (n_retries_receive-- > 0)
{
// Reset response buffer.
for (i = 0; i < rx_size; i++)
rx_buffer[i] = 0;
// Poll for response.
timeout_countdown = execution_timeout_us;
do
{
ret_code = sha204p_receive_response(rx_size, rx_buffer);
timeout_countdown -= SHA204_RESPONSE_TIMEOUT;
}
while ((timeout_countdown > SHA204_RESPONSE_TIMEOUT) && (ret_code == SHA204_RX_NO_RESPONSE));
if (ret_code == SHA204_RX_NO_RESPONSE)
{
return ret_code;
/* DISABLED
// We did not receive a response. Re-synchronize and send command again.
if (sha204c_resync(rx_size, rx_buffer) == SHA204_RX_NO_RESPONSE)
// The device seems to be dead in the water.
return ret_code;
else
break;
*/
}
// Check whether we received a valid response.
if (ret_code == SHA204_INVALID_SIZE)
{
// We see 0xFF for the count when communication got out of sync.
return ret_code;
/* DISABLED
ret_code_resync = sha204c_resync(rx_size, rx_buffer);
if (ret_code_resync == SHA204_SUCCESS)
// We did not have to wake up the device. Try receiving response again.
continue;
if (ret_code_resync == SHA204_RESYNC_WITH_WAKEUP)
// We could re-synchronize, but only after waking up the device.
// Re-send command.
break;
else
// We failed to re-synchronize.
return ret_code;
*/
}
// We received a response of valid size.
// Check the consistency of the response.
ret_code = sha204c_check_crc(rx_buffer);
if (ret_code == SHA204_SUCCESS)
{
// Received valid response.
if (rx_buffer[SHA204_BUFFER_POS_COUNT] > SHA204_RSP_SIZE_MIN)
// Received non-status response. We are done.
return ret_code;
// Received status response.
status_byte = rx_buffer[SHA204_BUFFER_POS_STATUS];
// Translate the three possible device status error codes
// into library return codes.
if (status_byte == SHA204_STATUS_BYTE_PARSE)
return SHA204_PARSE_ERROR;
if (status_byte == SHA204_STATUS_BYTE_EXEC)
return SHA204_CMD_FAIL;
if (status_byte == SHA204_STATUS_BYTE_COMM)
{
// In case of the device status byte indicating a communication
// error this function exits the retry loop for receiving a response
// and enters the overall retry loop
// (send command / receive response).
ret_code = SHA204_STATUS_CRC;
break;
}
// Received status response from CheckMAC, DeriveKey, GenDig,
// Lock, Nonce, Pause, UpdateExtra, or Write command.
return ret_code;
}
else
{
return ret_code;
/* DISABLED
// Received response with incorrect CRC.
ret_code_resync = sha204c_resync(rx_size, rx_buffer);
if (ret_code_resync == SHA204_SUCCESS)
// We did not have to wake up the device. Try receiving response again.
continue;
if (ret_code_resync == SHA204_RESYNC_WITH_WAKEUP)
// We could re-synchronize, but only after waking up the device.
// Re-send command.
break;
else
// We failed to re-synchronize.
return ret_code;
*/
} // block end of check response consistency
} // block end of receive retry loop
} // block end of send and receive retry loop
return ret_code;
}
/* Marshaling functions */
uint8_t atsha204Class::sha204m_read(uint8_t *tx_buffer, uint8_t *rx_buffer, uint8_t zone, uint16_t address)
{
uint8_t rx_size;
if (!tx_buffer || !rx_buffer || ((zone & ~READ_ZONE_MASK) != 0)
|| ((zone & READ_ZONE_MODE_32_BYTES) && (zone == SHA204_ZONE_OTP)))
return SHA204_BAD_PARAM;
address >>= 2;
if ((zone & SHA204_ZONE_MASK) == SHA204_ZONE_CONFIG)
{
if (address > SHA204_ADDRESS_MASK_CONFIG)
return SHA204_BAD_PARAM;
}
else if ((zone & SHA204_ZONE_MASK) == SHA204_ZONE_OTP)
{
if (address > SHA204_ADDRESS_MASK_OTP)
return SHA204_BAD_PARAM;
}
else if ((zone & SHA204_ZONE_MASK) == SHA204_ZONE_DATA)
{
if (address > SHA204_ADDRESS_MASK)
return SHA204_BAD_PARAM;
}
tx_buffer[SHA204_COUNT_IDX] = READ_COUNT;
tx_buffer[SHA204_OPCODE_IDX] = SHA204_READ;
tx_buffer[READ_ZONE_IDX] = zone;
tx_buffer[READ_ADDR_IDX] = (uint8_t) (address & SHA204_ADDRESS_MASK);
tx_buffer[READ_ADDR_IDX + 1] = 0;
rx_size = (zone & SHA204_ZONE_COUNT_FLAG) ? READ_32_RSP_SIZE : READ_4_RSP_SIZE;
return sha204c_send_and_receive(&tx_buffer[0], rx_size, &rx_buffer[0], READ_DELAY, READ_EXEC_MAX - READ_DELAY);
}
uint8_t atsha204Class::sha204m_execute(uint8_t op_code, uint8_t param1, uint16_t param2,
uint8_t datalen1, uint8_t *data1, uint8_t datalen2, uint8_t *data2, uint8_t datalen3, uint8_t *data3,
uint8_t tx_size, uint8_t *tx_buffer, uint8_t rx_size, uint8_t *rx_buffer)
{
uint8_t poll_delay, poll_timeout, response_size;
uint8_t *p_buffer;
uint8_t len;
/*uint8_t ret_code = sha204m_check_parameters(op_code, param1, param2,
datalen1, data1, datalen2, data2, datalen3, data3,
tx_size, tx_buffer, rx_size, rx_buffer);
if (ret_code != SHA204_SUCCESS)
return ret_code;
*/
// Supply delays and response size.
