-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathdata_loader_fg_model.py
256 lines (202 loc) · 10.4 KB
/
data_loader_fg_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import torch
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image, ImageDraw
import os
import torchvision
from utils import imshow
class CocoData(Dataset):
"""
Args:
root (string): Root directory where images are downloaded to.
annFile (string): Path to json annotation file.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.ToTensor``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
category_names : name of the categories desired dataset consists
final_img_size : Dataset image size, default: 128
Return:
'image' : 3x128x128
'segmentation mask' : num_catx128x128 --- only one instance for specific category (one instance for each category)
'category' : multiple categories (e.g. zebra, giraffe)
"""
def __init__(self, root, annFile, transform=None, target_transform=None, category_names = None, final_img_size=128):
from pycocotools.coco import COCO
self.root = root
self.coco = COCO(annFile)
self.ids = list(self.coco.imgs.keys())
self.transform = transform
self.target_transform = target_transform
self.final_img_size = final_img_size
self.transform2 = transforms.Compose([
transforms.Scale((final_img_size,final_img_size)),
transforms.ToTensor(),
])
if category_names == None:
self.category = None
self.ids = list(self.coco.imgs.keys())
else:
self.category = self.coco.getCatIds(catNms=category_names) #e.g. [22,25]
self.ids = []
self.cat = []
for x in self.category:
self.ids += self.coco.getImgIds(catIds=x )
self.cat += [x]*len(self.coco.getImgIds(catIds=x )) #e.g. [22,22,...,22]
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: Tuple (image, target). target is the object returned by ``coco.loadAnns``.
"""
coco = self.coco
img_id = self.ids[index]
ann_ids = coco.getAnnIds(imgIds=img_id)
target = coco.loadAnns(ann_ids)
path = coco.loadImgs(img_id)[0]['file_name']
valid_instance = False
num_iter = 0
while valid_instance == False and (num_iter < 5):
img = Image.open(os.path.join(self.root, path)).convert('RGB')
img_size = img.size
img_size_x = img_size[0]
img_size_y = img_size[1]
seg_masks = torch.zeros([len(self.category),self.final_img_size,self.final_img_size])
single_fg_mask = torch.zeros([len(self.category),self.final_img_size,self.final_img_size])
instance_types = []
for i in range(len(target)):
instance = target[i]
instance_types.append(instance['category_id'])
idx_list = [i for i in range(len(instance_types)) if (instance_types[i] in self.category and len(target[i]['segmentation'])>=1)]
num_object = len(idx_list)
for i in range(num_object):
idx = idx_list[np.random.choice(len(idx_list),1)[0]]
idx_list.remove(idx)
instance = target[idx]
mask = Image.new('L', (img_size_x, img_size_y))
for j in range(len(instance['segmentation'])):
poly = instance['segmentation'][j]
ImageDraw.Draw(mask).polygon(poly, outline=1, fill=1)
if i==0:
bbox = instance['bbox']
mask_instance_1 = mask
bbox_mask = Image.new('L', (img_size_x, img_size_y))
ImageDraw.Draw(bbox_mask).rectangle([bbox[0],bbox[1],bbox[0]+bbox[2],bbox[1]+bbox[3]], outline=1, fill=1)
bbox_mask= self.transform2(bbox_mask)
if torch.max(bbox_mask) != 0:
bbox_mask = bbox_mask/torch.max(bbox_mask)
mask= self.transform2(mask)
if torch.max(mask) != 0:
mask = mask/torch.max(mask)
seg_masks[self.category.index(instance['category_id']),:,:] += mask
#Single foreground object mask
if i==0:
single_fg_obj_ctg = self.category.index(instance['category_id'])
single_fg_mask[single_fg_obj_ctg,:,:] = mask
if self.transform is not None:
img = self.transform(img)
seg_masks = torch.clamp(seg_masks,0,1)