switch (op_code)
{
case SHA204_CHECKMAC:
poll_delay = CHECKMAC_DELAY;
poll_timeout = CHECKMAC_EXEC_MAX - CHECKMAC_DELAY;
response_size = CHECKMAC_RSP_SIZE;
break;
case SHA204_DERIVE_KEY:
poll_delay = DERIVE_KEY_DELAY;
poll_timeout = DERIVE_KEY_EXEC_MAX - DERIVE_KEY_DELAY;
response_size = DERIVE_KEY_RSP_SIZE;
break;
case SHA204_DEVREV:
poll_delay = DEVREV_DELAY;
poll_timeout = DEVREV_EXEC_MAX - DEVREV_DELAY;
response_size = DEVREV_RSP_SIZE;
break;
case SHA204_GENDIG:
poll_delay = GENDIG_DELAY;
poll_timeout = GENDIG_EXEC_MAX - GENDIG_DELAY;
response_size = GENDIG_RSP_SIZE;
break;
case SHA204_HMAC:
poll_delay = HMAC_DELAY;
poll_timeout = HMAC_EXEC_MAX - HMAC_DELAY;
response_size = HMAC_RSP_SIZE;
break;
case SHA204_LOCK:
poll_delay = LOCK_DELAY;
poll_timeout = LOCK_EXEC_MAX - LOCK_DELAY;
response_size = LOCK_RSP_SIZE;
break;
case SHA204_MAC:
poll_delay = MAC_DELAY;
poll_timeout = MAC_EXEC_MAX - MAC_DELAY;
response_size = MAC_RSP_SIZE;
break;
case SHA204_NONCE:
poll_delay = NONCE_DELAY;
poll_timeout = NONCE_EXEC_MAX - NONCE_DELAY;
response_size = param1 == NONCE_MODE_PASSTHROUGH
? NONCE_RSP_SIZE_SHORT : NONCE_RSP_SIZE_LONG;
break;
case SHA204_PAUSE:
poll_delay = PAUSE_DELAY;
poll_timeout = PAUSE_EXEC_MAX - PAUSE_DELAY;
response_size = PAUSE_RSP_SIZE;
break;
case SHA204_RANDOM:
poll_delay = RANDOM_DELAY;
poll_timeout = RANDOM_EXEC_MAX - RANDOM_DELAY;
response_size = RANDOM_RSP_SIZE;
break;
case SHA204_READ:
poll_delay = READ_DELAY;
poll_timeout = READ_EXEC_MAX - READ_DELAY;
response_size = (param1 & SHA204_ZONE_COUNT_FLAG)
? READ_32_RSP_SIZE : READ_4_RSP_SIZE;
break;
case SHA204_UPDATE_EXTRA:
poll_delay = UPDATE_DELAY;
poll_timeout = UPDATE_EXEC_MAX - UPDATE_DELAY;
response_size = UPDATE_RSP_SIZE;
break;
case SHA204_WRITE:
poll_delay = WRITE_DELAY;
poll_timeout = WRITE_EXEC_MAX - WRITE_DELAY;
response_size = WRITE_RSP_SIZE;
break;
default:
poll_delay = 0;
poll_timeout = SHA204_COMMAND_EXEC_MAX;
response_size = rx_size;
}
// Assemble command.
len = datalen1 + datalen2 + datalen3 + SHA204_CMD_SIZE_MIN;
p_buffer = tx_buffer;
*p_buffer++ = len;
*p_buffer++ = op_code;
*p_buffer++ = param1;
*p_buffer++ = param2 & 0xFF;
*p_buffer++ = param2 >> 8;
if (datalen1 > 0) {
memcpy(p_buffer, data1, datalen1);
p_buffer += datalen1;
}
if (datalen2 > 0) {
memcpy(p_buffer, data2, datalen2);
p_buffer += datalen2;
}
if (datalen3 > 0) {
memcpy(p_buffer, data3, datalen3);
p_buffer += datalen3;
}
sha204c_calculate_crc(len - SHA204_CRC_SIZE, tx_buffer, p_buffer);
// Send command and receive response.
return sha204c_send_and_receive(&tx_buffer[0], response_size,
&rx_buffer[0], poll_delay, poll_timeout);
}
/* CRC Calculator and Checker */
void atsha204Class::sha204c_calculate_crc(uint8_t length, uint8_t *data, uint8_t *crc)
{
uint8_t counter;
uint16_t crc_register = 0;
uint16_t polynom = 0x8005;
uint8_t shift_register;
uint8_t data_bit, crc_bit;
for (counter = 0; counter < length; counter++)
{
for (shift_register = 0x01; shift_register > 0x00; shift_register <<= 1)
{
data_bit = (data[counter] & shift_register) ? 1 : 0;
crc_bit = crc_register >> 15;
// Shift CRC to the left by 1.
crc_register <<= 1;
if ((data_bit ^ crc_bit) != 0)
crc_register ^= polynom;
}
}
crc[0] = (uint8_t) (crc_register & 0x00FF);
crc[1] = (uint8_t) (crc_register >> 8);
}
uint8_t atsha204Class::sha204c_check_crc(uint8_t *response)
{
uint8_t crc[SHA204_CRC_SIZE];
uint8_t count = response[SHA204_BUFFER_POS_COUNT];
count -= SHA204_CRC_SIZE;
sha204c_calculate_crc(count, response, crc);
return (crc[0] == response[count] && crc[1] == response[count + 1])
? SHA204_SUCCESS : SHA204_BAD_CRC;
}