###bounding-box of the object in resized image
if bbox[2]>bbox[3]:
dx = 0
dy = (bbox[2]-bbox[3]) /2
else:
dx = (bbox[3]-bbox[2]) /2
dy = 0
x1 = max(0,bbox[0]-dx)
y1 = max(0,bbox[1]-dy)
x2 = min(img_size_x,bbox[0]+bbox[2]+dx)
y2 = min(img_size_y,bbox[1]+bbox[3]+dy)
mask_instance_1 = mask_instance_1.crop((int(x1), int(y1), int(x2), int(y2) ))
mask_instance_1 = self.transform2(mask_instance_1)
if torch.max(mask_instance_1) != 0:
mask_instance_1 = mask_instance_1/torch.max(mask_instance_1)
mask_instance = torch.zeros([len(self.category),self.final_img_size,self.final_img_size])
mask_instance[single_fg_obj_ctg,:,:] = mask_instance_1
x_scale = self.final_img_size/img_size_x
y_scale = self.final_img_size/img_size_y
x1, x2 = x1*x_scale, x2*x_scale
y1, y2 = y1*y_scale, y2*y_scale
#bbox_scaled = [y1,y2,x1,x2]
bbox_scaled = [int(y1),int(y2),int(x1),int(x2)]
num_iter += 1
if (bbox_scaled[1]>bbox_scaled[0]) and (bbox_scaled[3]>bbox_scaled[2]):
valid_instance = True
if not (bbox_scaled[1]>bbox_scaled[0]):
if bbox_scaled[1]<self.final_img_size:
bbox_scaled[1] += 1
else:
bbox_scaled[0] -= 1
if not (bbox_scaled[3]>bbox_scaled[2]):
if bbox_scaled[3]<self.final_img_size:
bbox_scaled[3] += 1
else:
bbox_scaled[2] -= 1
sample = {'image': img, 'seg_mask': seg_masks,'single_fg_mask': single_fg_mask, 'mask_instance':mask_instance, 'bbox':bbox_scaled, 'cat': self.cat[index], 'num_object':num_object}
return sample
def __len__(self):
return len(self.ids)
def discard_small(self, min_area, max_area=1):
temp = []
for img_id in self.ids:
ann_ids = self.coco.getAnnIds(imgIds=img_id)
target = self.coco.loadAnns(ann_ids)
instance_types = []
valid_mask = False
path = self.coco.loadImgs(img_id)[0]['file_name']
img = Image.open(os.path.join(self.root, path))
img_size = img.size
img_size_x = img_size[0]
img_size_y = img_size[1]
total_fg_area = 0
total_fg_area_relevant = 0
for i in range(len(target)):
instance = target[i]
total_fg_area += instance['area']
instance_types.append(instance['category_id'])
if instance['category_id'] in self.category and len(instance['segmentation'])>=1:
total_fg_area_relevant += instance['area']
valid_mask = True
if (instance['category_id'] in self.category) and (type(instance['segmentation']) is not list):
valid_mask = False
break
if valid_mask and total_fg_area_relevant/(img_size_x*img_size_y) > min_area and total_fg_area/(img_size_x*img_size_y) < max_area:
temp.append(img_id)
print(str(len(self.ids)) + '-->' + str(len(temp)))
self.ids = temp
def discard_bad_examples(self, path):
file_list = open(path, "r")
bad_examples = file_list.readlines()
for i in range(len(bad_examples)):
bad_examples[i] = int(bad_examples[i][:-1])
temp = []
for img_id in self.ids:
if not (img_id in bad_examples):
temp.append(img_id)
print(str(len(self.ids)) + '-->' + str(len(temp)))
self.ids = temp
print('Bad examples are left out!')
#-------------------------Example-----------------------------------------
if __name__ == '__main__':
transform = transforms.Compose([transforms.Resize((128,128)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
dataset = CocoData(root = 'C:/Users/motur/coco/images/train2017',
annFile = 'C:/Users/motur/coco/annotations/instances_train2017.json',
category_names = ['giraffe'],
transform=transform)
dataset.discard_small(0.03)
train_loader = DataLoader(dataset, batch_size=1, shuffle=True)
print('Number of samples: ', len(dataset))
for num_iter, sample_batched in enumerate(train_loader,0):
image= sample_batched['image'][0]
imshow(torchvision.utils.make_grid(image))
plt.pause(0.001)
mask= sample_batched['seg_mask'][0]
fg_mask= sample_batched['single_fg_mask'][0]
imshow(torchvision.utils.make_grid(mask[0]))
plt.pause(0.001)